Что происходит с информацией в головном мозге. Депрессия влияет на структуру мозга? Зона ориентировки, памяти и воображения

Что происходит с информацией в головном мозге. Депрессия влияет на структуру мозга? Зона ориентировки, памяти и воображения

Самым главным в центральной-нервной системе является головной мозг. Он контролирует работу всех систем организма. Состоит он из клеток нейронов, которые связаны между собой.

Они связываются между собой посредством импульсов. Все происходящие процессы в мозге изучены не до конца. Некоторые из них уже хорошо известны науке, а некоторые остаются полной загадкой.

Общие сведения

Размеры мозга достаточно невелики, по отношению ко всему организму он занимает всего два процента. Мозг человека самый развитый. Несмотря на его маленькие размеры, он управляет всем организмом.

Мозг человека находится в прочной оболочке, между которыми находятся сосуды. Внутри оболочки находится мозговая жидкость. Он делится на два полушария. Каждое полушарие отвечает за определенные системы организма. Без определенных сигналов головного мозга организм человека функционирует неправильно.

Любые изменения в тканях и структурах мозга могут привести к необратимым процессам. Смерть головного мозга может привести к смерти организма в целом. Его системы могут останавливать свою работу не так стремительно, как мозг. Но чаще всего результат будет неутешительный.

Нарушения в работе мозга имеют много воплощений

Таких заболеваний достаточно много. Одним из них называется абсцесс. Определенная полость головного мозга заполняется гноем. Обычно его может спровоцировать инфекция, которая попала внутрь.

Произойти это может в результате травмы или хирургического вмешательства, а также через кровь. Инкубационный период может длиться довольно долго. Для лечения обычно проводят операцию. Предсказать результат сложно.

Арахноидит – это когда воспаляются соединительные ткани и сосуды. Такие проявления вызывает инфекция или расстройства в работе центральной нервной системы. Имеет много второстепенных эффектов. Полное выздоровление может не наступить.

Атаксия – это нарушение привычных движений, речи. В этой ситуации нарушается связь между спинным и головным мозгом. Такое заболевание может говорить об возможных изменениях и осложнениях в головном мозге человека. Лечится обязательно с участием специалиста.

Атеросклероз сосудов. Становиться заметным, как ухудшение памяти, общим ухудшением состояния, головными болям.

Афазия – несет с собой нарушение работы речевого аппарата.

Бессонница – это заболевание связано с изменениями в работе центральной-нервной системы. Такие проявления могут вызвать стресс, перенапряжение, болевых ощущений в организме.

Разновидности параличей. Они могут появиться вместе с атеросклерозом. В процессе болезни меняется речь. Наблюдается резкая смена настроения. Вегетососудистые изменения могут быть в разных проявлениях.

Лечению они поддаются, но необходимо приложить определенные усилия. Протекает само заболевание довольно долго и в серьезной форме. Головная боль может говорить о, возможно, протекающих заболеваниях в мозге человека. Боли возникают в результате раздражения оболочки головного мозга.

Гипертония стала довольно молодым заболеванием. Когда боль концентрируется в затылке и выражается в ломящих проявлениях, давление может быть пониженным или повышенным. Выяснить это довольно просто. Нужно измерить давление тонометром.

Головокружение может начать проявляться неожиданно. Причины могут быть самые разнообразные. Это связано с нарушением работы вестибулярного аппарата. Резкие движения могут привести к таким ощущениям. Если такие явления не часты и возникают при определенных обстоятельствах можно не беспокоиться. Но когда головокружение сопровождается болями и повторяется с определенной периодичностью, необходимо обязательно посетить врача.

Когда ухудшается кровообращение головного мозга может наступить апоплексическая кома. Происходит разрыв сосудов и кровоизлияние. Этот процесс называют инсультом. В таких случаях нужно обязательно вызвать скорую помощь.

Менингит – это воспаление оболочки мозга. Возникает он по нескольким причинам. Очень сильная головная боль, высокая температура. Лечат его в стационаре. Для установки точного диагноза необходимо сделать пункцию. Выздоровление происходит долго, прогноз неоднозначный.

Мигрень проявляется в виде головной боли. Установить такой диагноз возможно, только после полного медицинского обследования.

Невралгические заболевания головного мозга могут причинить невосполнимый ущерб всему организму. После такого заболевания организм может восстановиться не в полной мере.

Прекращение работы функций головного мозга может происходить когда остальные органы еще работают. Происходит работа сердца и осуществляется дыхание. Обычно при искусственной поддержке. Но в момент остановки работы мозга происходят необратимые процессы, отмирание клеток. Организм еще как бы живет, но отсутствует реакция на все происходящее вокруг. Причин тому очень много. Специалисты называют такое состояние – запредельной комой.

Изменения головного мозга могут происходить не в связи с заболеваниями, а просто с возрастом. Организм в целом и со временем стареет. Все системе постепенно меняют свою работу. Происходят патологические изменения. Обычно в первую очередь это касается лобных долей головного мозга, но постепенно затрагивают и другие его части.

Можно сказать, что это наиболее распространенные и сложные заболевания головного мозга. Процесс течения любого из них может зависеть от множества факторов и индивидуальных особенностей организма. Прислушивайтесь к ритму его работы. Медики называют этот процесс – кортикальной атрофией. Такие изменения происходят в течение нескольких лет.

Что может привести к церебральной атрофии мозга?

Чаще всего существует предрасположенность к такому заболеванию. Происходит разрушение клеток головного мозга. Они могут разрушаться под воздействием алкоголя, никотина, токсичных и наркотических веществ. Употребление наркотических веществ приносит вред всему организму в целом. Все эти вещества накапливаются в головном мозге и во всем организме.

Спровоцировать их реакцию может травма, опухоли головного мозга, гематома или киста. Также послужить началом церебральной атрофии мозга может неврологическое заболевание, плохое кровообращение, ишемия сердца, недостаточное количество кислорода в крови. Эти процессы приводят к снижению умственных способностей, а это влечет деградацию.

Первые признаки церебральной атрофии головного мозга проявляются в расстройстве памяти, забывчивости, рассеянному вниманию. Со временем они начинают прогрессировать. Больному присущи резкие вспышки гнева и агрессии, возможно, длительное депрессивное состояние. Работа всех функций головного мозга нарушена.

Очень характерный признак для заболевания изменения почерка. Речь становится неразборчивой, мысли путаются, словарный запас резко уменьшается. В дальнейшем больной может потерять дееспособность и будет нуждаться в постоянном уходе. Принести продукты, приготовить еду, убрать квартиру – это станет для него непосильным.

Для проведения лечения и профилактических мер необходимо:

  • сократить употребление алкоголя, никотина, наркотических веществ до минимума;
  • при работе с токсичными веществами соблюдать меры собственной безопасности;
  • стараться употреблять здоровую и полезную пищу;
  • заниматься физкультурой и спортом;
  • проводить медикаментозную терапию, строго по назначению врача;
  • стараться избегать стрессовых ситуаций.

Причины остановки работы мозга

Головной мозг прекращает свою работу в результате травмы. Чаще всего это дорожно-транспортные происшествия, ушибы при падении. В такой ситуации травмируется непосредственно сам головной мозг. Если же прямой травмы не было могло произойти кровоизлияние в полость головного мозга.

В этот момент мозг повреждается, как и при прямой травме. Еще мозг может прекратить свою деятельность когда возникла острая сердечная недостаточность. Когда кровь не поступает в мозг в течение получаса, начинают погибать клетки, которые уже не подлежат реанимации. Происходит это в момент резкого повышения давления внутри черепа и из-за остановки сердца, проводится прямой массаж.

Признаки, остановки работы головного мозга.

  • отсутствует дыхание;
  • зрачок не реагирует;
  • реакция на боль отсутствует;
  • непроизвольные движения шеи и рук, без помощи работы головного мозга.

Как диагностируют смерть головного мозга?

Можно провести электроэнцефалограмму головного мозга и если на ней не видна биологическая активность, можно констатировать остановку работы. Когда отсутствует кровообращение в головном мозге нужно провести исследования ультразвуком или магниторезонансную ангиографию, скрининговые исследования.

При этом, желательно, знать причину наступления остановки работы сердца. При проведении обследования может быть выяснено, что борозды сглажены, желудочки уменьшены и наблюдается отек головного мозга. Обязательно проводится тест на проверку работы системы дыхания.

Констатация факта смерти мозга происходит в случае:

  • отсутствие реакции зрачка на световые раздражители;
  • остановки работы системы дыхания;
  • терминальная кома.

Атрофия головного мозга

Так, называют церебральную атрофию, в процессе которой происходит постепенное отмирание нервных клеток в головном мозге. Разрушаются нейроны и их соединения, кора головного мозга. Этому заболеванию подвержены люди в возрасте старше пятидесяти лет. Принято считать, что женщины болеют чаще, чем мужчины. Очень часто в результате наступает полное слабоумие.

Медицина утверждает, что это заболевание заложено на генетическом уровне. Влияние окружающих факторов, может повлиять на форму заболевания или ее течение.

Существует несколько видов атрофии:

  • болезнь Пика;
  • болезнь Альцгеймера.

Атрофия мозга выражается в отношении ко всему происходящему. Человек становится равнодушным, теряет интерес к жизни. Может наступить переоценка моральных ценностей. Мыслительные процессы замедляются, речь становится бессвязной, непоследовательной.

Нарушается робота опорно-двигательного аппарата. Больной может не узнавать людей и предметы. Происходит нарушение ориентации и он может повторять чьи-то поступки или действия. С течением определенного времени может наступить полный маразм. Диагностируют, такое заболевание при обследовании головного мозга и проведении МРТ.

Лечение носит больше профилактический характер. Необходим уход и большое внимание. В медикаментозных процедурах присутствуют лекарства, которые снимают симптомы или облегчают их проявления.

В такие моменты очень важно, чтобы больной находился в спокойной психологической обстановке и привычном образе жизни. Медики не рекомендуют содержать таких больных в клинике. Очень сможет помочь обычные домашние хлопоты, внимание и забота близких.

Из лекарственных препаратов назначают что-то успокоительное и снимающее депрессию. В таком случае желательно разработать специальный режим дня для больного. Он должен чувствовать себя нужным окружающим. Нагрузки обычно небольшие просто требующие определенного времени и занятости. Обязательно должен присутствовать отдых днем.

В процессе заболевания может развиться субатрофия коры головного мозга. Профилактика атрофии головного мозга практически невозможна. Рекомендуется вести здоровый образ жизни и прислушиваться к своему организму.

Подведение итогов

Головной мозг один из важнейших органов нашего организма. Все изменения в работе мозга приводят к сбою в работе всего организма. Каждая клетка головного мозга отвечает за определенную функцию.

При получении травмы, заболевании головного мозга могут происходить необратимые процессы. Отмирание клеток мозга происходит довольно быстро, а восстановление не наступает.

Многие заболевания головного мозга заложены на генетическом уровне. Поэтому очень важны внешние факторы воздействия. Положительные эмоции и здоровый образ жизни могут свести возможность развития сутатрофии головного мозга к минимуму.

При наступлении смерти головного мозга, организм человека прекращает свою деятельность. В зависимости от поврежденных участков мозга могут сохраниться рефлекторные инстинкты, которые происходят неосознанно.

При проявлении любых симптомов мозговых заболеваний необходимо обязательно обращаться к врачу. Пройти полное медицинское обследование.

Профилактика заболеваний головного мозга может принести положительные результаты. Ею нужно заниматься как перенесшим заболевания мозга, так и всем пациентам, имеющим к ним генетическую расположенность.

В современной медицине широко используются препараты, которые улучшаю работу и кровообращение головного мозга. Это прирацетам, церепро, цераксон. Существуют лекарства, которые принимают в профилактических целях – их называют антиоксидантами. Они способны ускорить и улучшить процесс вывода токсичных веществ из организма. «Трентал» предназначен для расширения сосудов и улучшения кислородного обмена.

Но вы должны всегда помнить, что заниматься самолечением категорически запрещено. Тем более, если у вас заболевания головного мозга такие, как: церебральная атрофия головного мозга и субатрофия коры головного мозга и клеток.

Симптомы очень схожи между собой и с другими мозговыми заболеваниями. Правильно поставить диагноз и выбрать терапию, может только специалист. Обязательно проводя полное обследование всего организма и головного мозга.

В профилактических целях, после курса медикаментозного лечения обязательно обратите внимание на народные методы профилактики мигрени или обычной головной боли. Но всегда все процедуры проводите только после согласования со специалистом.

Процесс выздоровления во многом зависит от своевременности обращения в клинику. Это во многом обуславливает положительный эффект лечения. Остановка работы головного мозга нуждается в срочных реанимационных действиях. Потерянное время может оказаться основной причиной невозможности и бесполезности их проведения.

Для того чтобы достичь полного понимания биологических основ сознания, понадобится, возможно, еще несколько столетий. Но если всего лишь пару десятков лет назад к решению этой задачи приступать даже не решались, сегодня появились научные методы исследований в данной области.

Если отвечать вкратце, то ответ будет таков: наука пока не имеет удовлетворительного объяснения этого процесса. Удовлетворительного в том смысле, который имел в виду Ричард Фейнман, когда говорил: «То, что я не могу построить, я не могу понять». Мы не можем пока создать устройство, которое мыслит, и это в значительной степени связано не с техническими сложностями, а с тем, что мы не способны пока понять, как устроен мозг.

Что известно сейчас? Мы не можем сказать, как рождается мысль, но мы уже очень много знаем о том, что происходит в мозге при ее рождении, какие уникальные условия работы мозга создаются, когда возникает мысль. Исследуется это в специальных экспериментах, когда сравнивают предъявление мозгу каких-то осознаваемых ситуаций (рождающих мысль) и тех же ситуаций, которые он осознать не может. Например, если событие слишком коротко: зрительные и слуховые компоненты происходящего поступают в мозг, но до уровня сознания не доходят. Когда ученые сравнивают, что происходит в мозге при сознательной и неосознаваемой переработке информации, оказывается, что осознание связано с несколькими вещами.
Что происходит при осознании:

📎 во-первых, когда мы осознаем что-то, в коре головного мозга работает значительно больше нейронов в тех зонах, которые уже участвовали в обработке неосознанной информации.

📎 во-вторых, в момент осознания активируются те зоны, которые раньше не участвовали в неосознаваемой обработке сенсорных данных. Это зоны, связанные с передними областями мозга.

📎 в-третьих, между зонами, которые активируются в момент появления сознания (мысли), и зонами, которые связаны с нашим восприятием окружающего мира, начинают устанавливаться быстрые циклические взаимодействия - реверберации.

📎 в-четвертых, только после того как начинается циркуляция возбуждений по этой сети, появляется момент осознания. Мы не всегда понимаем это, но наше сознание очень сильно отстает от момента реакции мозга на какие-то события. Если точно известно, в какую миллисекунду предъявлена на экране фотография или слово, можно убедиться, что осознание появляется примерно через полсекунды (200–400 миллисекунд) после показа. А реакция областей мозга, которые воспринимают информацию неосознанно (ранняя реакция), возникает заметно раньше, то есть через 60–100 миллисекунд. Все эти четыре компонента складываются в общую картину. Когда у нас появляется вспышка сознания, это происходит из-за того, что разные области мозга - и те, которые связаны с умственным напряжением, вниманием (передние), и те, которые связаны с восприятием внешнего мира - синхронизуются вместе в специальных циклах циркуляции информации. Синхронизация устанавливается на поздних фазах действия внешнего сигнала (через полсекунды), и в этот момент появляется сознание.

Тайны нервного кода
Мы также знаем, что воздействие на разные этапы этих четырех компонентов (иногда они наблюдаются в медицине, при травмах, кроме того, их можно вызывать искусственно при магнитной симуляции) способно разрушить сознание, и человек окажется в области подсознательного либо попросту в коме.

Мозг часто сравнивают с компьютером, но это очень грубая и неточная аналогия. Нервный код устроен совсем по-другому, нежели коды Тьюринговской машины. Мозг не работает на бинарной логике, он не работает как тактовый процессор, он функционирует как массивная параллельная сеть, где основным элементом кода является момент синхронизации разных клеток с их опытом, в результате чего и возникает то субъективное ощущение, мысль или действие, которые занимают в этот миг театр сознания, поле нашего внимания. Это код синхронизации многих элементов, а не ход пошаговых вычислений.

Нейроны и образы
В момент образования связей между клетками не передается что-то похожее на психическую информацию. Между ними передаются химические вещества, которые позволяют нейронам объединиться в ту или иную систему. Каждая из этих систем уникальна, потому что клетки специализированы. Например, это клетки, воспринимающие образ синего неба, белой оконной рамы, лица и т. д. Все вместе они дают на какое-то короткое время тот осознаваемый образ, который и занимает наше внимание. Такие «кадры» могут очень быстро меняться, и следующие несколько десятков миллисекунд в мозгу появится другая конфигурация клеток, которая связана с другим набором нейронов. И это постоянный поток, лишь небольшая часть которого осознается посредством возникающих синхронизаций. Есть масса вещей, которые работают при этом параллельно центральному звену. Они не осознаются и построены на автоматизированных процессах. Я сижу, балансирую, поддерживаю температуру тела, давление, дыхание. Это всё управляется массой функциональных систем, которые не должны идти в широковещание на весь мозг.

Мозг под управлением ОС
Однако при всей несхожести нервного и бинарного кодов некие параллели между мозгом и компьютером все же можно провести.

Мозг обладает подобием операционной системы, и на этот счет существует несколько гипотез. В одной из них - теории функциональных систем - существует понятие операционной архитектоники системы. Это некий синтез сенсорных и мотивационных сигналов, извлечений из памяти, который вовлекает все эти компоненты в единое рабочее пространство - то, где ставится цель и принимается решение. Есть также теория сознания как глобального рабочего пространства. Согласно ей существует определенная операциональная архитектура, которая как операционная система способна вовлекать разные клетки в процессы осознания. Она вовлекает нейроны передних областей коры, которые имеют длинные проекции во все остальные области коры, и когда происходит «зажигание» этих нейронов, они начинают «крутить» информацию по всем остальным областям. Это некий центральный процессор, и он включается, только когда есть сознание. Во всем остальном мозг может работать автоматически. Вы можете вести машину, а ваше сознание будет занято некими внутренними вопросами, и «процессор» будет работать для них. И лишь в тот момент, когда происходит что-то неожиданное (кто-то перебегает дорогу, например), операционная система начинает работать на режим внешнего мира.

Константин Владимирович Анохин, российский ученый, нейробиолог, профессор, член-корреспондент РАН и РАМН. Лауреат премий Ленинского комсомола, имени Де Вида Нидерландской академии наук, Президиума Российской академии медицинских наук и Национальной премии «Человек года» в номинации «Потенциал и перспектива в науке»

Смирнова Ольга Леонидовна

Невропатолог, образование: Первый Московский государственный медицинский университет имени И.М. Сеченова. Стаж работы 20 лет.

Написано статей

Какая часть мозга отвечает за память и что влияет на этот процесс, важно знать всем. Каждый день мы получаем массу информации, часть из которой запоминается. Почему одни воспоминания остаются в памяти, а другие нет, какой механизм действия памяти?

Памятью называют способность к запоминанию, накоплению и извлечению полученных сведений. Сколько может запомнить человек, зависит от его внимания.

Память формируется несколькими участками головного мозга: корой мозга, мозжечком, лимбической системой. Но в большей степени на нее влияют височные доли мозга. Процесс запоминания происходит в гиппокампе. Если повреждена височная область с одной стороны, то память становится хуже, но при нарушениях в обеих височных долях процесс запоминания полностью прекращается.

Функционирование памяти зависит от состояния нейронов и нейромедиаторов, обеспечивающих связь между нервными клетками. Они концентрируются в области гиппокампа. К нейромедиаторам относят и ацетилхолин. Если этих веществ не хватает, то память значительно ухудшается.

Уровень ацетилхолина зависит от количества энергии, производимой в процессе окисления жиров и глюкозы. Нейромедиаторы концентрируются в органе в меньших количествах, если человек переживает стресс или страдает от депрессивных состояний.

Механизм запоминания

Мозг человека работает, как компьютер. Чтобы сохранить текущую информацию он использует оперативную память, а для длительного хранения не обойтись без жесткого диска. В зависимости от того насколько долго часть мозга отвечающая за память хранит информацию, выделяют:

  • непосредственную память;
  • кратковременную;
  • долговременную.

Интересно, что в зависимости от вида, память хранится в разных участках мозга. Кратковременные воспоминания концентрируются в , а долговременные – в гиппокампе.

Способность к запоминанию считается важной частью интеллекта. Поэтому от ее развития зависит и объем информации, которой владеет человек.

Работа памяти состоит из запоминания, сохранения и воспроизведения. Когда люди получают информацию, она поступает от одной нервной клетки к другой. Эти процессы происходят в области коры головного мозга. Данные нервные импульсы приводят к созданию нейронных связей. По этим путям в дальнейшем человек извлекает, то есть, вспоминает полученные сведения.

На то, как успешно и надолго запомнится информация, влияет то, с каким вниманием человек относится к объекту. Если это ему интересно, то он сильнее концентрируется на интересующем его предмете и процесс запоминания происходит на высоком уровне.

Вниманием и концентрацией называют такую функцию психики, которая позволяет сфокусировать все мысли на определенном объекте.

Не менее важным, чем запоминание, является забывание информации. Благодаря этому нервная система разгружается и освобождается место для новых сведений, начинают образовываться новые нейронные связи.

Какое полушарие отвечает за память, точно сказать нельзя, так как оба эти участка играют важную роль в процессе обработки и запоминания информации.

Объем памяти

Согласно недавним результатам исследований, ученым удалось выяснить, что объем памяти человеческого мозга составляет около миллиона гигабайт.

Если способности к запоминанию хорошо развиты, то творческим личностям это может доставлять много проблем.

В составе головного мозга около сотни миллиардов нервных клеток, между каждой из которых существуют тысячи нейронных связей. Информация передается в синапсе. Так называют точку, в которой контактируют нейроны. Во время взаимодействия двух нейронов, происходит формирование прочных синапсов. На ветвящихся отростках нервных клеток есть дендриты, которые увеличиваются в размерах во время получения новой информации. Эти отростки позволяют контактировать с другими клетками, во время увеличения он может воспринимать большее количество сигналов, поступающих в мозг.

Некоторые ученые сравнивают дендриты с битами компьютерного кода, но вместо цифр применяют описательные характеристики их размеров.

Но раньше не знали и том, каких размеров способны достигать эти отростки. Ограничивались только определением маленьких, средних и больших дендритов.

Ученые из Калифорнии столкнулись с интересной особенностью, которая заставила их пересмотреть известную информацию о размерах отростков. Это произошло во время изучения гиппокампа крысы. Это отдел мозга отвечающий за память по отношению к зрительным образам.

Исследователи заметили, что один, из отростков нервной клетки, отвечающий за передачу сигналов способен взаимодействовать с двумя дендритами, принимающими информацию.

Ученые выдвинули предположение о способности дендритов принимать одинаковую информацию, если она происходит от одного аксона. Поэтому размер и прочность их должны быть идентичными.

Было произведено измерение объектов, отвечающих за формирование синаптических связей. В ходе исследования удалось выяснить, что разница между дендритами, получающими информацию от одного аксона составляет около восьми процентов. Всего удалось выявить 26 возможных размеров отростков.

Основываясь на результатах исследований, была выдвинута гипотеза о способности человеческой памяти сохранять квадриллион байт информации. Чтобы сравнить мозг с компьютером достаточно знать, что размер средней оперативной памяти устройства не больше восьми гигабайт. Тогда как мозг может сохранить миллион гигабайт.

Каждый человек знает, что полностью использовать весь объем памяти нельзя. Многие хоть раз забывали о днях рождениях друзей и родственников, испытывали трудности с изучением стихотворений или запоминанием параграфов по истории. Это явление считается нормальным. Но, если человек помнит абсолютно все, то это считается феноменом. Миру известны лишь единицы людей, которые помнили большую часть полученных сведений.

Экология сознания: Жизнь. Совершенно точно доказано, что наш мозг - дико пластичная штука, и индивидуальное обучение серьезно на него влияет - в значительно большей степени, чем врожденные предрасположенности.

Если сравнивать с детенышами других животных, можно сказать, что человек рождается с недоразвитым мозгом: его масса у новорожденного составляет всего 30% массы мозга взрослого. Эволюционные биологи предполагают, что мы должны рождаться недоношенными, чтобы наш мозг развивался, взаимодействуя с внешней средой. Научный журналист Ася Казанцева в лекции «Зачем мозгу учиться?» в рамках программы «Арт-образование 17/18» рассказала

О процессе обучения с точки зрения нейробиологии

и объяснила, как мозг меняется под влиянием опыта, а также чем во время учебы полезны сон и лень.

Кто изучает феномен обучения

Вопросом, зачем мозгу учиться, занимаются как минимум две важные науки - нейробиология и экспериментальная психология. Нейробиология, изучающая нервную систему и происходящее в мозге на уровне нейронов в момент обучения, работает чаще всего не с людьми, а с крысами, улиточками и червячками. Специалисты по экспериментальной психологии пытаются понять, какие вещи влияют на обучаемость человека: например, дают ему важное задание, проверяющее его память или обучаемость, и смотрят, как он с ним справляется. Эти науки интенсивно развивались в последние годы.

Если смотреть на обучение с точки зрения экспериментальной психологии, то полезно вспомнить, что эта наука - наследница бихевиоризма, а бихевиористы считали, что мозг - черный ящик, и их принципиально не интересовало, что в нем происходит. Они воспринимали мозг как систему, на которую можно воздействовать стимулами, после чего в ней случается какая-то магия, и она определенным образом на эти стимулы реагирует. Бихевиористов интересовало, как может выглядеть эта реакция и что на нее способно влиять. Они считали, что обучение - это изменение поведения в результате освоения новой информации

Это определение до сих пор широко применяется в когнитивных науках. Скажем, если студенту дали почитать Канта и он запомнил, что есть «звездное небо над головой и моральный закон во мне», озвучил это на экзамене и ему поставили пятерку, значит, произошло обучение.

С другой стороны, такое же определение применимо и к поведению морского зайца (аплизии). Нейробиологи часто ставят опыты с этим моллюском. Если бить аплизию током в хвостик, она начинает бояться окружающей реальности и втягивать жабры в ответ на слабые стимулы, которых она раньше не боялась. Таким образом, у нее тоже происходит изменение поведения, обучение. Это определение можно применять и к еще более простым биологическим системам. Представим себе систему из двух нейронов, соединенных одним контактом. Если мы подадим на нее два слабых импульса тока, то в ней временно изменится проводимость и одному нейрону станет легче подавать сигналы другому. Это тоже обучение на уровне этой маленькой биологической системы. Таким образом, от обучения, которое мы наблюдаем во внешней реальности, можно построить мостик к тому, что происходит в мозге. В нем есть нейроны, изменения в которых влияют на нашу реакцию на среду, т. е. на произошедшее обучение.

Как работает мозг

Но чтобы говорить о мозге, нужно иметь базовое представление о его работе. В конце концов, у каждого из нас в голове есть эти полтора килограмма нервной ткани. Мозг состоит из 86 миллиардов нервных клеток, или нейронов. У типичного нейрона есть тело клетки со множеством отростков. Часть отростков - дендриты, которые собирают информацию и передают ее на нейрон. А один длинный отросток, аксон, передает ее следующим клеткам. Под передачей информации в рамках одной нервной клетки подразумевается электрический импульс, который идет по отростку, как по проводу. Один нейрон взаимодействует с другим через место контакта, которое называется «синапс», сигнал идет с помощью химических веществ. Электрический импульс приводит к высвобождению молекул - нейромедиаторов: серотонина, дофамина, эндорфинов. Они просачиваются через синаптическую щель, воздействуют на рецепторы следующего нейрона, и он изменяет свое функциональное состояние - например, у него на мембране открываются каналы, через которые начинают проходить ионы натрия, хлора, кальция, калия и т. д. Это приводит к тому, что на нем, в свою очередь, тоже формируется разность потенциалов, и электрический сигнал идет дальше, на следующую клетку.

Но когда клетка передает сигнал другой клетке, этого чаще всего недостаточно для каких-то заметных изменений в поведении, ведь один сигнал может получиться и случайно из-за каких-то возмущений в системе. Для обмена информацией клетки передают друг другу много сигналов. Главный кодирующий параметр в мозге - это частота импульсов: когда одна клетка хочет что-то передать другой клетке, она начинает посылать сотни сигналов в секунду. Кстати, ранние исследовательские механизмы 1960–70-х годов формировали звуковой сигнал. В мозг экспериментальному животному вживляли электрод, и по скорости треска пулемета, который слышался в лаборатории, можно было понять, насколько активен нейрон.

Система кодирования с помощью частоты импульсов работает на разных уровнях передачи информации - даже на уровне простых зрительных сигналов. У нас на сетчатке есть колбочки, которые реагируют на разные длины волн: короткие (в школьном учебнике они называются синие), средние (зеленые) и длинные (красные). Когда на сетчатку поступает волна света определенной длины, разные колбочки возбуждаются в разной степени. И если волна длинная, то красная колбочка начинает интенсивно подавать сигнал в мозг, чтобы вы поняли, что цвет красный. Впрочем, тут все не так просто: у колбочек перекрывается спектр чувствительности, и зеленая тоже делает вид, что она что-то такое увидела. Дальше мозг самостоятельно это анализирует.

Как мозг принимает решения

Принципы, аналогичные тем, что используются в современных механических исследованиях и опытах на животных с вживленными электродами, можно применять и к гораздо более сложным поведенческим актам. Например, в мозге есть так называемый центр удовольствия - прилежащее ядро. Чем более активна эта область, тем сильнее испытуемому нравится то, что он видит, и выше вероятность, что он захочет это купить или, например, съесть. Эксперименты с томографом показывают, что по определенной активности прилежащего ядра можно еще до того, как человек озвучит свое решение, допустим, относительно покупки кофточки, сказать, будет он ее покупать или нет. Как говорит прекрасный нейробиолог Василий Ключарев, мы делаем все, чтобы понравиться нашим нейронам в прилежащем ядре.

Сложность в том, что у нас в мозге нет единства суждений, каждый отдел может иметь свое мнение о происходящем. История, похожая на спор колбочек в сетчатке, повторяется и с более сложными вещами. Допустим, вы увидели кофточку, она вам понравилась, и ваше прилежащее ядро издает сигналы. С другой стороны, эта кофточка стоит 9 тысяч рублей, а зарплата еще через неделю - и тогда ваша амигдала, или миндалевидное тело (центр, связанный в первую очередь с негативными эмоциями), начинает издавать свои электрические импульсы: «Слушай, остается мало денег. Если мы сейчас купим эту кофточку, у нас будут проблемы». Лобная кора принимает решение в зависимости от того, кто громче орет - прилежащее ядро или амигдала. И тут еще важно, что каждый раз впоследствии мы способны проанализировать последствия, к которым это решение привело. Дело в том, что лобная кора общается и с амигдалой, и с прилежащим ядром, и с отделами мозга, связанными с памятью: они ей рассказывают, что произошло после того, как в прошлый раз мы принимали такое решение. В зависимости от этого лобная кора может более внимательно отнестись к тому, что говорят ей амигдала и прилежащее ядро. Так мозг способен меняться под влиянием опыта.

Почему мы рождаемся с маленьким мозгом

Все человеческие дети рождаются недоразвитыми, буквально недоношенными в сравнении с детенышами любого другого вида. Ни у одного животного нет настолько длинного детства, как у человека, и у них не бывает потомства, которое рождалось бы с настолько маленьким мозгом относительно массы мозга взрослого: у человеческого новорожденного она составляет лишь 30%.

Все исследователи сходятся во мнении, что мы вынуждены рождать человека незрелым из-за внушительного размера его мозга. Классическое объяснение - это акушерская дилемма, то есть история конфликта между прямохождением и большой головой. Чтобы родить детеныша с такой головой и крупным мозгом, нужно иметь широкие бедра, но невозможно их бесконечно расширять, потому что это будет мешать ходить. По подсчетам антрополога Холли Дансуорт, чтобы рожать более зрелых детей, достаточно было бы увеличить ширину родового канала всего на три сантиметра, но эволюция все равно в какой-то момент остановила расширение бедер. Эволюционные биологи предположили: вероятно, мы и должны рождаться недоношенными, чтобы наш мозг развивался во взаимодействии с внешней средой, ведь в матке в целом довольно мало стимулов.

Есть знаменитое исследование Блэкмора и Купера. Они в 70-е годы проводили опыты с котятами: большую часть времени держали их в темноте и на пять часов в день сажали в освещенный цилиндр, где они получали не совсем обычную картину мира. Одна группа котят в течение нескольких месяцев видела только горизонтальные полосы, а другая - только вертикальные. В итоге у котят возникли большие проблемы с восприятием реальности. Одни врезались в ножки стульев, потому что не видели вертикальных линий, другие таким же образом игнорировали горизонтальные - например, не понимали, что у стола есть край. С ними проводили тесты, играли с помощью палочки. Если котенок рос среди горизонтальных линий, то горизонтальную палочку он видит и ловит, а вертикальную просто не замечает. Затем вживляли электроды в кору головного мозга котят и смотрели, каким должен быть наклон палочки, чтобы нейроны начали издавать сигналы. Важно, что со взрослым котом во время такого эксперимента ничего бы не случилось, а вот мир маленького котенка, чей мозг только учится воспринимать информацию, вследствие подобного опыта может быть навсегда искажен. Нейроны, которые никогда не подвергались воздействию, перестают функционировать.

Мы привыкли считать, что чем больше связей между разными нейронами, отделами человеческого мозга, тем лучше. Это так, но с определенными оговорками. Нужно не просто чтобы связей было много, а чтобы они имели какое-то отношение к реальной жизни. У полуторагодовалого ребенка синапсов, то есть контактов между нейронами в мозге, гораздо больше, чем у профессора Гарварда или Оксфорда. Проблема в том, что эти нейроны связаны хаотично. В раннем возрасте мозг быстро созревает, и его клетки формируют десятки тысяч синапсов между всем и всем. Каждый нейрон раскидывает отростки во все стороны, и они цепляются за все, до чего смогли дотянуться. Но дальше начинает работать принцип «Используй, или потеряешь». Мозг живет в окружающей среде и пытается справляться с разными задачами: ребенка учат координировать движения, хватать погремушку и т. д. Когда ему показывают, как есть ложкой, у него в коре остаются связи, полезные, чтобы есть ложкой, так как именно через них он гонял нервные импульсы. А связи, которые отвечают за то, чтобы расшвыривать кашу по всей комнате, становятся менее выраженными, потому что родители такие действия не поощряют.

Процессы роста синапсов довольно хорошо изучены на молекулярном уровне. Эрику Канделу дали Нобелевскую премию за то, что он догадался изучать память не на людях. У человека 86 миллиардов нейронов, и, пока ученый разобрался бы в этих нейронах, ему пришлось бы извести сотни испытуемых. А поскольку никто не позволяет вскрывать мозги стольким людям ради того, чтобы посмотреть, как они научились держать ложку, Кандел придумал работать с улиточками. Аплизия - суперудобная система: с ней можно работать, изучив всего четыре нейрона. На самом деле у этого моллюска больше нейронов, но на его примере гораздо проще выявить системы, связанные с обучением и памятью. В ходе экспериментов Кандел понял, что кратковременная память - это временное усиление проводимости уже существующих синапсов, а долговременная заключается в росте новых синаптических связей.

Это оказалось применимо и к человеку - похоже на то, как мы ходим по траве . Сначала нам все равно, куда идти на поле, но постепенно мы протаптываем тропинку, которая потом превращается в грунтовую дорогу, а затем в асфальтированную улицу и трехполосное шоссе с фонарями. Похожим образом нервные импульсы протаптывают себе дорожки в мозге.

Как формируются ассоциации

Наш мозг так устроен: он формирует связи между событиями, происходящими одновременно. Обычно при передаче нервного импульса выделяются нейромедиаторы, которые воздействуют на рецептор, и электрический импульс идет на следующий нейрон. Но есть один рецептор, который работает не так, он называется NMDA. Это один из ключевых рецепторов для формирования памяти на молекулярном уровне. Его особенность в том, что он работает в том случае, если сигнал пришел с обеих сторон одновременно.

Все нейроны куда-то ведут. Один может привести в большую нейронную сеть, которая связана со звучанием модной песенки в кафе. А другие - в другую сеть, связанную с тем, что вы пошли на свидание. Мозг заточен на то, чтобы связывать причину и следствие, он на анатомическом уровне способен запомнить, что между песней и свиданием есть связь. Рецептор активируется и пропускает через себя кальций. Он начинает вступать в огромное количество молекулярных каскадов, которые приводят к работе некоторых до этого не работавших генов. Эти гены проводят синтез новых белков, и вырастает еще один синапс. Так связь между нейронной сетью, отвечающей за песенку, и сетью, отвечающей за свидание, становится более прочной. Теперь даже слабого сигнала достаточно, чтобы пошел нервный импульс и у вас сформировалась ассоциация.

Как обучение влияет на мозг

Есть знаменитая история о лондонских таксистах. Не знаю, как сейчас, но буквально несколько лет назад для того, чтобы стать настоящим таксистом в Лондоне, нужно было сдать экзамен по ориентации в городе без навигатора - то есть знать как минимум две с половиной тысячи улиц, одностороннее движение, дорожные знаки, запреты на остановку, а также уметь выстроить оптимальный маршрут. Поэтому, чтобы стать лондонским таксистом, люди несколько месяцев ходили на курсы. Исследователи набрали три группы людей. Одна группа - поступившие на курсы, чтобы стать таксистами. Вторая группа - те, кто тоже ходил на курсы, но бросил обучение. А люди из третьей группы вообще не думали становиться таксистами. Всем трем группам ученые сделали томограмму, чтобы посмотреть плотность серого вещества в гиппокампе. Это важная зона мозга, связанная с формированием памяти и пространственным мышлением. Обнаружилось, что если человек не хотел становиться таксистом или хотел, но не стал, то плотность серого вещества в его гиппокампе оставалась прежней. А вот если он хотел стать таксистом, прошел тренинг и действительно овладел новой профессией, то плотность серого вещества увеличилась на треть - это очень много.

И хотя до конца не ясно, где причина, а где следствие (то ли люди действительно овладели новым навыком, то ли у них изначально была хорошо развита эта область мозга и поэтому им было легко научиться), совершенно точно наш мозг - дико пластичная штука, и индивидуальное обучение серьезно на него влияет - в значительно большей степени, чем врожденные предрасположенности. Важно, что и в 60 лет обучение оказывает воздействие на мозг. Конечно, не так эффективно и быстро, как в 20, но целом мозг в течение всей жизни сохраняет некоторую способность к пластичности.

Зачем мозгу лениться и спать

Когда мозг чему-то учится, он выращивает новые связи между нейронами. А это процесс медленный и дорогостоящий, на него нужно тратить много калорий, сахара, кислорода, энергии. Вообще, человеческий мозг, притом что его вес составляет всего 2% от веса всего тела, потребляет около 20% всей энергии, которую мы получаем. Поэтому при любой возможности он старается ничему не учиться, не тратить энергию. На самом деле это очень мило с его стороны, ведь если бы мы запоминали все, что видим каждый день, то мы довольно быстро сошли бы с ума.

В обучении, с точки зрения мозга, есть два принципиально важных момента. Первый заключается в том, что, когда мы осваиваем любой навык, нам становится легче действовать правильно, чем неправильно. Например, вы учитесь водить машину с механической коробкой передач, и вам сначала все равно, переключать передачу с первой на вторую или с первой на четвертую. Для вашей руки и мозга все эти движения равновероятны; вам неважно, в какую сторону гнать нервные импульсы. А когда вы уже более опытный водитель, то вам физически проще переключать передачи правильно. Если вы попадете в машину с принципиально другой конструкцией, вам снова придется задумываться и контролировать усилием воли, чтобы импульс не пошел по проторенной дорожке.

Второй важный момент:

главное в обучении - это сон

У него много функций: поддержание здоровья, иммунитета, обмена веществ и разных сторон работы мозга. Но все нейробиологи сходятся в том, что самая главная функция сна - это работа с информацией и обучением. Когда мы освоили какой-то навык, то хотим сформировать долговременную память. Новые синапсы растут несколько часов, это долгий процесс, и мозгу удобнее всего это делать именно тогда, когда вы ничем не заняты. Во время сна мозг обрабатывает информацию, полученную за день, и стирает то, что из этого надо забыть.

Есть эксперимент с крысами, где их учили ходить по лабиринту с вживленными в мозг электродами и обнаружили, что во сне они повторяли свой путь по лабиринту, а на следующий день ходили по нему лучше. Во многих тестах на людях показано, что то, что мы выучили перед сном, вспомнится лучше, чем выученное с утра. Выходит, что студенты, которые принимаются за подготовку к экзамену где-то ближе к полуночи, все делают правильно. По той же причине важно думать о проблемах перед сном. Конечно, заснуть будет сложнее, но мы загрузим вопрос в мозг, и, может быть, наутро придет какое-то решение. Кстати, сновидения - это, скорее всего, просто побочный эффект обработки информации.

Как обучение зависит от эмоций

Обучение в большой степени зависит от внимания , потому что оно направлено на то, чтобы снова и снова прогонять импульсы по конкретным путям нейронной сети. Из огромного количества информации мы на чем-то фокусируемся, берем это в рабочую память. Дальше то, на чем мы удерживаем внимание, попадает уже в память долговременную. Вы могли понять всю мою лекцию, но это не означает, что вам будет легко ее пересказать. А если вы прямо сейчас на листке бумаги нарисуете велосипед, то это не значит, что он будет хорошо ездить. Люди склонны забывать важные детали, особенно если они не специалисты по велосипедам.

У детей всегда были проблемы с вниманием. Но сейчас в этом смысле все становится проще. В современном обществе уже не так нужны конкретные фактические знания - просто их стало невероятно много. Гораздо важнее оказывается способность быстро ориентироваться в информации, отличать достоверные источники от недостоверных. Нам уже почти и не нужно долго концентрироваться на одном и том же и запоминать большие объемы информации - важнее быстро переключаться. Кроме того, сейчас появляется все больше профессий как раз для людей, которым сложнее концентрироваться.

Есть еще один важный фактор, влияющий на обучение, - эмоции. На самом деле это вообще главное, что у нас было на протяжении многих миллионов лет эволюции, еще до того, как мы нарастили всю эту огромную лобную кору. Ценность овладения тем или иным навыком мы оцениваем с точки зрения того, радует он нас или нет. Поэтому здорово, если удается наши базовые биологические эмоциональные механизмы вовлекать в обучение. Например, выстраивать такую систему мотивации, в которой лобная кора не думает о том, что мы должны выучить что-то с помощью усидчивости и целенаправленности, а в которой прилежащее ядро говорит, что ему просто чертовски нравится это занятие.

Что делает одних людей более уязвимыми к галлюцинациям, чем других? Впервые ответ на этот вопрос дал эксперимент, осуществленный с помощью мозгового сканера.

Оказалось: у людей, которые чаще слышат голоса, которых не существует, мозжечок менее активный. А именно этот участок мозга выполняет функцию защитника от ошибочного восприятия. Если его работоспособность ослабляется, то слишком сильные ожидания могут привести к возникновению галлюцинаций, информируют ученые в журнале «Science».

Во время галлюцинаций люди воспринимают вещи, которые существуют только в их голове. Это становится возможно, потому что их мозг просто перестает обрабатывать раздражители. Вместо этого он интерпретирует и согласовывает их с ожиданиями, что уже присутствуют в сознании человека. При галлюцинациях эти процессы протекают без стимуляции сигнала-раздражителя. Этот «холостой ход» чаще случается у людей с психозами или высокой температурой, но может быть спровоцирован у здоровых лиц, например, в результате длительного лишения раздражителей.

Но почему некоторые люди больше склонны к галлюцинациям, чем другие? Неужели их мозг работает иначе? Чтобы это выяснить, Альберт Поверс (Albert Powers) и его коллеги из Йельского университета пригласили принять участие в эксперименте четыре различные группы испытуемых: психически здоровых людей, которые регулярно слышат голоса, людей, которые слышат голоса и страдают от психозов, а также здоровых и больных, которые еще никогда не имели голосовых галлюцинаций.

Все участники смотрели на экран, на котором постоянно блимала шахматная доска. Параллельно с этим в течение секунды включали звук - но не всегда: сначала шахматная доска сопровождалась звуком, позже он становился тише и потом исчезал совсем. Каждый раз, когда испытуемые считали, что слышат звук, пришлось нажать на кнопку - чем дольше, тем они были более определенными, что слышат звук. Во время опыта ученые записывали мозговую активность испытуемых с помощью функциональной магнитно-резонансной томографии (фМРТ).

Результат: в начале постоянная комбинация шахматной доски и звука почти у всех участников исследования провоцировала так называемые рефлекторные галлюцинации: люди верили, что слышат звук тогда, когда его не было. Причина: поскольку сначала оба стимула появлялись вместе, мозг приучился к этому и ожидал дальнейшем такого сочетания.

«Люди воспринимают то, что ожидают, а не то, что рассказывают нам собственные ощущения», - пояснил Поверс . Иначе говоря: цепь обработки информации в мозге сочетает визуальные стимулы с акустическими ожиданиями. Учитывая то, что гипотетически шахматную доску сопровождал звук, наш мозг добавил его тогда, когда в действительности ничего не звучало.

Восхищает то, что не все испытуемые были в равной степени уязвимы к этим рефлекторным галлюцинациям. У участников, которые ранее уже слышали голоса, такие галлюцинации возникали в пять раз чаще. Эти субъекты исследования были на 28 % более уверены, что звуки на самом деле были.

Зато здоровые испытуемые без предыстории галлюцинаций во второй части разведки замечали, что акустический сигнал все чаще отсутствовал. Поэтому они реже давили на кнопку «да» и в целом были менее уверены, что слышат звук.

Собственно это может объяснить, какие люди более уязвимы к галлюцинациям: обычно наш мозг способен сменить некогда сформированные ожидания. Он их постоянно проверяет с помощью актуального чувственного опыта. Если ожидания и стимулы не подходят друг к другу, то ожидания подстраиваются. Но не у людей с психозами или в тех, что склонны к галлюцинациям: здесь проверка функционирует хуже. Их мозг оценивает события в соответствии с уже накопленных ожиданий и на чувственные стимулы извне обращает мало внимания. «Этот разлад между ожиданиями и чувственными стимулами может впоследствии продуцировать галлюцинации», - говорит Поверс .

Доказательствами взаимосвязи между надстабильными ожиданиями и галлюцинациями ученые считают и результаты сканирования мозга: чем чаще и стабильнее подопытные имели рефлекторные галлюцинации, тем менее активным был их мозжечок. Он играет важную роль при планировании и координации движений и вынужден постоянно согласовывать информацию с чувственными раздражителями извне, объяснили ученые. У людей с психозами и людей, склонных к галлюцинациям, это согласование тормозится, а мозжечок - менее активный. «То есть мозжечок определяющий страж истинного восприятия», - пояснил Поверс.

Другой участок мозга - гиппокамп - также функционирует с отклонениями, когда люди слышат голоса. Обычно он согласовывает чувственные раздражители с воспоминаниями и полученным опытом. Также этот участок мозга играет важную роль при проверке предпосылок, объяснили ученые. В эксперименте активность гиппокампа была тем выше, чем более неопределенными были подопытные относительно того, прозвучал ли звук .

Так, разведка дает ценные показания о механизмах, которые провоцируют галлюцинации и то, что делает некоторых людей особенно склонными к ним. Поверс и его коллеги объяснили, что однажды эти знания помогут заблаговременно идентифицировать склонных к таким психическим расстройствам людей. Одновременно получение свидетельства про вовлеченные мозговые регионы могут помочь разработать целенаправленную терапию против акустических галлюцинаций.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top