Что является объектом изучения биохимического метода. Биохимические методы исследования

Что является объектом изучения биохимического метода. Биохимические методы исследования

Для определения врожденного гипотереоза в крови ребенка на 3 день жизни определяют уровень тироксина. Просеивающая программа массовой диагностики наследственных болезней применяются не только среди новорожденных. Они могут быть организованны для выявления тех болезней которые распространены в каких либо группах населения. Например с США организована просеивающая биохимическая программа по выявлению гетерозиготнвх носителей идиотии Тей-Сакса (она чаще встречается среди евреев-ашкенази). На Кипре и в Италии организовано биохимическое исследование гетерозиготных несителей талассемии .

Селективные диагностические программы предусматривают проверку биохимических аномалий обмена у пациентов с подозрением на генные наследственные болезни.

В селективных программах могут использоваться простые качественные реакции (например, тест с хлоридом железа для выявления фенилкетонурии или тест с динитрофенилгидрозином для выявления кетокислот в моче) или более точные методы. Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать наследственные нарушения обмена аминокислот и мукополисахаридов. С помощью электрофореза гемоглобинов диагностируется вся группа гемоглобинопатий .

На сегодняшний день в нашей стране внедрена программа обязательного селективного скрининга на определение наследственных болезней обмена веществ, с проведением 14ти тестов анализов мочи и крови: на белок, кетокислоты , цистин и т.д. На втором этапе, применяя методы тонкослойной хроматографии мочи и крови, можно выявить более 140 наследственных болезней обмена веществ, такие как болезни углеводного обмена, лизосомальные болезни накопления, болезни обмена металлов, аминоацидопатии и т.д.

Широкое применение нашел биохимический метод в пренатальной диагностике врожденных пороков развития. Биохимические методы включают определение уровня альфа- фетопротеина, хорионического ганадотропина в сыворотке крови беременной. Эти методы являются просеивающими для выявления врожденных пороков развития. Например, при дефектах невральной трубки повышается уровень альфа-фетопротеина.

Цитогенетический метод.

Цитогенетический метод, основанный на изучении количества и структуры хромосом в норме и при патологии.

Основными показаниями для цитогенетического исследования являются:

1) пренатальная диагностика пола плода в семьях, отягощенных заболеваниями, сцепленными с Х-хромосомой;

2) недифференцированная олигофрения (слабоумие);

3) привычные выкидыши и мертворождения;

4) множественные врожденные пороки развития у ребенка;

5) бесплодие у мужчин;

6) нарушение менструального цикла (первичная аменорея);

7) пренатальная диагностика при возрасте матери старше 35 лет.

Этот метод стал широко применяться в медицинской практике с 1956 года, когда Тио и Леван определили, что у человека 46 хромосом. Первая классификация хромосом человека, предложенная в Денвере заложила основу для последующих номенклатур хромосом.

Наиболее современной считается Международная система цитогенетической номенклатуры хромосом человека сокращенно ISCN , принятая в Вашингтоне в 1995 году.

Согласно последней номенклатуре в хромосоме длинное плечо обозначают q , а короткое p. В каждом районе хромосомы полосы и сегменты пронумерованы последовательно от центромеры к теломере. Использование метода дифференциального окрашивания хромосом позволяет выделять индивидуальный рисунок каждой хромосомы вследствие того, что в хромосоме участки эу- и гетерохроматина по-разному окрашиваются красителями.

Объектами для цитогенетического исследования служат метафазные хромосомы, которые можно изучать с помощью прямых и непрямых методов.

Прямые - это методы получения препаратов делящихся клеток без культивирования, их используют для изучения клеток костного мозга и клеток опухолей. Непрямые методы - это методы получения препаратов хромосом из культивированных в искусственных питательных средах, например, при культивировании лимфоцитов периферической крови человека.

С помощью непрямых методов возможно проводить: кариотипирование - определение количества и качества хромосом; генетический пол организма; диагностику геномных мутаций и хромосомных аберраций. Например, синдром Дауна (трисомия по 21-й хромосоме), синдром Патау (трисомия по 13-й хромосоме), синдром Эдвардса (трисомия по 18-й хромосоме), синдром «кошачьего крика» (делеция 5-й хромосомы), синдром Вольфа-Хиршхорна (частичная моносомия 4-й хромосомы).

Для изучения половых хромосом, в частности Y-хромосомы, используют специальную окраску акрихиниприт (флюоресцирующая) и исследование проводят в ультрафиолетовом свете. Y-хроматин - это сильно светящаяся точка, обнаруживается в ядрах клеток мужского организма, и число Y-телец соответствует числу Y-хромосом в кариотипе. Окончательный диагноз хромосомной болезни выставляется только после исследования кариотипа.

Чтобы быстро определить изменения числа половых хромосом применяют экспресс-метод определения полового хроматина. Половой хроматин или тельце Барра представляет собой одну из двух X-хромосом, причем в инактивированном виде. Оно выявляется в виде сгустка треугольной или овальной формы около внутренней мембраны ядерной оболочки. В норме половой хроматин обнаруживается только у женщин. При увеличении числа Х-хромосом увеличивается и количество телец Барра. При уменьшении числа Х-хромосом (синдром Шерешевского-Тернера, кариотип 45 ХО) тельце Барра отсутствует. В норме у мужчин половой хроматин не обнаруживается, его наличие может свидетельствовать о синдроме Клайнфельтера (кариотип 47 ХХY).

Цитогенетический метод применяют для пренатальной диагностики наследственных заболеваний. Для этого проводят амниоцентез, получают амниотическую жидкость с клетками кожи плода, затем клеточный материал исследуют для дородовой диагностики хромосомных аберраций и геномных мутаций, а также пола плода. Обнаружение изменение количества и структуры хромосом дает возможность своевременного прерывания беременности с целью предупреждения потомства с грубейшими аномалиями развития.

Биохимический анализ крови -- это лабораторный метод исследования, использующийся в медицине, который отражает функциональное состояние органов и систем организма человека. Он позволяет определить функцию печени, почек, активный воспалительный процесс.

Определение биохимических показателей крови

Определение биологических показателей крови позволяет оценить работу гепатобилиарной и сердечно - сосудистой систем. Отравление химическими веществами сказывается, прежде всего, на таких органах, как печень, почки и сердце.

· Определение аланинаминотрансферазы (АЛТ)

Клеточный фермент, участвующий в обмене аминокислот. АЛТ содержится в тканях сердца, печени, почек, нервной ткани, скелетной мускулатуры и других органов. Благодаря высокому содержанию в тканях этих органов, анализ крови Повышенное содержание: при застойной желтухе, остром гепатите, циррозе, сердечном приступе, раке печени, гемолитической желтухе, травме.

Принцип метода: Определение проводится на биохимическом анализаторе фирмы Stat-fax 1300. Используется кинетический метод согласно рекомендациям IFCC (Международная Федерация по Клинической Химии). В качестве субстрата применяется 2-оксоглутарат в присутствии ТРИС буфера (рН 7,5).

· Определение аспартатаминотрансферазы (ACT)

АСТ-фермент, используемый для оценки функции печени. Норма АСТ в крови: для женщин - до 31 Ед/л; для мужчин норма АСТ - до 37 Ед/л. Повышается уровень АлАт при инфаркте миокарда, поражениях сердечной и соматической мускулатуры.

Принцип метода: Определение проводится на биохимическом анализаторе фирмы Human Autohumalyzer - 900 plus. Используется кинетический метод согласно рекомендациям IFCC (Международная Федерация по Клинической Химии). В качестве субстрата применяется 2-оксоглутарат в присутствии ТРИС буфера (рН 7,8).

· Определение глутамилтранспептидазы(ГГТ)

Активность ГГТ изменяется раньше всех остальных ферментов при развитии патологии печени. Наиболее высокие значения фермент принимает при развитии синдрома холестаза, когда нарушается нормальный пассаж желчи по желчным протокам в результате препятствий, вызванных конкрементом, воспалением, стриктурой, опухолью. Острый вирусный гепатит, токсическое, радиационное поражение печени (ГГТ дает возможность ранней диагностики).

Принцип метода: Определение проводится на биохимическом анализаторе фирмы Human Autohumalyzer - 900 plus. Используется кинетический колориметрический метод по Persijn & van der Slik. В качестве субстрата применяется L-гамма-глутамил-З-карбокси-4-нитроанилид в присутствии ТРИС буфера (рН 8,25).

· Определение щелочной фосфатазы (ЩФ)

ЩФ катализирует отщепление фосфорной кислоты от ее органических соединений; название получила в связи с тем, что оптимум рН щелочной фосфатазы лежит в щелочной среде (рН 8,6-10,1). Быстро растет активность фермента при остеогенной саркоме, метастазах рака в кости, миеломной болезни, лимфогранулематозе с поражением костей. У детей щелочная фосфатаза повышена до периода полового созревания. Значительное увеличение активности щелочной фосфатазы наблюдается при холестазе. Щелочная фосфатаза в противоположность аминотрансферазам остается нормальной или незначительно увеличивается при вирусном гепатите. Резко возрастает ее активность при отравлениях алкоголем на фоне хронического алкоголизма. Она может повышаться при лекарственных назначениях, проявляющих гепатотоксический эффект.

Принцип метода: Щелочная фосфатаза (щелочная фосфогидролипаза моноэстеров ортофосфорной кислоты) расщепляет в N-метил-D-глюкаминовом буфере 4-нитрофенилфосфат с образованием 4-нитрофенола и фосфата. Щелочная фосфатаза (ЩФ) активирована хлоридом натрия. Мерой каталитической концентрации фермента является количество освобожденного 4-нитрофенола, который определяют фотометрически, либо кинетическим методом, либо методом постоянного времени после остановки ферментативной реакции ингибитором ЩФ, который блокирует активный центр фермента.

Определение билирубина.

Билирубин - желто-красный пигмент, продукт распада гемоглобина, происходящего в макрофагах селезёнки, печени и костном мозге. Анализ билирубина показывает, как работает печень человека, определение билирубина входит в комплекс диагностических процедур при многих заболеваниях желудочно-кишечного тракта. В сыворотке крови встречается билирубин в следующих формах: прямой билирубин и непрямой билирубин. Вместе эти формы образуют общий билирубин крови. Метод определения билирубина в сыворотке крови: билирубин реагирует с диазотированной сульфаниловой кислотой (ДСК). В ходе реакции образуется продукт, окрашенный в красный цвет. Оптическая плотность продукта при 546 нм прямо пропорциональна концентрации билирубина в пробе. Растворимые в воде глюкоурониды билирубина (прямой билирубин) сразу же реагируют с ДСК, в то время как связанный с альбумином непрямой билирубин реагирует с ДСК только в присутствии акселератора. Общий билирубин = Прямой + Непрямой.

2. Метод определения билирубина по Йендрашику

Принцип: При взаимодействии сульфаниловой кислоты с азотистокислым натрием образуется диазофенилсульфоновая кислота, которая. Реагируя со сзязанным билирубином сыворотки дает розово-фиолетовое окрашивание. По интенсивности его судят о концентрации билирубина, вступающего в прямую реакцию. При добавлении к сыворотки крови кофеинового реактива несвязанный билирубин переходит в растворимое диссоциированное состояние, благодаря чему он также вызывает розово-фиолетовое окрашивание раствора со смесью диазореактивов. По интенсивности последнего фотоколориметрически определяют концентрацию общего билирубина. По разнице между общим и связанным билирубином находят содержание несвязанного билирубина, дающего непрямую реакцию.

· Определение холестерина

Определение холестерина крови -- обязательный этап диагностики заболеваний сердечно - сосудистой системы (ишемическая болезнь сердца, инфаркт миокарда), атеросклероза и заболеваний печени.

Снижение холестерина может быть симптомом следующих заболеваний: Гипертиреоз, хроническая сердечная недостаточность, мегалобластическая анемия, острые инфекционные заболевания, терминальная стадия цирроза печени, рак печени, хронические заболевания легких, туберкулез легких.

Принцип метода: Определение проводится на биохимическом анализаторе фирмы Human Autohumalyzer - 900 plus. Холестерин определяется после ферментативного гидролиза и окисления. Образующаяся в результате этих реакций перекись водорода взаимодействует под действием пероксидазы с 4-аминофеназолом и фенолом с образованием окрашенного продукта - хинонимина. Норма холестерина до 5,2 ммоль/л.

· Холестерин ЛПВП

Холестерин липопротеидов высокой плотности или б-холестерин - единственная фракция липидов, препятствующая образованию атеросклеротических бляшек в сосудах (поэтому липопротеиды высокой плотности еще называют хорошим холестериноми и вычисляется по специальной формуле.

Антиатерогенное действие ЛПВП обусловлено их способностью транспортировать холестерин от клеток.. Определение холестерина липопротеидов высокой плотности (б-холестерин)

Принцип: Определение проводится на биохимическом анализаторе фирмы Human Autohumalyzer - 900 plus. Используется осаждающий реагент преципитант, под воздействием которого липопротеиды низкой и очень низкой плотности осаждаются фосфовольфрамовой кислотой и хлоридом магния.

ЛПВП - В составе липопротеинов Высокой Плотности (ЛПВП), холестерин удаляется из стенок сосудов и ЛПНП. В последствии ЛПВП, утилизируются в печени. ЛПВП выполняют защитную функцию и препятствуют развитию атеросклероза.

· Определение Холестерина Липопротеинов Низкой Плотности

ЛПНП (холестерин) - В составе липопротеинов Низкой Плотности (ЛПНП), холестерин долго циркулирует в кровотоке, если он, в результате нарушений, своевременно не потребляется органами и тканями, то ЛПНП, богатые холестерином, начинают откладываться в стенки сосудов, приводя к появлению атеросклеротических бляшек. Чем больше ЛПНП в крови, тем быстрее развивается атеросклеротический процесс.

Принцип: При добавлении к образцу реагента 1, защитный реагент соединяется с ЛПНП и защищает их от реакций ферментов. CHE (холестеролэстераза) и CO (холестеролоксидаза) реагируют с остальными фракциями липопротеинов. Перекись водорода, образованная в ходе реакции энзима с холестерином промежуточной плотности разлагается под действием реагента 1. При добавлении реагента 2, защитный реагент высвобождение ЛПНП из комплекса и при помощи азида натрия активизируется каталаза. В процессе второй реакции CHE и CO реагируют только с ЛПНП. Под действием окислителя с HDAOS и 4-AA в присутствии пероксидазы (POD) перекись водорода образует цветной комплекс. Интенсивность окраски голубого комплекса прямо пропорциональна содержанию ЛПНП в образце. Анализ состоит из двух этапов: удаление хиломикронов и ЛПНП и удаление ХС-ЛПВП при помощи холестеролэстеразы и ферментов оксидазы.

Для достоверной диагностики нарушений обмена холестерина, достаточно определения Общего холестерина (ОХС) и ЛПВП (Липопротеинов Высокой Плотности). На основе этих данных рассчитывается Индекс Атерогенности - Основной показатель по которому можно достоверно судить о нарушении и определить прогноз.

· Определение содержания триглицеридов (ТГ).

Триглицериды - показатель обмена липидов (жиров) в организме. Основные показания к применению: диагностика гипертриглицеридемии, оценка риска атеросклеротического поражения коронарных сосудов и ишемической болезни сердца (ИБС), нарушения жирового обмена. ТГ - являются главной формой накопления жирных кислот в организме и одним из основных источников энергии у человека. Триглицериды представляют собой основные жиры, которые присутствуют в жировой ткани. Триглицериды являются альтернативным по отношению к глюкозе источником энергии, например при голодании, когда запасы глюкозы истощены.

Принцип: Определение проводится на биохимическом анализаторе фирмы Human Autohumalyzer - 900 plus. Концентрация триглицеридов определяется после ферментативного гидролиза под действием липазы. В результате реакции образуется индикатор хинонимин из перекиси водорода, 4-аминоантипирина и 4- хлорфенола при каталитическом воздействии пероксидазы.

· Определение индекса атерогенности.

Индекс атерогенности - является одним из показателей нарушения обмена холестерина, критерием развития атеросклероза. Он показывает соотношение «вредных» фракций жиров и тех, которые, наоборот, препятствуют образованию бляшек на стенках сосудов, так называемых антиатерогенных фракций липидов.

Рассчитывается по формуле:

где Хс общий - общий холестерин, бXC - холестерин Липопротеинов Высокой Плотности.

· Определение креатинина.

Содержание креатинина в крови зависит от объема мышечной массы, поэтому, для мужчин норма креатинина, как правило, выше, чем у женщин. Так как объем мышечной ткани быстро не меняется, уровень креатинина в крови -- величина достаточно постоянная. Повышение креатинина -- симптом острой и хронической почечной недостаточности, лучевой болезни, гипертиреоза. Уровень креатинина возрастает при обезвоживании организма, после механических, операционных поражений мышц.

Концентрацию креатинина в сыворотке крови определяли по цветной реакции Яффе, основанной на принципе - в щелочной среде пикриновая кислота взаимодействует с креатинином с образованием оранжево-красной окраски, которую измеряют фотометрически на фотоэлектроколориметре ФЭК-2, определение проводят после депротеинизирования.

Расчет концентрации (С) креатина:

С = Е пробы / Е калибр * 177 (мкмоль/л),

где С - концентрация креатинина, Е пробы - оптическая плотность пробы, Е калибр - оптическая плотность калибровочной пробы.

Определение мочевины

Повышение нормы говорит о плохой выделительной работе почек и нарушении фильтрации. Нарастание содержания мочевины в крови до 16--20 ммоль/л (в расчете на азот мочевины) классифицируется как нарушение функции почек средней тяжести, до 35 ммоль/л -- как тяжелое; свыше 50 ммоль/л -- очень тяжелое, с неблагоприятным прогнозом. При острой почечной недостаточности концентрация мочевины в крови может достигать 50--83 ммоль/л.

Мочевина под действием уразы разлагается на углекислый газ, аммиак, последний в реакции с натрия салицилатом и натрия гипохлоритом в присутствие натрия нитропруссида образует окрашенный продукт, интенсивность окраски которого пропорциональна концентрации мочевины в пробе. 1.

Для генетических исследований человек является неудобным объектом, так как у человека: невозможно экспериментальное скрещивание; большое количество хромосом; поздно наступает половая зрелость; малое число потомков в каждой семье; невозможно уравнивание условий жизни для потомства.

В генетике человека используется ряд методов исследования.

Генеалогический метод

Использование этого метода возможно в том случае, когда известны прямые родственники — предки обладателя наследственного признака (пробанда ) по материнской и отцовской линиям в ряду поколений или потомки пробанда также в нескольких поколениях. При составлении родословных в генетике используется определенная система обозначений. После составления родословной проводится ее анализ с целью установления характера наследования изучаемого признака.

Условные обозначения, принятые при составлении родословных:
1 — мужчина; 2 — женщина; 3 — пол не выяснен; 4 — обладатель изучаемого признака; 5 — гетерозиготный носитель изучаемого рецессивного гена; 6 — брак; 7 — брак мужчины с двумя женщинами; 8 — родственный брак; 9 — родители, дети и порядок их рождения; 10 — дизиготные близнецы; 11 — монозиготные близнецы.

Благодаря генеалогическому методу были определены типы наследования многих признаков у человека. Так, по аутосомно-доминантному типу наследуются полидактилия (увеличенное количество пальцев), возможность свертывать язык в трубочку, брахидактилия (короткопалость, обусловленная отсутствием двух фаланг на пальцах), веснушки, раннее облысение, сросшиеся пальцы, заячья губа, волчья пасть, катаракта глаз, хрупкость костей и многие другие. Альбинизм, рыжие волосы, подверженность полиомиелиту, сахарный диабет, врожденная глухота и другие признаки наследуются как аутосомно-рецессивные.

Доминантный признак — способность свертывать язык в трубочку (1) и его рецессивный аллель — отсутствие этой способности (2).
3 — родословная по полидактилии (аутосомно-доминантное наследование).

Целый ряд признаков наследуется сцепленно с полом: Х -сцепленное наследование — гемофилия, дальтонизм; Y -сцепленное — гипертрихоз края ушной раковины, перепончатость пальцев ног. Имеется ряд генов, локализованных в гомологичных участках Х - и Y -хромосом, например общая цветовая слепота.

Использование генеалогического метода показало, что при родственном браке, по сравнению с неродственным, значительно возрастает вероятность появления уродств, мертворождений, ранней смертности в потомстве. В родственных браках рецессивные гены чаще переходят в гомозиготное состояние, в результате развиваются те или иные аномалии. Примером этого является наследование гемофилии в царских домах Европы.

— гемофилик; — женщина-носитель.

Близнецовый метод

1 — монозиготные близ-нецы; 2 — дизигот-ные близ-нецы.

Близнецами называют одновременно родившихся детей. Они бывают монозиготными (однояйцевыми) и дизиготными (разнояйцевыми).

Монозиготные близнецы развиваются из одной зиготы (1), которая на стадии дробления разделилась на две (или более) части. Поэтому такие близнецы генетически идентичны и всегда одного пола. Монозиготные близнецы характеризуются большой степенью сходства (конкордантностью ) по многим признакам.

Дизиготные близнецы развиваются из двух или более одновременно овулировавших и оплодотворенных разными сперматозоидами яйцеклеток (2). Поэтому они имеют различные генотипы и могут быть как одного, так и разного пола. В отличие от монозиготных, дизиготные близнецы характеризуются дискордантностью — несходством по многим признакам. Данные о конкордантности близнецов по некоторым признакам приведены в таблице.

Признаки Конкордантность, %
Монозиготные близнецы Дизиготные близнецы
Нормальные
Группа крови (АВ0) 100 46
Цвет глаз 99,5 28
Цвет волос 97 23
Патологические
Косолапость 32 3
«Заячья губа» 33 5
Бронхиальная астма 19 4,8
Корь 98 94
Туберкулез 37 15
Эпилепсия 67 3
Шизофрения 70 13

Как видно из таблицы, степень конкордантности монозиготных близнецов по всем приведенным признакам значительно выше, чем у дизиготных, однако она не является абсолютной. Как правило, дискордантность монозиготных близнецов возникает в результате нарушений внутриутробного развития одного из них или под влиянием внешней среды, если она была разной.

Благодаря близнецовому методу, была выяснена наследственная предрасположенность человека к ряду заболеваний: шизофрении, эпилепсии, сахарному диабету и другим.

Наблюдения за монозиготными близнецами дают материал для выяснения роли наследственности и среды в развитии признаков. Причем под внешней средой понимают не только физические факторы среды, но и социальные условия.

Цитогенетический метод

Основан на изучении хромосом человека в норме и при патологии. В норме кариотип человека включает 46 хромосом — 22 пары аутосом и две половые хромосомы. Использование данного метода позволило выявить группу болезней, связанных либо с изменением числа хромосом, либо с изменениями их структуры. Такие болезни получили название хромосомных .

Материалом для кариотипического анализа чаще всего являются лимфоциты крови. Кровь берется у взрослых из вены, у новорожденных — из пальца, мочки уха или пятки. Лимфоциты культивируются в особой питательной среде, в состав которой, в частности, добавлены вещества, «заставляющие» лимфоциты интенсивно делиться митозом. Через некоторое время в культуру клеток добавляют колхицин. Колхицин останавливает митоз на уровне метафазы. Именно во время метафазы хромосомы являются наиболее конденсированными. Далее клетки переносятся на предметные стекла, сушатся и окрашиваются различными красителями. Окраска может быть а) рутинной (хромосомы окрашиваются равномерно), б) дифференциальной (хромосомы приобретают поперечную исчерченность, причем каждая хромосома имеет индивидуальный рисунок). Рутинная окраска позволяет выявить геномные мутации, определить групповую принадлежность хромосомы, узнать, в какой группе изменилось число хромосом. Дифференциальная окраска позволяет выявить хромосомные мутации, определить хромосому до номера, выяснить вид хромосомной мутации.

В тех случаях, когда необходимо провести кариотипический анализ плода, для культивирования берутся клетки амниотической (околоплодной) жидкости — смесь фибробластоподобных и эпителиальных клеток.

К числу хромосомных заболеваний относятся: синдром Клайнфельтера, синдром Тернера-Шерешевского, синдром Дауна, синдром Патау, синдром Эдвардса и другие.

Больные с синдромом Клайнфельтера (47, ХХY ) всегда мужчины. Они характеризуются недоразвитием половых желез, дегенерацией семенных канальцев, часто умственной отсталостью, высоким ростом (за счет непропорционально длинных ног).

Синдром Тернера-Шерешевского (45, Х0 ) наблюдается у женщин. Он проявляется в замедлении полового созревания, недоразвитии половых желез, аменорее (отсутствии менструаций), бесплодии. Женщины с синдромом Тернера-Шерешевского имеют малый рост, тело диспропорционально — более развита верхняя часть тела, плечи широкие, таз узкий — нижние конечности укорочены, шея короткая со складками, «монголоидный» разрез глаз и ряд других признаков.

Синдром Дауна — одна из самых часто встречающихся хромосомных болезней. Она развивается в результате трисомии по 21 хромосоме (47; 21, 21, 21). Болезнь легко диагностируется, так как имеет ряд характерных признаков: укороченные конечности, маленький череп, плоское, широкое переносье, узкие глазные щели с косым разрезом, наличие складки верхнего века, психическая отсталость. Часто наблюдаются и нарушения строения внутренних органов.

Хромосомные болезни возникают и в результате изменения самих хромосом. Так, делеция р -плеча аутосомы №5 приводит к развитию синдрома «крик кошки». У детей с этим синдромом нарушается строение гортани, и они в раннем детстве имеют своеобразный «мяукающий» тембр голоса. Кроме того, наблюдается отсталость психомоторного развития и слабоумие.

Чаще всего хромосомные болезни являются результатом мутаций, произошедших в половых клетках одного из родителей.

Биохимический метод

Позволяет обнаружить нарушения в обмене веществ, вызванные изменением генов и, как следствие, изменением активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена (сахарный диабет), обмена аминокислот, липидов, минералов и др.

Фенилкетонурия относится к болезням аминокислотного обмена. Блокируется превращение незаменимой аминокислоты фенилаланин в тирозин, при этом фенилаланин превращается в фенилпировиноградную кислоту, которая выводится с мочой. Заболевание приводит к быстрому развитию слабоумия у детей. Ранняя диагностика и диета позволяют приостановить развитие заболевания.

Популяционно-статистический метод

Это метод изучения распространения наследственных признаков (наследственных заболеваний) в популяциях. Существенным моментом при использовании этого метода является статистическая обработка получаемых данных. Под популяцией понимают совокупность особей одного вида, длительное время обитающих на определенной территории, свободно скрещивающихся друг с другом, имеющих общее происхождение, определенную генетическую структуру и в той или иной степени изолированных от других таких совокупностей особей данного вида. Популяция является не только формой существования вида, но и единицей эволюции, поскольку в основе микроэволюционных процессов, завершающихся образованием вида, лежат генетические преобразования в популяциях.

Изучением генетической структуры популяций занимается особый раздел генетики — популяционная генетика . У человека выделяют три типа популяций: 1) панмиктические, 2) демы, 3) изоляты, которые отличаются друг от друга численностью, частотой внутригрупповых браков, долей иммигрантов, приростом населения. Население крупного города соответствует панмиктической популяции. В генетическую характеристику любой популяции входят следующие показатели: 1) генофонд (совокупность генотипов всех особей популяции), 2) частоты генов, 3) частоты генотипов, 4) частоты фенотипов, система браков, 5) факторы, изменяющие частоты генов.

Для выяснения частот встречаемости тех или иных генов и генотипов используется закон Харди-Вайнберга .

Закон Харди-Вайнберга

В идеальной популяции из поколения в поколение сохраняется строго определенное соотношение частот доминантных и рецессивных генов (1), а также соотношение частот генотипических классов особей (2).

p + q = 1, (1)
р 2 + 2pq + q 2 = 1, (2)

где p — частота встречаемости доминантного гена А ; q — частота встречаемости рецессивного гена а ; р 2 — частота встречаемости гомозигот по доминанте АА ; 2pq — частота встречаемости гетерозигот Аа ; q 2 — частота встречаемости гомозигот по рецессиву аа .

Идеальной популяцией является достаточно большая, панмиктическая (панмиксия — свободное скрещивание) популяция, в которой отсутствуют мутационный процесс, естественный отбор и другие факторы, нарушающие равновесие генов. Понятно, что идеальных популяций в природе не существует, в реальных популяциях закон Харди-Вайнберга используется с поправками.

Закон Харди-Вайнберга, в частности, используется для примерного подсчета носителей рецессивных генов наследственных заболеваний. Например, известно, что в данной популяции фенилкетонурия встречается с частотой 1:10000. Фенилкетонурия наследуется по аутосомно-рецессивному типу, следовательно, больные фенилкетонурией имеют генотип аа , то есть q 2 = 0,0001. Отсюда: q = 0,01; p = 1 - 0,01 = 0,99. Носители рецессивного гена имеют генотип Аа , то есть являются гетерозиготами. Частота встречаемости гетерозигот (2pq ) составляет 2 · 0,99 · 0,01 ≈ 0,02. Вывод: в данной популяции около 2% населения — носители гена фенилкетонурии. Заодно можно подсчитать частоту встречаемости гомозигот по доминанте (АА ): p 2 = 0,992, чуть меньше 98%.

Изменение равновесия генотипов и аллелей в панмиктической популяции происходит под влиянием постоянно действующих факторов, к которым относятся: мутационный процесс, популяционные волны, изоляция, естественный отбор, дрейф генов, эмиграция, иммиграция, инбридинг. Именно благодаря этим явлениям возникает элементарное эволюционное явление — изменение генетического состава популяции, являющееся начальным этапом процесса видообразования.

Генетика человека — одна из наиболее интенсивно развивающихся отраслей науки. Она является теоретической основой медицины, раскрывает биологические основы наследственных заболеваний. Знание генетической природы заболеваний позволяет вовремя поставить точный диагноз и осуществить нужное лечение.

    Перейти к лекции №21 «Изменчивость»

Причиной многих врожденных нарушений метаболизма являются различные дефекты ферментов, возникающие вследствие изменяющих их структуру мутаций.Биохимические показатели более точно отражают сущность болезни по сравнению с показателями клиническими, поэтому их значение в диагностике наследственных болезней постоянно возрастает. Использование современных биохимических методов позволяют определять любые метаболиты, специфические для конкретной наследственной болезни.

Предметом современной биохимической диагностики являются специфические метаболиты, энзимопатии, различные белки. Объектами биохимического анализа могут служить моча, пот, плазма и сыворотка крови.

Для биохимической диагностики используются как простые качественные реакции, так и более точные методы. Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать нарушение обмена аминокислот, олигосахаридов, мукополисахаридов. Газовая хроматография применяется для выявления нарушений обмена органических кислот.

Биохимические методы применяются и для диагностики гетерозиготных состояний у взрослых. Известно, что среди здоровых людей всегда имеется большое число носителей патологического гена. Хотя такие люди внешне здоровы, вероятность появления заболевания у их ребенка всегда существует. В связи с этим, выявление гетерозиготного носительства – важная задача медицинской генетики.

Если в брак вступают гетерозиготные носители какого-либо заболевания, то риск рождения больного ребенка в такой семье составит 25%.Шансы на встречу двух носителей одинакового патологического гена выше, если в брак вступают родственники, т.е. они могут унаследовать один и тот же рецессивный ген от своего общего предка.

Выявление гетерозиготных носителей того или иного заболевания возможно путем использования биохимических тестов, микроскопического исследования клеток крови и тканей, определения; активности фермента, измененного в результате мутации.

Известно, что заболевания, в основе которых лежит нарушение обмена веществ, составляют значительную часть наследственной патологии. Так, гетерозиготные носители фенилкетонурин реагируют на введение фенилаланина более сильным повышением содержания аминокислоты в плазме, чем нормальные гомозиготы.

Биохимический метод широко применяется в медико-генетическом консультировании для определения риска рождения больного ребенка. Успехи в области биохимической генетики способствуют более широкому внедрению диагностики гетерозиготного носительства в практику. Еще недавно можно было диагностировать не более 10-15 гетерозиготных состояний, в настоящее время – более200. Однако следует отметить, что до сих пор имеется немало наследственных заболеваний, для которых методы гетерозиготной диагностики еще не разработаны.

Причиной многих врожденных на­рушений метаболизма являются различные дефекты ферментов, возника­ющие вследствие изменяющих их структуру мутаций. Биохимичские по­казатели (первичный продукт гена, на­копление патологических метаболитов внутри клетки и во всех клеточных жидкостях больного) более точно от­ражают сущность болезни по сравне­нию с показателями клиническими, поэтому их значение в диагностике на­следственных болезней постоянно воз­растает. Использование современных биохимических методов (электрофо­реза, хроматографии, спектроскопии и др.) позволяют определять любые ме­таболиты, специфические для кон­кретной наследственной болезни.

Предметом современной биохими­ческой диагностики являются специ­фические метаболиты, энзимопатии, различные белки.

Объектами биохимического анализа могут служить моча, пот, плазма и сы­воротка крови, форменные элементы крови, культуры клеток (фибробласты, лимфоциты).

Для биохимической диагностики ис­пользуются как простые качественные реакции (например, хлорид железа для выявления фенилкетонурии или динитрофенилгидразин для выявления кетокислот), так и более точные методы

Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать нарушение обмена аминокислот, олигосахаридов, мукополисахаридов. Газовая хроматография применяется для выявления наруше­ний обмена органических кислот и т.д.

Показаниями для использования биохимических методов у больных с наследственным нарушением обмена веществ являются такие симптомы, как судороги, кома, рвота, желтуха, специфический запах мочи и пота, ос­тановка роста, нарушение физического развития, непереносимость некото­рых продуктов и лекарств.

Биохимические методы применя­ются и для диагностики гетерозигот­ных состояний у взрослых. Известно, что среди здоровых людей всегда име­ется большое число так называемых носителей патологического гена (ге­терозиготное носительство). Хотя та­кие люди внешне здоровы, вероят­ность появления заболевания у их ре­бенка всегда существует. В связи с этим, выявление гетерозиготного носительства - важная задача медицин­ской генетики.

Понятно, что если в брак вступают гетерозиготные носители какого-либо заболевания, то риск рождения боль­ного ребенка в такой семье составит 25%

Шансы на встречу двух носите­лей одинакового патологического гена выше, если в брак вступают родствен­ники, т.к. они могут унаследовать один и тот же рецессивный ген от своего об­щего предка.

Предположить гетерозиготное но­сительство у женщины можно, если:

Ее отец поражен наследственной болезнью;

У женщины родились больные сы­новья;

Женщина имеет больного брата или братьев;

У двух дочерей женщины роди­лись больные сыновья (или сын);

У здоровых родителей родился больной сын, а у матери в родословной есть больные мужчины.

Выявление гетерозиготных носите­лей того или иного заболевания воз­можно путем использования биохими­ческих тестов (прием фенилаланина для выявления фенилкетонурии, при­ем сахара - сахарного диабета и.т.д.), микроскопического исследования кле­ток крови и тканей, определения активности фермента, измененного в ре­зультата мутации.

Известно, что заболевания, в основе которых лежит нарушение обмена ве­ществ, составляют значительную часть наследственной патологии (фенилкетонурия, галактоземия, алкаптонурия, альбинизм и др.). Так, гетерозиготные носители фенилкетонурии реагируют на введение фенилаланина более силь­ным повышением содержания амино­кислоты в плазме, чем нормальные го­мозиготы (болезнь обусловлена рецес­сивным аллелем).

Биохимический метод широко при­меняется в медико-генетическом кон­сультировании для определения риска рождения больного ребенка. Успехи в области биохимической генетики спо­собствуют более широкому внедре­нию диагностики гетерозиготного носительства в практику. Еще недавно можно было диагностировать не более 10-15 гетерозиготных состояний, в на­стоящее время - более 200. Однако следует отметить, что до сих пор име­ется немало наследственных заболева­ний, для которых методы гетерозигот­ной диагностики еще не разработаны.

56. Пренатальная диагностика хромосомных болезней. Амниоцентез. Медико - генетическое консультирование. Значение для медицины. Пренатальная диагностика хромосомных заболеваний (ПД) - представляет собой комплекс врачебных мероприятий и диагностических методов, направленных на выявление морфологических, структурных, функциональных или молекулярных нарушений внутриутробного развития человека. Методы: 1. Биопсия хорионов - может определить врожденные дефекты плода на очень ранних сроках беременности 9 -11 неделя. Проводится цитогенетическими, молекулярно - генетическими методами. Позволяет выявить синдром Тай-Сакса, серповидно-клеточную анемию, большинство видов муковисцидоза, талассемию и синдром Дауна.

2. Амниоцентез - инвазивная процедура, заключающаяся в пункции амниотической оболочки с целью получения околоплодных вод для последующего лабораторного исследования, амниоредукции или введения в амниотическую полость лекарственных средств. Амниоцентез можно выполнять в первом, втором и третьем триместрах беременности оптимально - в 16-20 недель беременности.

Показания к амниоцентезу: Пренатальная диагностика врождённых и наследственных заболеваний. Лабораторная диагностика врождённых и наследственных заболеваний основана на цитогенетическом и молекулярном анализе амниоцитов. Амниоредукция при многоводии. Интраамниальное введение препаратов для прерывания беременности во втором триместре. Оценка состояния плода во втором и третьем триместрах беременности степень тяжести гемолитической болезни, зрелость сурфактантов лёгких, диагностика внутриутробных инфекций. Фетотерапия. Фетохирургия.

3. Кордоцентез - метод получения кордовой пуповинной крови плода для дальнейшего исследования. Обычно производится параллельно амниоцентезу взятию околоплодных вод. Производится не ранее 18 недель гестации. Через переднюю брюшную стенку беременной после инфильтрационной анестезии под контролем ультразвукового аппарата производят прокол тонкой пункционной иглой, попадают в сосуд пуповины, получают до 5 мл. крови. Метод применим для диагностики хромосомных и наследственных заболеваний, резус - конфликта, гемолитической болезни плода и т.д.

4. УЗИ. Медико-генетическое консультирование - это система оказания специализированной медико-генетической помощи в виде неонатального скрининга на фенилкетонурию и врожденный гипотиреоз; собственно генетического консультирования семей, в которых отмечаются случаи врожденных и наследственных заболеваний ВНЗ; пренатальной диагностики состояния плода в случае следующей беременности, а также пренатального скрининга беременных исследования сывороточных материнских маркеров - альфа-фетопротеина АФП, хорионического гонадотропина ХГ, неэстерифицированного эстриола НЭ и других маркеров.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top