Элизабет Пэрриш — первый генно-модифицированный человек. Элизабет Пэрриш — первый в мире генно-модифицированный человек Модифицированный человек

Элизабет Пэрриш — первый генно-модифицированный человек. Элизабет Пэрриш — первый в мире генно-модифицированный человек Модифицированный человек

В медицинском журнале «Human Reproduction» недавно была опубликована сенсационная статья «Митохондрия в человеческом детеныше произведена путем трансплантации цитоплазмы».
Средства массовой информации пустили эту статью в интенсивную ротацию...на один день, после чего все благополучно об этом «забыли». Однако факт остается фактом. В настоящее время в мире есть дети, которые «сконструированы» генетическим путем. Это звучит как научная фантастика, но это правда.... ..

Первый известный случай зародышевой генной терапии, при которой генами родителей манипулируют таким образом, чтобы это отразилось в их детях, произошел в отделении репродуктивной терапии в Нью-Джерси в марте 2001 года, когда 30 здоровых детей было рождено с ДНК от трех человек – отца, матери и посторонней женщины. Пятнадцать из них были пациентами этой клиники, остальные пятнадцать - из других медицинских учреждений.

Ученые обнаружили, что одна из причин женского бесплодия в том, что яйцеклетки могут содержать «старые» митохондрии (напомню, что митохондрии – это часть клетки, снабжающая ее энергией). Эти «ленивые» яйцеклетки не в состоянии укрепиться на стенке матки после оплодотворения. Для их активизации ученые вводят в клутку митохондрии молодых женщин. Митохондрия клетки содержит ДНК постороннего человека, а родившиеся дети имеют генетический материал из трех источников. ДНК посторонней женщины таким образом может отразиться в потомстве по женской линии.

Большая проблема состоит в том, что нет информации, как влияет подобная операция на детей и их потомков. Фактически, подобные манипуляции не были исследованы должным образом на животных, а тем более на людях. Доктора утверждают, что дети здоровы, но они «забывают» об одном важном моменте. В результате операции были рождены не 15, а 17 детей. Одна беременность окончилась абортом, а вторая окончилась выкидышем. Почему? Два зародыша имели редкий генетический синдром Турнера, который поражает только женщин. В обычных условиях он встречается у одной женщины из 2500 рожденных, и заключается в отсутствии или повреждении одной из X-хромосом. Почувствуйте разницу - 1 из 2500 или 2 из 17!

Более того, если предположить, что 9 из 17 зародышей были женскими (около 50 процентов), тогда 2 из 9 младенцев заболели этим редким заболеванием. Во внутренних медицинских документах именно генетическая операция названа основной его причиной. Даже если не учитывать синдром Турнера, многие эксперты были шокированы фактом такой операции. Ответная статья в том же журнале гласит: «Ни безопасность, ни эффективность этого метода не были клинически обоснованы». Рут Дич (Ruth Deech), председатель Британского комитета эмбриологии, сказал в интервью корреспонденту BBC: «Есть большой риск. Не только для этих детей, но и для будущих поколений»

Количество детей, рожденных с использованием такого метода, неизвестно. Статья утверждает, что их «около тридцати» в 2001 году. На сегодняшний момент, как минимум 2 из этих детей достигли возраста в 1 год. Доктор Джозеф Кумин (Joseph Cummin), почетный профессор биологии университета Западного Онтарио, высказался, что больше никакой информации об этих 30-ти детях в масс-медиа не появлялось, как и о дополнительных случаях подобного генетического вмешательства. Доктор утверждает, что в Норвегии в 2003 году подобные операции были проведены с целью «коррекции заболевания клеток». Он подытожил, что «Похоже, подобные генетически модифицированные дети рождаются и сейчас, в обстановке строгой секретности и информационного вакуума»

Луи Пастер скрыл результаты экспериментов, противоречащие его теории.

Одно из наиболее известных научных противостояний в истории произошло между теми, кто верит, что микроорганизмы образуются в результате гниения органического вещества, и тех, кто считает, что они только переносятся с одной поверхности на другую потоком воздуха. С 1850 до 1870 года известный французский химик и микробиолог Луи Пастер столкнулся в противостоянии со сторонниками образования микробов из ничего, особенно с Феликс Пуче (Felix Pouchet).

Два лагеря непрерывно проводили эксперименты для подтверждения своей теории и опровержения противников. Как известно, Пастер выиграл. Современная наука приняла теорию, согласно которой микрорганизмы переносятся воздухом, а наука о появлении их из продуктов гниения была отправлена на свалку идей и объявлена устаревшей. Мало кто знает, что Пастер покривил душой и выиграл нечестно.

Похоже, некоторые эксперименты Пастера доказывали, что органические продукты ПРОИЗВОДЯТ жизнь. Естественно, через несколько лет эти эксперименты были объявлены некорректными, но в то время они только доказывали правоту оппонентов. Поэтому Пастер хранил такие результаты в секрете. Историк Джон Уоллер (John Waller) пишет: «Фактически, из-за своей вражды с Пуче, Пастер объявил в своих дневниках как «успешные» все эксперименты, которые проводились в доказательство своей теории, а все остальные как «неудавшиеся».

Когда идейные противники Пастера проводили эксперименты, подтверждающие их теорию, Пастер публично не повторял их. Один раз он просто отказался проводить эксперимент и как-либо его комментировать. В другой раз он так долго задержался с комментариями, что оппоненты пришли в ярость. Уоллер пишет «Примечательно, что Пастер объявлял некоторые эксперименты проведенными небрежно, в то же время со своей командой он проводил эти же эксперименты, пытаясь получить отличный результат». Как показали недавние исследования записей Пастера Геральдом Гейсоном (Gerald Geyson), команда Пастера проводила недели, проверяя выводы Бастиана и пытаясь подтвердить свои убеждения про распространение микробов по воздуху»

Пастер отделился от своих помощников и от своего наставника, объяснив это тем, что они недостаточно скрупулезно проводят эксперименты, в то же время проводя опыты так же небрежно, ослепленный своими убеждениями. Ему просто повезло, что он оказался более убедительным. Причем доказательства были не столько научные, сколько религиозные. В своих заметках он постоянно утверждает, что таинство создания живого из неживого знает только Бог-Создатель. Возможность создания человеком или природой живой материи без участия Бога была им безоговорочно отброшена без научного обоснования.

Большинство ученых не читают все материалы, на которые они ссылаются

Любая научная работа основана на результатах предыдущих исследований. Вследствие этого, научные работы изобилуют ссылками на предыдущие документы, создавая ложное впечатление, что они были всесторонне исследованы и на этом основании сделана новая работа.

После того, как были обнаружены сходные ошибки в множестве научных материалов, два исследователя из Университета Калифорния, Лос Анжелес, решили исследовать эту проблему. Они исследовали несколько хорошо известных научных работ. Например, относительно одной известной работы, связанной с кристаллами, журнал «New Scientist» написал:

Они обнаружили, что на эту работу ссылаются 4300 раз, при чем все 196 ошибок, найденных в оригинале, перекочевали во все ссылки и цитаты. 40 ошибок были впоследствии исправлены, а остальные 156 остались незамеченными во всех последующих документах.

Скорее всего, эти исследователи просто копировали ссылки из других источников, не утруждаясь их просматривать, чему успешно научились в школе. Это показывает, насколько принцип «Копипастера» применим не только к современному миру интернета и коммуникации, но и к более древнему докомпьютерному времени бумажного издательства и общения.

Еще раз: модифицировали гены репродуктивных клеток человека и выращивают из них эмбрионы.

В то время когда я пишу этот текст, детали работы неизвестны, поэтому нельзя сказать, насколько далеко зашел эксперимент. Трансплантирован ли эмбрион матери и скоро появится первый генетически модифицированный человек? Остановлено ли его развитие в пробирке? Какие гены отредактированы?

Ответ на первый вопрос: почти гарантированно «нет», но цель экспериментов именно такова, чтобы в ближайшем будущем - не через десятилетия, а через годы - генетические модификации людей стали реальностью.

Пока известно, что эксперименты провели китайские ученые, но не стоит думать, что это единичный акт или газетная утка. По той же тематике работает множество лабораторий и групп. В марте в журнале Массачусетского технологического института опубликовано расследование Антонио Регаладо под заголовком «Конструирование идеального малыша». (Для справки: MIT - один из самых престижных научных институтов, только нобелевских лауреатов оттуда вышло 63 человека, многократно больше, чем, например, из России.) Автор подробно рассказывает о масштабных работах по исправлению и улучшению геномов животных и человека: Бостон, Гарвард, Кембридж, Массачусетс, Великобритания, Китай… Лучшие лаборатории, частные компании с огромными бюджетами…

Молекулярная биология долго шла к этому. Десятки лет совершенствовали методики, десятки лет студентам рассказывали о генетической терапии. Казалось, что это дело будущего: говорим давно, а терапии всё нет. Но в 2012 году появляется технология CRISPR - запомните эту аббревиатуру, возможно, вам доведется на практике воспользоваться ею.

Технология проста как топор, дешева, применить ее может любой студент с навыками лабораторной работы. Это молекулярная система бактериального происхождения, которая распознает заданный участок ДНК и редактирует его: можно вырезать ненужные нуклеотиды, вставить нужные, активировать или подавить работу конкретного гена. В первые же восемь месяцев эти возможности были продемонстрированы на множестве объектов, в том числе на клетках человека. Не минуло и трех лет, как в дело пошли эмбрионы. Понятно почему: инструмента такой избирательности и эффективности у молекулярных биологов до сих пор не было.

Первые мишени - генетические заболевания. Берем у женщины яйцеклетку, исправляем ген в лаборатории, проводим искусственное оплодотворение, подсаживаем эмбрион матери. Рождается здоровый ребенок, и все последующие поколения избавлены от наследственных недугов. Справедливо будет сказать, что точно ассоциированных с какими-то генами заболеваний немного, зато очень много генов предрасположенности к болезням. Кто откажется их исправить?

Пока технология находится в зародыше, потому что есть проблемы. Но учитывая взрывное развитие методов работы со стволовыми клетками, можно предположить, то эти проблемы будут решены в течение нескольких лет. Дальше - со всей очевидностью - больше: заказы на улучшение способностей (кто не захочет, чтобы ребенок был здоровым, сильным, красивым и умным?), а чуть позже и новые необычные черты вплоть до крылышек за спиной. Ангелочка заказывали? Позитивная евгеника в лучшем виде.

Но вдруг через несколько дней после публикации Антонио Регаладо в Nature появляется статья нескольких ведущих специалистов в этой области с призывом прекратить на неопределенное время работы с репродуктивными клетками человека. Логика простая: во-первых, технология недоработана даже на животных, во-вторых, мы не знаем последствий. Что будет через десять лет с «отредактированным» человеком? А с его потомством? Когда-нибудь в обозримом будущем мы в этом разберемся. А вот в чем не разберемся, пожалуй, никогда - в эволюционных последствиях генетической революции. Что произойдет с родом человеческим?

В январе один из авторов метода CRISPR Дженнифер Дудна собрала в Калифорнии два десятка специалистов, обеспокоенных темпами работ. На встречу приехал восьмидесятивосьмилетний Пол Берг, нобелевский лауреат, который организовывал историческую Асиломарскую конференцию 1975 года. Тогда ученые выработали единые стандарты для генной инженерии. Получится ли сейчас?

Будущее, как всегда, пришло не вовремя, и, как всегда, мы к нему не готовы.

Зарождение новой человеческой жизни — настоящее чудо даже с точки зрения науки. В одной-единственной клетке сначала сливаются половинки генома отца и матери, а затем этот набор из 46 хромосом создает все разновидности клеток будущего организма: от вспомогательных клеток плаценты и пуповины до остеобластов, из которых строятся кости, и светочувствительных клеток сетчатки глаза. При этом каждая разновидность клеток «знает» время и место своего появления, иначе вместо нового человека получился бы клеточный суп. Удивительная точность, с которой клетки определяют «расписание» развития, достигается благодаря тому, что ДНК и ее помощники — РНК и белки — работают как хорошо сыгранный оркестр, слаженно и четко регулируя активность генов.

Неудивительно, что с тех пор, как ученые в 1970-х научились расшифровывать последовательности ДНК и РНК, Святым Граалем молекулярной генетики стала возможность узнать, что же именно происходит с ДНК при эмбриональном развитии, какие гены отвечают за то, чтобы из одинокой маленькой клеточки получился целый человек. Но до 2012 года подходящего инструмента для таких исследований не существовало.

«Некоторые моменты изучены, но в основном это темный лес», — рассказывает член-корреспондент РАН, доктор биологических наук, заведующий лабораторией молекулярной биологии стволовых клеток Института цитологии РАН Алексей Томилин.

Есть два главных способа узнать, какую функцию выполняет ген — выключить его (это называется генный нокаут или нокдаун, по аналогии с боксерским ударом, после которого противник не может продолжать бой) или заменить его другим (трансгенез) и посмотреть, что после этого изменится в жизни клетки и целого организма.

Подобные манипуляции с геномом традиционно проводятся на эмбриональных стволовых клетках (ЭСК) мышей, которые затем вводят обратно в эмбрионы, а те, в свою очередь, подсаживают в матки мышей для имплантации. В результате на свет появляются химеры, животные, одни клетки которых несут измененную «донорскую» ДНК, а другие — ДНК суррогатной матери. Эффект введенной в геном модификации изучают на их потомках, часть которых будет носителями только модифицированного генома. «Применение подобного подхода для изучения раннего развития человека, очевидно, невозможно, — объясняет Томилин. — Единственная возможность провести генные манипуляции с зародышем человека и оценить их влияние на его развитие — это короткий промежуток в шесть дней между оплодотворением и имплантацией».

До недавнего времени перед учеными стояла еще и чисто техническая проблема. Чтобы отредактировать геном, нужно заставить ферменты-нуклеазы, расщепляющие цепочку ДНК, связаться с ней строго в нужном месте. Методы «наведения», которые применялись ранее, справлялись со своей задачей примерно в 20% случаев.

Этого вполне достаточно, чтобы создавать генномодифицированные растения, проводить опыты на мышиных эмбрионах или клетках «взрослых» человеческих тканей. Во всех этих случаях можно взять сразу много подопытных клеток, а потом отобрать для дальнейшего использования только те, в которых редактирование прошло успешно. Но человеческие эмбрионы — слишком ценный объект для исследований. В лабораторию ученого они могут попасть лишь как подарок от пар, прошедших процедуру ЭКО (при этом оплодотворяются сразу несколько яйцеклеток, но матери имплантируются одна-две, остальные остаются на хранении в заморозке или уничтожаются). Учитывая неточность технологий по изменению генома, такого числа яйцеклеток категорически недостаточно.

«Ситуация в корне изменилась после открытия технологии генного редактирования CRISPR/Cas9», — рассказывает Томилин. Система CRISPR/Cas9, впервые испытанная в 2012 году, к 2015-му показала эффективность в 90% на эмбрионах мышей и 94% на незрелых Т-лимфоцитах и гемопоэтических стволовых клетках человека (подробно о ней из выпуска «Наука за минуту»). Казалось бы, пора отправляться в поход за Граалем.

Этика остановила

В апреле 2015 года впервые в мире опыты по редактированию эмбрионального генома провели китайские ученые из Университета Сунь Ятсена под руководством Цзюньцзю Хуана (Junjiu Huang). Они взяли 86 оплодотворенных человеческих яйцеклеток и с помощью CRISPR/Cas9 попытались исправить в них мутантный ген, вызывающий бета-талассемию, тяжелое наследственное заболевание крови. Результат оказался неожиданным. CRISPR/Cas9 правильно изменила геном лишь в 28 эмбрионах, а при дальнейшем делении новый ген сохранили только четыре из них. Впрочем, это не остановило китайских исследователей. Цзюньцзю Хуан собирается и дальше экспериментировать с человеческими эмбрионами, в первую очередь, чтобы найти способы повысить эффективность действия CRISPR/Cas9.

Работа системы CRISPR-Cas9. Изображение: mit.edu

«Исследования Хуана показали, что еще рано говорить о редактировании генома человека на предимлантационной стадии, — поясняет Алексей Томилин. — Слишком низкая эффективность и слишком высокий риск побочных изменений в геноме (так называемый off-target effect). Когда обе проблемы будут решены, тогда можно будет говорить о генетической коррекции зародышевой линии человека. Почему CRISPR/Cas9 часто бьет мимо цели в эмбриональном геноме, сказать сложно. Работы над повышением точности и эффективности редактирования с помощью CRISPR/Cas9 ведутся. Нет сомнений, что прогресс будет».

Статья китайских исследователей неожиданно вызвала громкий отклик у их европейских и американских коллег, причем ученых беспокоила вовсе не низкая точность редактирования, а этическая сторона вопроса. Уже в апреле 2015 года в журнале Science появилась ответная статья за подписью 18 специалистов по геномике и стволовым клеткам, среди которых были и исследователи, которые непосредственно участвовали в разработке и улучшении метода CRISPR/Cas9, — Дженнифер Дудна и Мартин Жинек. Они призывали коллег с осторожностью отнестись к перспективе редактирования эмбрионального генома, настаивая, что людям нужно время, чтобы осмыслить возможные последствия такого вмешательства, иначе недалеко и до евгеники — выведения «породы» людей с заданными характеристиками. Беспокойство авторов статьи в октябре 2015-го поддержал Международный комитет по биоэтике при ЮНЕСКО, призвав наложить временный мораторий на подобные работы с человеческими клетками.

Чего так боятся ученые? Этические вопросы вызывают вовсе не страдания или уничтожение эмбрионов в ходе генетических экспериментов. На стадии одного—шести дней после оплодотворения эмбрион представляет собой комочек всего из нескольких десятков клеток. Беспокойство вызывает как раз не-уничтожение модифицированных эмбрионов. Изменения, внесенные в гены половых клеток, оплодотворенной яйцеклетки и клеток эмбриона на ранних стадиях развития, передаются по наследству всем потомкам модифицированного организма. Это называется изменением зародышевой линии.

Первый шаг

Несмотря на неоднозначные результаты группы Цзюньцзю Хуана и этическую дилемму генетического редактирования эмбрионов как такового, 1 февраля 2016 года стало известно, что британское Управление по оплодотворению человека и эмбриологии (HFEA — Human Fertilisation and Embryology Authority) выдало разрешение на редактирование эмбрионального генома доктору Кэти Ниакан из института Френсиса Крика.

Ниакан почти 10 лет занимается изучением того, как стволовые клетки определяются со своей будущей специализацией в человеческих и мышиных эмбрионах. В последнее время ее исследовательская группа пыталась узнать ответ на этот вопрос, расшифровывая последовательности РНК — молекул-посредников, передающих информацию из ДНК рибосомам, клеточным машинам, которые синтезируют белки. Ученым удалось определить несколько генов, которые работают только в человеческих клетках и определяют отличия в раннем развитии человека от тех же мышей, например ген KLF17. Чтобы понять, какие функции выполняют эти гены, и нужны эксперименты, требующие редактирования ДНК. В этом смысле цели, которые ставят перед собой Ниакан и ее коллеги, гораздо ближе к поиску генетического Грааля, то есть к ответам на фундаментальные научные вопросы, чем цели китайских ученых.

Другая задача британских биологов — понять, какие гены ответственны за успешное развитие эмбриона в целом, и особенно за правильное формирование плаценты. Это знание может многое изменить в диагностике и лечении бесплодия. Статистика говорит, что 15—20% всех беременностей заканчивается выкидышем на самых ранних сроках, при этом женщины даже не знают, что были беременны. С другой стороны, при процедуре ЭКО в матку будущей мамы успешно имплантируются только 25% эмбрионов. Чаще всего это связано именно с генетическими неполадками самого эмбриона, который в нужный момент не может прикрепиться к стенке матки или позже сформировать полноценную плаценту для своего развития. У Ниакан и тут есть свой «подозреваемый» — ген Oct4, недостаточная активность которого у мышей связана с замедлением производства стволовых клеток.

Человеческий эмбрион на разных стадиях развития. Клетки, в которых активны отмеченные слева гены, выделены соответствующим цветом. Фото: Kathy Niakan group, Francis Crick Institute

Третья цель Ниакан — разобраться, чем развитие эмбриональных стволовых клеток (ЭСК) в естественных условиях отличается от их роста и специализации в пробирке. Заместительная терапия эмбриональными стволовыми клетками — одновременно очень многообещающий и очень опасный метод. Многообещающий — потому что ЭСК не вызывают иммунного ответа, который приводит к отторжению донорских тканей при обычной пересадке. Кроме того, из ЭСК можно вырастить клетки любого органа. В перспективе с их помощью можно будет лечить болезнь Альцгеймера, ишемическую болезнь сердца, недостаточность функции щитовидной железы, ДЦП и много чего еще.

Опасен же этот метод потому, что вне эмбриона стволовые клетки часто ведут себя непредсказуемо. Например, у подопытных животных они вызывают образование опухолей. Чтобы превратить такие последствия, нужно выяснить, какие гены у ЭСК в пробирке работают иначе, чем в эмбрионе, и какие условия на это влияют. У опять же у Ниакан и ее команды уже есть гены-кандидаты, например ARGFX.

Разобраться со всеми этими вопросами британским биологам предстоит в сжатые сроки — разрешение HFEA действительно только три года. И это не единственное ограничение, наложенное на проект Ниакан. В ходе экспериментов эмбрионы могут развиваться лишь 14 дней, после чего должны быть уничтожены.

Последовательная активация и прекращение работы тех или иных генов в процессе эмбрионального развития не просто прописана в ДНК, на нее влияют факторы среды — гормоны матери, вещества, попадающие в ее тело извне. При этом известно, что у млекопитающих условия, в которых развивался эмбрион, могут определять дальнейшую судьбу родившегося существа — программировать некоторые заболевания или склонность к ним, например гипертонию или метаболический синдром .

Для человека многие из этих факторов даже не описаны, ведь никто не станет проводить эксперименты на беременных женщинах. Технологии редактирования ДНК еще слишком несовершенны, чтобы выводить генномодифицированных людей, но с их помощью уже можно выяснить, откуда берутся врожденные заболевания и как их предотвратить. Как считает Алексей Томилин, «зеленый свет» проекту Кэти Ниакан — первое, но не последнее «послабление». В тех странах, где эксперименты с предимплантационными человеческими эмбрионами не запрещены напрямую (так обстоят дела, например, в Германии), наверняка вскоре появятся новые исследовательские проекты, стремящиеся заглянуть в святая святых.

Наталья Нифантова

Китайский ученый Цзянькуй Хэ в понедельник объявил, что первые в истории генно-модифицированные люди уже живут среди нас: речь идет рождении девочек-близнецов, у которых с помощью технологии CRISPR был искусственно изменен ген, отвечающий за восприимчивость к ВИЧ. В этой сенсационной истории пока много неясного.

В первую очередь, о самом эксперименте автор объявил не общепринятым способом - с помощью публикации в научном журнале, а в видеоролике(https://www.youtube.com/watch?v=th0vnOmFltc ) на YouTube. Университет, где работал Цзянькуй Хэ, открестился от этого проекта, коллеги осудили экспериментатора, а китайские власти начали расследование. N + 1 попросил ученых рассказать, насколько реалистичной выглядит история, рассказанная китайским ученым, насколько доступен метод генной модификации человеческих эмбрионов, какие риски и опасности могут возникать в таких экспериментах, почему в большинстве западных стран такие эксперименты запрещены и можем ли мы в скором будущем ждать генно-модифицированных спортсменов, интеллектуалов или «служебных людей».

Что произошло?

Если очень коротко: Цзянькуй Хэ из Южного университета науки и технологий в Шэньчжэне отредактировал методом CRISPR/Cas9 зиготу, полученную в результате оплодотворения яйцеклетки матери сперматозоидом ВИЧ-инфицированного отца (с неопределяемым уровнем вирусной нагрузки), модифицировав в ней ген CCR5. Эта мутация делает человека маловосприимчивым к риску заражения ВИЧ. Затем эмбрион была подсажен матери с помощью стандартных методов, используемых при экстракорпоральном оплодотворении (ЭКО), и в результате родились девочки-близнецы - Лулу и Нана.

Хэ заявляет, что еще одна женщина сейчас беременна генно-модифицированным ребенком, а семь других пар участвуют в эксперименте, в настоящее время, впрочем, приостановленном «в связи с текущей ситуацией».

Что такое CRISPR-Cas

История систем CRISPR-Cas далека от человека - в природе они найдены у организмов, очень сильно отличающихся от нас: бактерий и архей. В этих сравнительно простых клетках CRISPR-Cas представляет собой аналог адаптивного иммунитета. Непосредственно CRISPR - это аббревиатура, описывающая участок бактериального генома, где записана информация о тех вирусах, с которыми встречались предки этой клетки. Эти данные хранятся в виде библиотеки коротких кусочков вирусной ДНК, которую бактерия получает по наследству и может пополнять самостоятельно.

Если бактерия сталкивается с вирусом, информация о котором записана в CRISPR-библиотеке, Cas-белки могут распознать и уничтожить «непрошенного гостя». Для этого необходимо представить данные из библиотеки в виде молекулы РНК. Комплекс Cas-РНК сканирует ДНК и ищет соответствия, а при совпадении - режет.

Причем же здесь генетические болезни человека? Ключевое здесь - умение Cas-белков резать ДНК в четко заданном участке. Идея заключается в следующем: вместо того, чтобы считывать РНК с CRISPR-библиотеки, ученые просто берут нужную короткую молекулу РНК (она называется гидовой, или направляющей), соответствующую определенному месту в геноме. В комплексе с белком Cas (из всего природного разнообразия CRISPR-Cas-систем для работы с животными клетками чаще всего используется белок Cas9 из стрептококка) направляющую РНК вводят в клетки. Там Cas9 находит нужный участок, например, содержащий мутацию, и вносит разрез.

Однако это еще не все. Чтобы исправить вредную мутацию, кроме комплекса белка Cas9 с РНК, в клетку нужно добавить еще «заплатку», содержащую нужную последовательность ДНК. Используя ее, системы репарации клетки «починят» порезанную ДНК и вместо мутации на этом месте появится другая, «нормальная» последовательность.

Нужно это не только и не столько для лечения.

Технология редактирования генома открывает новые горизонты для его исследователей. Возможность варьировать последовательность ДНК живых организмов существовала и раньше, но по сравнению с генно-инженерными методами, существовавшими до «эпохи CRISPR-Cas» (которая, к слову, началась всего шесть лет назад), предлагаемый механизм достаточно прост и эффективен. Он помогает быстро создавать модельные системы для самого разного класса задач, как из области фундаментальной генетики, так и в прикладной медицине, и уже стал своеобразным must have во многих биологических лабораториях.

Подробнее об этом методе можно прочесть в нашем материале «Запомните эти буквы»(https://nplus1.ru/material/2016/02/02/crisprfaq ).

Почему в результатах Хэ сомневаются?

Сомнения возникли из-за того, в какой форме было объявлено о новом результате. Во-первых, Хэ не опубликовал свою работу в научном журнале, нарушив обычную процедуру для объявления о результатах экспериментов. Статью в журнале перед публикацией обычно читают и оценивают несколько рецензентов и редактор.

Вместо этого Хэ записал ролик на YouTube, в котором объявил не только об успехе, но и о том, что родившихся девочек увидеть нельзя, а данные об их семье засекречены. Масла в огонь добавил Южный университет, где формально числится ученый, - там заявили, что он уже полгода находится в неоплачиваемом отпуске и об этой работе им ничего неизвестно.

Во-вторых, есть и сомнения более общего рода: почему, задается вопросом известный научный журналист Леонид Шнайдер, для столь эпохального эксперимента был выбран именно ВИЧ, а не какая-нибудь врожденная смертельная генетическая болезнь?

Со Шнайдером солидарен и Пауль Калиниченко - профессор Московского государственного юридического университета имени Кутафина (МГЮА), исследующий мировые практики законодательного регулирования генетических экспериментов. «Это очень странный пример. ВИЧ - это не генетическое заболевание, то есть при редактировании генома происходит не лечение, а лишь снижение риска заражения. Зато ВИЧ - заболевание очень известное. Потому что пороки сердца или гемофилия - редкие, они не так будоражат людей, многие о них вообще не слышали. С ними сенсации не создать, а с ВИЧ - можно, это пандемия, некая трибуна. Я из-за этого и усомнился в достоверности [заявлений Хэ]», - говорит Калиниченко.

А рождение генно-модифицированных людей вообще возможно?

Да, вполне - и с практической возможностью подобной работы согласны большинство экспертов. Более того, Хэ находится в одном из лучших мест для проведения таких исследований.

«Проверить сказанное сложно, но, оценивая гипотетическую возможность, мы можем опираться на историю предыдущих лет. И мы знаем, что первыми геном эмбриона человека отредактировали именно китайские ученые - этот эксперимент был проведен еще в 2015 году (правда не слишком успешно). Там речь шла о нежизнеспособных зиготах, то есть эмбрион не подсаживали матери. Годом позднее наш знаменитый соотечественник Шухрат Миталипов, работающий сейчас в Университете здоровья и наук Орегона, развил и закрепил этот опыт», - рассказывает Павел Волчков, заведующий лабораторией геномной инженерии Московского физико-технического института (МФТИ).

Миталипов по всем канонам опубликовал свою статью в Nature. В ней доказывается возможность редактирования генома человека на стадии эмбриона с целью избежать проявления генетического заболевания - гипертрофической кардиомиопатии, для которой сегодня существует только симптоматическое лечение. Препарат, редактирующий ген, вводили в зиготу - эмбрион на стадии его одноклеточного развития. Затем зиготе давали развиться до бластоцисты - первой многоклеточной стадии. Путем анализа генома клеток было показано, что редактирование состоялось. На этом эксперимент прервался.

«Как видно, все основополагающие работы были сделаны, оставалось только подсадить эту бластоцисту обратно матери - то есть проделать совершенно рутинную операцию, обычную при ЭКО, которым пользуются женщины, допустим, с непроходимостью маточных труб. Почему ранее эксперимент всегда прерывали? Чтобы не проводить незаконный эксперимент на человеке. Дело в том, что эксперименты на эмбрионах законны, так как в разных странах его до определенного возраста человеком не считают. Вот до этого оговоренного в законе возраста и доращивали многоклеточную стадию», - поясняет Волчков..

Насколько это сложно?

Судя по всему, вывести генно-модифицированных людей не очень сложно - конечно, в условиях современной лаборатории, занимающейся редактированием генома и, желательно, работающей при большой репродуктивной клинике.

«Технология микроинъекции в оплодотворенную зиготу, с помощью которой проводится редактирование генома, - это несложно, - говорит Павел Волчков. - А Хэ работал в лаборатории, где делают ЭКО. В такой лаборатории всегда под руками имеется большое количество оплодотворенных яйцеклеток от родителей, которые пытаются родить, - обычно для ЭКО забирают больше яйцеклеток, чем необходимо, на случай неудач, и они остаются в клинике. Значит, там постоянно есть возможность закалывать инструменты генетического редактирования в зиготы, давать им развиваться до определенной стадии и оценивать эффективность это процедуры».

«Методика состоит из нескольких процедур. Эмбриологические процедуры - работа с эмбрионом, с зиготой, с микроманипулятором, инъекция - могут варьироваться от лаборатории к лаборатории. Хэ, по крайней мере, по его словам в ролике, осуществлял их тем же способом, что и мы в нашей работе», - говорит генетик, проректор Российского национального исследовательского медицинского университета (РНИМУ) имени Пирогова, заведующий лабораторией редактирования генома научного центра имени Кулакова Денис Ребриков. Ранее научная группа под его руководством провела практически такой же эксперимент с человеческими эмбрионами, с той только разницей, что отредактированные яйцеклетки не были подсажены матери.

По словам Ребрикова, речь идет о стандартной процедуре лечения мужского бесплодия по протоколу ИКСИ (ICSI, Intracellular Sperm Injection Protocol), применяемой в том случае, когда сперматозоиды слишком неподвижны для зачатия: «Одновременно со сперматозоидом мы микроманипулятором вносим в яйцеклетку смесь для генного редактирования, получая тем самым зиготу», - говорит ученый.

«Для редактирования обычно используют стандартные покупные ферменты типа Cas9. Вариантов ферментов на сегодня довольно много, поэтому нельзя сказать, какой именно фермент использовал Хэ. А вот остальные компоненты реакционной смеси: направляющую фермент гидовую РНК, олигонуклеотиды и специальную "ДНК-заплатку" (фрагмент ДНК, выступающий в качестве шаблона в процессе зашивания) - как правило в каждой лаборатории делают самостоятельно», - продолжает объяснять Ребриков.

Мутация, которую вносили в эмбрионы, также не является совершенно новой. Более того, она не является и искусственной - около одного процента жителей Европе врожденным образом устойчивы к ВИЧ, то есть несут два аллеля этого мутантного гена, а 10 процентов несут один аллель.

«Эта модификация соответствует присутствующему в популяции варианту гена, который представляет собой возникший в процессе эволюции аллель, вариант гена без 32 букв. И в этом есть некое этическое облегчение ситуации, потому что мы не говорим, что мы создали новый аллель, новый вариант гена, который не встречается у людей. Тысячи людей совершенно естественным путем родились и живут именно с таким вариантом гена», - подчеркивает Ребриков.

Насколько это опасно?

Методика уже опробована, но переход из лаборатории к клинической практике - совсем другое дело, и у фармацевтических компаний на это уходят годы, если не десятки лет. С чисто технической стороны дела, для обеспечения безопасности нужно быть уверенным в двух вещах: метод эффективно редактирует целевой участок ДНК, причем это происходит на статистически значимой выборке с малым процентом отказов (редактирование таргетного локуса), и при этом редактированию не подвергаются другие участки генома (нередактирование неспецифичного локуса).

«Учитывая масштабы центра, с которым работал Хэ, эту методику, скорее всего, отрабатывали три-четыре года. Набрали информацию на эмбрионах и, исходя из своих статистических данных, разрешили себе поставить подобного рода эксперимент», - предполагает Волчков.

Сама по себе генетическая терапия ВИЧ - тоже не абсолютная новость. Компания Songamo тестирует этот метод для лечения вируса, но только на соматических, «обычных» клетках, а не стволовых клетках эмбрионов. Дело дошло до клинических испытаний, а это значит, что по проблеме накоплено очень много данных. Это и данные компании, и открытые данные в научных публикациях.

«Этот ген и система таргетирования - они хорошо изучены, китайцы не вслепую это делали, они лишь перенесли эту технологию на редактирование эмбриона, а не соматических клеток», - замечает Волчков.

Однако и он не уверен в стопроцентной правильности проделанной процедуры.

«Что бы я хотел увидеть, чтобы убедиться в корректности работы? Прежде всего, это предварительные эксперименты на клеточных линиях (эмбриональных столовых клеток). Статистически значимое количество экспериментов на эмбрионах с прерванным развитием - допустим, 25-50 случаев, где четко показывается, что редактируется таргетный ген и отсутствует или почти отсутствует неспецифическое таргетирование других аллелей, которые могли бы дать негативный вклад в состояние будущего человека. Лишь после этого можно было бы переходить к следующей фазе», - говорит Волчков.

Но, по его словам, тут возникает вопрос о правовом регулировании подобных экспериментов. «Только регулятор, в данном случае китайский аналог FDA, может установить критерий этого „почти отсутствует". Пока нет критерия, сложно рассуждать, что допустимо, а что недопустимо», - рассуждает ученый.

«Но представим, что этот этап пройден. Дальше я бы хотел видеть испытания на животной модели. Самая близкородственная человеку модель - это человекообразная обезьяна. Если бы генетическое редактирование продемонстрировали сначала на них, а не на человеческих близнецах, это было бы более правильно, - продолжает Волчков. - Тем более, что работы в этой области уже ведутся: в этом году у китайских же ученых вышла статья в Nautre о том, что они клонировали макаку (нечеловекообразную обезьяну), и еще одна - о том, что они отредактировали ее геном».

А вот Хэ и его группа, по-видимому, не хотят тратить время на опыты над обезьянами. «То, что они пропустили эту важную стадию и перешли к экспериментам на людях, говорит не в их пользу», - заключает Волчков.

Вместе с тем, эмбриогенез человека - это высоко саморегулирующаяся система, и если в ней что-то идет не так, то эмбриональное развитие терминируется (происходит выкидыш на той или иной стадии беременности). Впрочем, этот механизм, к сожалению, работает не всегда, замечает ученый. Но если положиться на высокую вероятность его работы, это значит, что сам факт появления девочек на свет подтверждает неповрежденность их генома.

Профессор Сколтеха и университета Ратгерса Константин Северинов отмечает, что выводы о безопасности, строго говоря, можно будет делать, только доведя эксперимент до логического конца: после генетической манипуляции с яйцеклеткой должен родиться ребенок, повзрослеть, произвести на свет собственных детей, прожить более или менее нормальную жизнь. «Так было с овечкой Долли. Успех эксперимента с ней, в частности, заключался в том, что она произвела на свет еще одну овечку. Но у людей срок жизни сравним со сроком жизни исследователей. В этом смысле очень сложно поставить эксперимент, чтобы он соответствовал тому уровню доказательности, который хочется иметь перед тем, как использовать процедуру», - сказал ученый.

Что именно сделано

28 ноября Цзянькуй Хэ выступил с докладом на GeneEdit Summit в Гонконге, где извинился за досрочную «утечку информации» и рассказал про технические детали своей работы (транскрипт доклада и слайды презентации посетители конференции выложили в Твиттере).

Итак, целью работы было внесение в жизнеспособные человеческие эмбрионы природной мутации CCR5-delta32, то есть делеции в 32 нуклеотида, которая нарушает работу гена и защищает ее носителей от заражения ВИЧ.

По словам Хэ, прежде чем редактировать человеческие эмбрионы для трансплантации, они тщательно подобрали направляющую РНК и проверили ее на нежизнеспособных эмбрионах и эмбриональных клеточных линиях. Кроме того, используя подобранную «затравку», сотрудники Хэ вырастили макаку с нужной мутацией в геноме.

Самой важной частью доклада Хэ стал анализ ДНК отредактированных близняшек. После рождения из пуповинной крови девочек выделили ДНК и полностью отсеквенировали их геномы. Кроме того, ДНК была выделена из нескольких других тканей. В результате секвенирования нецелевой активности Cas9 обнаружено не было.

Была ли достигнута заявленная цель? Последовательности белка CCR5 у обеих девочек действительно не совпадают с белком «дикого типа». Однако, судя по всему, нужной мутации (дельта-32) у них тоже нет. На представленном слайде видно, что у одной из девочек в одной копии гена появилась делеция в 15 нуклеотидов, то есть в пять аминокислот, а другая копия осталась нетронутой. Таким образом, белок CCR5 лишился небольшого кусочка, но все еще может быть функциональным.

У ее сестры оказались затронуты обе копии гена - в одной из них небольшая делеция в четыре нуклеотида, а в другой однонуклеотидная вставка. Белок в обоих случаях будет укороченным, но как это повлияет на устойчивость к вирусу, непонятно.

Последовательности CCR5 девочек указывают на то, что редактирование достигло цели лишь частично - направляющая РНК сработала, белок Cas9 внес разрез, но клеточные системы репарации, вместо того чтобы воспользоваться нужной «заплаткой», залечили разрез без всякого разбора. Кроме того, обе девочки, судя по всему, получились «мозаиками», то есть некоторая часть клеток у них осталась неотредактированной.

С этими проблемами ученые сталкивались во всех опубликованных статьях, посвященных редактированию человеческих эмбрионов, и результат первого эксперимента на людях подтверждает: как бы ни было интересно проверить прорывную технологию «в бою», для свершения революции она все же еще недостаточно отработана.

Идея вечной молодости или хотя бы более долгой и здоровой жизни волновала человечество на всех этапах развития цивилизации. Ученых всегда интересовала возможность увеличения продолжительности жизни человека, и вот, когда достижения в области правильного питания и активного образа жизни были исчерпаны, они обратили свой взор в сторону генных изменений.

Когда мы видим сюжеты о том, что генетики проводят эксперименты на лабораторных животных, изменяют геном, например, с целью замедлить старение клеток, нам кажется, что все это из области фантастики и отдаленного будущего. Но, оказывается, что фантастика стала реальностью. На Земле уже живет человек с искусственно измененными генами.

Это американка Элизабет Пэрриш, которая согласилась на вмешательство генетиков ради того, чтобы остановить старение своего организма, ну и, разумеется, чтобы принести пользу миру. На самом деле она еще и является одним из руководителей научно-медицинской компании BioViva, которая и проводит этот смелый эксперимент.

Чтобы понять суть искусственных изменений, необходимо немного осветить проблему старения с точки зрения генетики. Сам процесс старения заложен в нашей ДНК, а начинается он с процесса уменьшения концевых отростков хромосом, так называемых теломер. Чем старше биологический возраст человека, тем короче его теломеры. В процессе роста клеток происходит деление ДНК, что сопровождается укорачиванием теломер и в конечном итоге приводит к старению и гибели клетки.


В конце 2015 года Элизабет Пэрриш ввели генетический материал, который, проникнув внутрь ядра каждой клетки ее организма, должен был запустить изменения, и способствовать увеличению длины теломер. Таким образом, по предположению ученых, будет остановлен процесс старения и произойдет общее омоложение организма.

Принимая во внимание то, что результаты такого эксперимента могут быть самыми непредсказуемыми, вплоть до летального исхода, Элизабет даже записала обращение, в котором подтверждала свое согласие на инъекцию и озвучила понимание серьезности генетического вмешательства. Для введения генетического материала ей даже пришлось ехать в Колумбию, так как на территории Соединенных Штатов подобные опыты с людьми запрещены законодательно.

И вот ученые уже обнародовали первые результаты эксперимента. Пока все выглядит более чем оптимистично: биологический возраст женщины уменьшился примерно на 20 лет. Это выражается в состоянии лейкоцитов ее крови, а также в теломерах хромосом, которые удлинились, вместо того, чтобы дальше разрушаться. Во внешности 45 летней женщины также произошли некоторые изменения. Ее кожа стала более упругой и улучшилось состояние волос.


Безусловно, окончательные выводы делать пока рано, но полученные результаты уже можно считать прорывом в области борьбы со старением человеческого организма. Ученые надеются, что подобная технология поможет миру в борьбе с возрастными заболеваниями, а также с некоторыми генетическими отклонениями.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top