Формат 3д что. Советы пользователю

Формат 3д что. Советы пользователю

Статьи «Цифровое телевидение: что это такое?» и «Мобильное телевидение: что это такое?», опубликованные нами в прошлом году, познакомили читателей с основами современных телевизионных технологий. Продолжая раскрывать тему, переходим к наиболее актуальной инновации наших дней: 3D-телевидению.

В последние годы на рынке видеоаппаратуры громко заявила о себе тенденция перехода от плоской картинки к объемной. Эффекты 3D востребованы как в развлекательном кино (как заметил по этому поводу знаменитый кинорежиссер Вуди Аллен, «я люблю стереофильмы, потому что трехмерные женщины выглядят лучше двухмерных»), так и в научных телепрограммах, особенно образовательных. Создание нового контента было начато с фильма «Аватар», и сегодня процесс развивается лавинообразно.

В ассортименте всех крупнейших производителей цифровой электроники, таких, как Sony, Samsung, Panasonic, Toshiba и др., уже присутствуют 3D-модели (англ. 3Dimensional — трехмерный). Ожидается, что такие телевизоры будут всего на 20% дороже моделей Full HD с сопоставимыми диагоналями экранов.

Владельцы техники для просмотра объемного видео должны позаботиться еще и об аппаратуре для воспроизведения 3D-контента. Чаще всего для этой цели сейчас используют совместимые с телевизорами проигрыватели Blu-ray с опцией воспроизведения сигналов 3D.

В чем суть

Большинство существующих сегодня методов формирования объемного изображения используют физиологические особенности зрения. Природа наделила человека бинокулярным зрением — парой глаз, расположенных на расстоянии 60-70 мм друг от друга. Мы видим мир одновременно с двух точек наблюдения, причем изображения, формирующиеся в левом и правом глазах, слегка отличаются. Каждый глаз получает вид одной и той же области окружающего пространства с немного разных углов и передает в мозг уникальную визуальную информацию. При одновременном поступлении двух изображений они соединяются в единое, существенно отличающееся от исходных.

Эти два изображения принято называть стереопарой. Анализируя различия между изображениями стереопары, мозг человека получает информацию об объеме и удаленности наблюдаемых объектов. Полученная картинка — это не просто сумма двух составляющих, а стереоизображение, в котором объекты воспроизводятся в трех пространственных измерениях — по ширине, высоте и глубине. Именно восприятие глубины позволяет оценивать расстояние до окружающих нас объектов.

Для создания стереоэффекта используется принцип раздельного просмотра — левому глазу демонстрируется «левое» изображение стереопары, а правому — «правое». Различия заключаются в том, каким образом достигается разделение изображений стереопары.

Надеваем 3D очки

Рассмотрим сначала те из них, которые требуют для просмотра наличия специальных очков, поскольку пока именно они преобладают в представленных на рынке моделях телевизоров.

Первый способ — анаглифический (по-гречески «рельефный») известен уже более ста лет. Он используется в кинотеатрах, где перед объективом проектора устанавливаются световые фильтры, каждый из которых пропускает красный или сине-зеленый свет (для каждого глаза свой). Для разделения изображений при просмотре используются специальные картонные очки с установленными вместо стекол красным (для одного глаза) и сине-зеленым (для другого) световыми фильтрами. Однако сейчас такой способ практически не применяется из-за весьма скромных результатов цветопередачи объемности.

Другой способ — поляризационный, когда в специальном проекционном устройстве или на ЖК-экране формируется изображение с различной поляризацией света: например, «левый» кадр имеет горизонтальную поляризацию, а «правый» — вертикальную. Стекла используемых при этом способе специальных пассивных очков являются поляризационными фильтрами, причем плоскость поляризации каждого из стекол такая же, как и у соответствующих кадров стереопары. В результате при просмотре последовательности кадров левый глаз видит только «левые» кадры, а правый — только «правые».

Поляризационный способ позволяет получить цветное объемное изображение хорошего качества, однако он сложен в реализации, так как требует наличия дорогого экрана со специальным покрытием и существенного повышения яркости изображения, поскольку до 70% света поглощается поляризационными фильтрами. В связи с этим в телевидении такой способ практически не применяется.

Именно поэтому сегодняшние решения для 3D-телевидения основаны на третьем способе, называемом затворным. Он предусматривает попеременную демонстрацию изображений, предназначенных для левого и правого глаза. Благодаря тому, что чередование кадров осуществляется с высокой частотой, мозг выстраивает целостную пространственную картину и зритель видит на экране цельное трехмерное изображение.

Для просмотра по этому методу используются активные очки, в которых вместо стекол и фильтров (в пассивных очках) встроены два активных жидкокристаллических затвора (Active Shutter). Эти светопропускающие ЖКматрицы способны по команде процессора изменять свою прозрачность, то, затемняясь, то, просветляясь, в зависимости от того, на какой глаз в данный момент необходимо направить свет.

Ранние модели затворных очков, предназначенных в основном для компьютеров, подключались к ним с помощью кабеля. Сейчас почти все производители стереотелевизоров используют для их связи с очками инфракрасное излучение (как в пультах дистанционного управления). Поэтому все современные модели телевизоров имеют беспроводной ИК-интерфейс, через который происходит управление коммутацией и синхронизация затворных очков.

Этот способ позволяет получить высокое качество разделения кадров и хорошее разрешение. Однако для его полной реализации требуются устройства, способные работать на высоких частотах обновления (смены кадров). Ведь каждый глаз в этом случае видит изображение с пониженной вдвое частотой, поэтому возможно появление мерцания.

Частота отображения кадров, при которой мерцания незаметны, зависит от ряда факторов, в частности от соотношения длительностей интервалов активной части кадра и гашения. В телевидении изображение появляется на экране на 18,4 мс с перерывом всего в 1,6 мс, и мерцания при этом незаметны.

В случае с ЖК-очками интервал гашения практически равен активному интервалу. Если частота обновления составляет 100 Гц, то каждый глаз видит такую картинку: изображение — 19 мс, черный экран — 21 мс, и в этом случае появление мерцания неизбежно. Для устранения этого нежелательного эффекта требуется частота обновления не менее 120 Гц. В последних моделях телевизоров ведущих производителей частота смены кадров достигает 200, 400, 600 и даже 800 Гц.

Еще один современный «очковый» метод получения объемного изображения связан с появлением DLP-устройств (англ. Digital Light Processing — цифровая обработка света). В этих цифровых решениях используются встроенные быстродействующие DMP-устройства (англ. Digital Micromirror Device — цифровое микрозеркальное устройство), создающее «левые» и «правые» изображения, на основании которых и формируется стереоизображение высочайшего класса.

Формат DLP-3D основан на алгоритме Smooth Picture фирмы Texas Instruments. Технология DLP использует часть кадра Smooth Picture для генерации независимых визуальных представлений для левого и правого глаза. Сигнал формируется для каждого полукадра и по оптическому кабелю передается на затворные очки, которые преобразуют сигнал и попеременно управляют положением затвора таким образом, чтобы «левое» и «правое» изображения попадали в «нужные» глаза зрителя.

Преобразованные в цифровую форму эти изображения (исходная стереопара) затем фильтруются и прореживаются по диагонали, что приводит к образованию шахматного рисунка, состоящего из клеток левого и правого представлений в стандартном ортогональном дискретизированном формате, которые затем накладываются друг на друга и получается комбинированное чередование пикселов «левых» и «правых» изображений.

Описанный формат, в отличие от других затворных технологий, сохраняет и горизонтальное, и вертикальное разрешения изображения, обеспечивая тем самым высокое качество изображения.

Для полноты картины расскажем еще об одном «очковом» способе получения объемных изображений, применяемом пока только в компьютерных мониторах для компьютерных игр. Корпус такого монитора заметно толще корпуса обычного ЖК-монитора, так как в нем установлены сразу две ЖК-матрицы с разрешением 1680x1050 пикселов — так называемые передний и задний экраны. Задний экран по конструкции аналогичен дисплею обычного ЖК-монитора: он представляет собой ЖК-матрицу, помещенную между двумя поляризационными фильтрами. Передний же экран этих фильтров лишен, поскольку он не предназначен для изменения интенсивности светового потока, а служит для поворота на заданный угол плоскости поляризации света, исходящего от заднего экрана, причем позволяет изменять ее для каждого пиксела в отдельности.

Человеческий глаз, в отличие от органов зрения некоторых насекомых, не различает поляризацию света, поэтому влияние на изображение переднего экрана практически невозможно заметить. Однако стоит надеть специальные поляризационные очки, фильтры которых расположены под углом 90° друг к другу, как картина полностью меняется. Количество попадающего в глаза света от каждого пиксела, сформированного задним экраном, зависит не только от его яркости, но и от угла плоскости поляризации, заданного передним экраном.

Таким образом, каждый пиксел заднего экрана одновременно отображает оба кадра стереопары, а передний экран разделяет получаемый свет так, что через специальные поляризационные очки каждый глаз видит только предназначенные ему кадры стереопары. Иными словами, каждый пиксел заднего экрана принадлежит обоим кадрам, а передний экран определяет, какая часть его яркости должна быть воспринята одним глазом, а какая — другим.

К достоинствам такого метода можно отнести сохранение полного разрешения, а к недостаткам — двухкратное падение яркости в стереоскопическом режиме.

Текст: Александр Пескин, доцент МГТУ
им. Н.Э.Баумана

Трёхмерной модели сцены на плоскость (например, экран компьютера) с помощью специализированных программ. Однако с созданием и внедрением 3D-дисплеев и 3D-принтеров трёхмерная графика не обязательно включает в себя проецирование на плоскость.

Применение

Трёхмерная графика активно применяется для создания изображений на плоскости экрана или листа печатной продукции в науке и промышленности , например, в системах автоматизации проектных работ (САПР; для создания твердотельных элементов: зданий, деталей машин, механизмов), архитектурной визуализации (сюда относится и так называемая «виртуальная археология »), в современных системах медицинской визуализации .

Самое широкое применение - во многих современных компьютерных играх , а также как элемент кинематографа , телевидения , печатной продукции .

Трёхмерная графика обычно имеет дело с виртуальным , воображаемым трёхмерным пространством, которое отображается на плоской, двухмерной поверхности дисплея или листа бумаги. В настоящее время известно несколько способов отображения трёхмерной информации в объемном виде, хотя большинство из них представляет объёмные характеристики весьма условно, поскольку работают со стереоизображением. Из этой области можно отметить стереоочки, виртуальные шлемы, 3D-дисплеи, способные демонстрировать трёхмерное изображение. Несколько производителей продемонстрировали готовые к серийному производству трёхмерные дисплеи . Но, чтобы насладиться объёмной картинкой, зрителю необходимо расположиться строго по центру. Шаг вправо, шаг влево, равно как и неосторожный поворот головы, карается превращением трёхмерности в несимпатичное зазубренное изображение. Решение этой проблемы уже созрело в научных лабораториях. Германский Институт Фраунгофера демонстрировал 3D-дисплей, при помощи двух камер отслеживающий положение глаз зрителя и соответствующим образом подстраивающий изображение, в этом году [когда? ] пошёл ещё дальше. Теперь отслеживается положение не только глаз, но и пальца, которым можно «нажимать» трёхмерные кнопки. А команда исследователей Токийского университета создали систему, позволяющую почувствовать изображение. Излучатель фокусируется на точке, где находится палец человека, и в зависимости от его положения меняет силу акустического давления. Таким образом, становится возможным не только видеть объемную картинку, но и взаимодействовать с изображенными на ней предметами.

Однако и 3D-дисплеи по-прежнему не позволяют создавать полноценной физической, осязаемой копии математической модели, создаваемой методами трёхмерной графики.

Развивающиеся с 1990-х годов технологии быстрого прототипирования ликвидируют этот пробел. Следует заметить, что в технологиях быстрого прототипирования используется представление математической модели объекта в виде твердого тела (воксельная модель).

Создание

Для получения трёхмерного изображения на плоскости требуются следующие шаги:

  • моделирование - создание трёхмерной математической модели сцены и объектов в ней;
  • текстурирование - назначение поверхностям моделей растровых или процедурных текстур (подразумевает также настройку свойств материалов - прозрачность, отражения, шероховатость и пр.);
  • освещение - установка и настройка ;
  • анимация (в некоторых случаях) - придание движения объектам;
  • динамическая симуляция (в некоторых случаях) - автоматический расчёт взаимодействия частиц, твёрдых/мягких тел и пр. с моделируемыми силами гравитации , ветра , выталкивания и др., а также друг с другом;
  • рендеринг (визуализация) - построение проекции в соответствии с выбранной физической моделью;
  • композитинг (компоновка) - доработка изображения;
  • вывод полученного изображения на устройство вывода - дисплей или специальный принтер.

Моделирование

Схема проецирования сцены на экран компьютера

Наиболее популярными пакетами сугубо для моделирования являются:

  • Robert McNeel & Assoc. Rhinoceros 3D ;

Для создания трёхмерной модели человека или существа может быть использована как прообраз (в большинстве случаев) Скульптура .

Текстурирование

SketchUp

Визуализация трёхмерной графики в играх и прикладных программах

Есть ряд программных библиотек для визуализации трёхмерной графики в прикладных программах - DirectX, OpenGL и так далее.

Есть ряд подходов по представлению 3D-графики в играх - полное 3D, псевдо-3D.

Такие пакеты даже не всегда дают пользователю оперировать 3D-моделью напрямую, например, есть пакет OpenSCAD , модель в котором формируется выполнением формируемого пользователем скрипта, написанного на специализированном языке.

Трёхмерные дисплеи

Трёхмерные, или стереоскопические дисплеи , (3D displays, 3D screens) - дисплеи, посредством стереоскопического или какого-либо другого эффекта создающие иллюзию реального объёма у демонстрируемых изображений.

В настоящее время подавляющее большинство трёхмерных изображений показывается при помощи стереоскопического эффекта, как наиболее лёгкого в реализации, хотя использование одной лишь стереоскопии нельзя назвать достаточным для объёмного восприятия. Человеческий глаз как в паре, так и в одиночку одинаково хорошо отличает объёмные объекты от плоских изображений [ ] .

Стереоскопические дисплеи

Методы технической реализации стереоэффекта включают использование в комбинации со специальным дисплеем поляризованных или затворных очков , синхронизированных с дисплеем, анаглифических фильтров в комбинации со специально адаптированным изображением.

Существует также относительно новый класс стереодисплеев, не требующих использования дополнительных устройств, но имеющих массу ограничений. В частности, это конечное и очень небольшое количество ракурсов, в которых стереоизображение сохраняет чёткость. Стереодисплеи, выполненные на базе технологии New Sight x3d , обеспечивают восемь ракурсов, Philips WOWvx - девять ракурсов. В октябре 2008 года компания Philips представила прототип стереодисплея с разрешением 3840×2160 точек и с рекордными 46 ракурсами «безопасного» просмотра. Вскоре после этого, однако, Philips объявил о приостановке разработок и исследований в области стереодисплеев

Сегодня для нас уже привычно, что объемное кино можно смотреть и дома. Раньше так называемый стереофильм можно было увидеть лишь в кинотеатре, и то не в каждом. Сейчас эта технология имеет название 3d. Что такое 3d? На самом деле, 3d – это лишь аббревиатура (3 dimensions, то есть 3 измерения). Все, что способен увидеть здоровый человек вокруг – трехмерно, изображение же на экране обычного телевизора – двухмерно. Телевизор с 3d технологией позволяет видеть картинку почти как вживую, в объеме. Однако чтобы достичь такого эффекта, производителям пришлось поработать.

На сегодняшний день очень популярны две технологии 3d для домашнего телевидения: активная и пассивная. В чем их разница? Давайте выясним это.

Технология 3d активная

Чтобы получился красивый и объемный видеоряд, часть производителей решила пойти по пути чередования картинок по времени. Для этого были созданы специальные затворные очки. Такой инструмент для просмотра достаточно сложен и стоит недешево. Очки должны синхронизироваться с сигналом телевизора, в них человек может видеть картинку только одним глазом. Однако это происходит очень динамично. Очки закрывают с помощью затемнения одной линзы просмотр для глаза. Затем через долю секунды – для второго глаза.

Такое мелькание позволяет в результате видеть объемную сцену. Экран телевизора, в свою очередь, меняет изображение, в каждый момент времени, демонстрируя картинку, предназначенную только для одного глаза. Здесь важна синхронность с очками. Образ на экране меняется часто, в среднем – 60 раз в секунду. Соответственно и меняются глаза, которые могут видеть картинку.

Затворные очки требуется подзаряжать, так как они имеют свой обособленный источник питания. Кроме того, затемнение линз приводит к общему затемнению картинки. Что и есть одним из недостатком активного 3d. Чтобы устранить его, кино для просмотра в режиме 3d делают немного ярче.

Если кино качественное, что значит 3d технология была внедрена профессионально, эффект от него будет потрясающим.

Что значит пассивное 3d

Совсем по-другому работает пассивное 3d телевидение. Очки используются простенькие, поляризационные. В комплекте с телевизором, можно получить сразу несколько таких очков, поскольку они дешевы.

Телевизор оснащен особым фильтром, который делит экран построчно. Каждый глаз видит свою картинку, однако не за счет раздела их по времени, а за счет раздела по полосам-строчкам. Правый глаз видит четные строки, левый – нечетные, или наоборот. Поэтому высота экрана становится видимой ровно наполовину. Стоит сказать, что такое 3d лояльнее к нашим кошелькам, поскольку стоит дешевле.

Эксперты отмечают, что при пассивной 3d технологии, глаза зрителя не ощущают слишком сильного дискомфорта. Зато экран будет казаться шероховатым и демонстрировать все неровности и дефекты.

Так что же лучше

Производители по сей день не пришли к единому мнению, какая технология оптимальнее. Поэтому есть бренды, которые выпускают телеоборудование исключительно с активным 3d, есть же те – которые продвигают технологии с пассивным 3d. А есть и те, кто производит телевизоры с обоими принципами внедрения трехмерной картинки.

Недостатки каждого типа 3d технологий можно считать их основы построения.

Недостатки активного 3d

  • Активное 3d достигает нужного эффекта за счет смены картинок для каждого глаза по времени. Соответственно, движение процесса на экране замедляется. Как ни крути, а «моргание» забирает какой-то период. Это становится заметно в сценах, где быстрая динамика.
  • Глаза не каждого зрителя могут спокойно вынести подобную нагрузку, поэтому некоторые киноманы жалуются на резь в глазах, иногда на головные боли.
  • Уменьшение яркости. Любой фильм будет немного темнее, если применять затворные очки.
  • Пассивное 3d достигает объема за счет показа каждому глазу одновременно только части картинки (зритель каждым глазом видит только половину экрана). Значит, высота экрана станет меньше вдвое.
  • Считается, что качество видео, которое мы видим в телевизорах с пассивным 3d ниже, чем в активном.
  • Чтобы кино просматривалось с максимальным погружением, желательно приобретать телевизор подороже, что значит 3d в нем будет наиболее эффектен. А это уже размывает границу в цене между двумя этими технологиями.
  • Смотреть кино с близкого расстояния не выйдет полноценно. Желательно рассчитывать, чтобы телевизор не стоял ближе трех метров к зрителю. Что не критично для активно-затворной технологии.

Недостатки пассивного 3d

Выбирая телевизор с 3d, важно не только определиться, каким методом будет формироваться объемное изображение. Нужно также оценить качество цветопередачи. Этот показатель архиважный для тех, кто хочет увидеть воочию, что такое 3d технология. Частота обновления экрана – тоже не последний фактор. Чем она выше, тем эффектней будет просмотр. Однако этот показатель существенно влияет на цену.

Важно также понимать, что хорошего кино выполненного в 3d технологии не так уж и много. Поэтому смотреть ежедневно новый фильм в спец очках вряд ли получится. Хотя, этот недостаток в скором времени будет исправлен, так как объемы 3d-контента растут так же, как и выпуск телевизоров.

Что характерно, люди, которые посмотрели несколько видеоработ на телевизорах с разной 3d технологией, не сходятся в едином мнении, какой из них лучше. Поэтому при выборе нового ТВ, стоит решить для себя, какие недостатки для вас не принципиальны. Только потом, следует покупать оборудование.

Невозможно представить какую-либо значимую сферу производства, в которой на этапе конструирования не применяют объемную графику. Разработка любого объекта становится доступнее при трехмерном представлении каждого элемента, значимой детали. На каждом этапе создания продукта, будь это несложный механизм или ракетный двигатель, ориентируются на многогранный макет. Он представляет собой многовекторный чертеж, имеющий не только номинальную высоту, длину и ширину, но и визуальное воплощение. В этой статье мы расскажем, как появилась первая компьютерная реалистичная фигура, в каких сферах технология нашла свое применение и какие программы используют проектировщики.

Мы часто слышим это сочетание – 3D. Оно является сокращением английского 3-dimensional, что дословно переводится как «три размера». К этой фразе прибавляют дополнительные слова: звук, изображение, шутер, шоу, принтер и так далее – вариантов масса. Но остается основной смысл: при употреблении этого метода происходит переход из схематического, однолинейного пространства в более реалистичное. Эта способность «одухотворять» неживое ставится в основу многих начинаний. Но визуализация нашла свое начало и получила наибольшую востребованность именно в конструировании объемного образа.

Оно широко применяется в следующих отраслях:

  • индустрия развлечений;
  • медицина;
  • промышленность.

Расскажем о каждой группе подробнее.

Кинематограф, компьютерные игры и анимация: заслуги 3D моделирования

Все виртуальные пространства и несуществующие герои созданы с помощью особой техники использования полигонов. Так называются обыкновенные геометрические фигуры с тремя или четырьмя гранями, которые соединяются под разными углами в один объект. Чтобы он пришел в движение, необходимо менять параметры у составляющих – вытягивать, перемещать, вращать. Так как все они связаны, то действие похоже на натяжение паутины – остальные сегменты деформируются в соответствии с первым.

Чем меньше площадь каждого отдельного куска, тем больше их общее количество, а значит, выше точность изображения. В таких случаях принято говорить о качестве графики – в некоторых играх можно ее делать выше и ниже. Это актуально в тех случаях, когда мощность компьютера не позволяет быстро отображать все фрагменты. Нельзя сказать, что небольшое количество полигонов – модели low poly, хуже чем High poly, когда деталей во много раз больше. Для части анимации достаточно общего вида героя, если он второстепенный или один из многих. Главного персонажа, как правило, рисуют более подробно. Сверху графических фигур накладываются текстуры, которые завершают образ.

Первым САПРом для профессионального и любительского пользования стал AutoCAD. Со временем стали появляться его качественные аналоги и второсортные подделки. Сводный список софтов мы приведем ниже, сейчас ограничимся указанием на очень удобную для 3D моделирования программу – ZWCAD Professional.

Она не уступает «Автокаду» в функционале, но существенно отличается по стоимости, которая у популярного бренда выше. Это разработка компании ZWSOFT, которая поддерживает свои позиции на рынке ПО с 1993 года и реализует свои продукты более чем в 80 странах мира. В 2017 году появилась новая усовершенствованная версия «ЗВкада». Основное направление разработки – это трехмерное конструирование. Которое, кстати, применяется не только в индустрии развлечения, но и здравоохранении.


Визуализация в медицине

Она развивается в двух основных направлениях:

    точечная или комплексная томография;

    конструирование и создание протезов.

Современные 3D-сканирования позволяют обнаружить дефекты органов и тканей, которые скрыты при простом рентгене или УЗИ. Появление таких технологий сделало возможным определение заболевания в тех ситуациях, когда ранее проводились диагностические операции. Широкое распространение они приобрели в стоматологии и челюстно-лицевой хирургии. Для удобства обращения с новшеством больницы не ограничиваются компьютерными макетами, а приобретают принтеры для объемной печати.

Воплощенный в жизнь результат томографии может стать основой для создания импланта, например, зуба, который будет идеально подходить по размерам пациенту. В более сложном варианте технология помогает смоделировать протез конечности, слуховой аппарат, вены, нервы и даже искусственный сердечный клапан. Активно развивается биопечать – в ней вместо красок используются живые человеческие клетки. Но первый этап конструирования остается за компьютерными 3D программами. Здесь, как и при построении мультипликационных героев, используется полигональное моделирование. Искривление пластин показывает дефекты тканей. Воздействие на фрагменты позволит создать объемную фигуру идеального импланта, а вращение и передвижение частей покажет, как будет двигаться протезированная рука.

Главными пользователями являются инженеры, электрики, строители, работники дорожных служб – специалисты технической направленности. Их инструмент – это твердотельные или полые конструкции, обладающие математически точными параметрами, расчетными данными и реальной направленностью на работу. Поэтому, особенно важным для этой категории пользователей является не внешний вид модели, а возможность применения формул, работы с ними, срезовые чертежи, графика, а также проверка всего механизма на любом этапе разработки. Таким образом, цель проектировщика – это не только визуализация объекта, но, в большей степени, измеримая и рабочая информация о нем.


Работа в CAD (русскоязычная аббревиатура – САПР) предполагает профильное образование. Она будет эффективна, когда специалист не только видит образ, но знает материал, с которым ведется макет, особенности использования изделия и многие другие нюансы. Поэтому программы разряда ZWCAD с широким спектром действий и большим количеством инструментов, компании заказывают комплектами, чтобы обеспечить ПО весь отдел. Их же устанавливают на компьютеры студентов технических и архитектурных ВУЗов, чтобы будущие специалисты сразу конструировали в удобной и многофункциональной среде. Ориентируясь не только на индивидуального покупателя, но и на массовые поставки, ZWSOFT разработал гибкую политику лицензирования и существенно снизил цены на серийные закупки.

При работе в Системах Автоматизированного Проектирования инженер получает электронно-геометрическую модель. Что это такое в объемном 3D моделировании поможет понять список действий, который с ней можно совершить:

    Выполнить чертежи любого среза, в любом изображении под выбранным углом. Таким образом необходим один макет вместо массы разрозненных графиков. Поэтому с одним файлом, используя разные слои, могут одновременно работать разные специалисты, и даже разные отделы.

    Подогнать параметры всего изделия, изменив ввод одной данной величины.

    Производить расчеты любого показателя или коэффициента. Как в статичном положении, так и в прогнозируемом движении.

    Написать пакет для компьютерного управления станком или другим техническим оборудованием (ЧПУ).

    Использовать 3D-принтер и воссоздать объемную модель для презентации или показательного конструирования.Что такое план 3-д моделирования

    Каждая работа не обходится без алгоритма действий. Часто последовательность условна, особенно в творческих профессиях, однако даже там конструирование объекта происходит по следующим этапам:


    4. Анимация, если она необходима. Если это статичный объект, то возможно показать, как он приходит во взаимодействие со сторонними элементами. На этом этапе дополнительно можно рассчитать трение, КПД и другие коэффициенты.

    5. Устранение мелких недостатков и визуализация – вывод итогового объекта.

    6. Дополнительным этапом может быть распечатка на 3Д-принтере.

    История объемного моделирования развивается на наших глазах. Это технология будущего. Работать в формате 3D сейчас удобно, интересно и востребовано. Главное, выбрать подходящую программу для наиболее эффективного проектирования.

3D – это сокращение от слова "трёхмерный" (three-dimensional). Объекты в реальном мире имеют три измерения; например, мы можем измерить длину, ширину и высоту объекта. Если мы посмотрим на объекты в реальном мире, то легко сможем оценить их ширину и высоту (двухмерный вид объекта), но мы также можем воспринимать глубину объекта и расстояние до него.

Мы смотрим на мир двумя глазами. Поскольку глаза находятся не в одном месте, а немного разнесены друг от друга, каждый из них получает немного отличающуюся перспективу на объект. Обычно две картинки совмещаются мозгом в одну, но если вы закроете один глаз, то получите как раз ту картинку, которую воспринимает другой глаз. Обратите внимание, насколько различаются перспективы близко расположенных объектов для каждого глаза.

Кинотехногия 3D - технология формирования псевдообъемного изображения для усиления эффекта присутствия на месте событий, разворачивающихся на экране. Для съемки используется специальная 3D-видеокамера с двумя объективами, расположенными друг относительно друга на расстоянии человеческих глаз или чуть шире. Соответственно, когда такая камера фиксирует реальность, каждый ее объектив смотрит на мир под своим углом. После монтажа и обработки «двуглазый» сигнал готов к воспроизведению.

Но экран-то у нас один! И вот тут в дело вступают 3D-очки. Стереоскопическое 3D-видео содержит синхронизированные по времени два канала видео (по одному для каждого глаза). Чтобы смотреть 3D-видео, требуется технология отображения и 3D-очки, которые будут гарантировать, что левый глаз будет получать видео для левого глаза, а правый - для правого.

3D-очки: одна линза у которых синяя, а вторая - красная. Эти очки обеспечивают анаглифический способ просмотра 3D-картинки. Анаглифические изображения создаются с помощью цветовых фильтров, которые удаляют часть видимого спектра из картинки, предназначенной для каждого глаза. При просмотре такой картинки через цветовые фильтры в 3D-очках, каждый глаз получает только ту часть цветового спектра, которая не отфильтровывается линзой. А человеческий мозг «сводит» все вместе в трехмерное изображение.

Поскольку в кино происходит постоянное движение - «сдвоенные» картинки движутся, и создается эффект трехмерного передвижения объектов в пространстве.

И мы видим, как рука героя протягивается прямо к нам, приближается и уже можно разглядеть каждую морщинку на коже... Это незабываемые впечатления, и ощутить их можно только в 3D-кино. Приходите в 3D клуб «Прометей» и зарядитесь эмоциями!




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top