Инфракрасное излучение: влияние на организм человека, действие лучей, их свойства, польза и вред, возможные последствия. Инфракрасный диапазон

Инфракрасное излучение: влияние на организм человека, действие лучей, их свойства, польза и вред, возможные последствия. Инфракрасный диапазон

Уильям Гершель впервые заметил, что за красным краем полученного с помощью призмы спектра Солнца есть невидимое излучение, вызывающее нагрев термометра. Это излучение стали позднее называть тепловым или инфракрасным.

Ближнее ИК-излучение очень похоже на видимый свет и регистрируется такими же инструментами. В среднем и дальнем ИК используются болометры, отмечающие изменения.

В среднем ИК-диапазоне светит вся планета Земля и все предметы на ней, даже лед. За счет этого Земля не перегревается солнечным теплом. Но не всё ИК-излучение проходит через атмосферу. Есть лишь несколько окон прозрачности, остальное излучение поглощается углекислым газом, водяным паром, метаном, озоном и другими парниковыми газами, которые препятствуют быстрому остыванию Земли.

Из-за поглощения в атмосфере и теплового излучения предметов телескопы для среднего и дальнего ИК выносят в космос и охлаждают до температуры жидкого азота или даже гелия.

ИК-диапазон - один из самых интересных для астрономов. В нем светит космическая пыль, важная для образования звезд и эволюции галактик. ИК-излучение лучше видимого проходит через облака космической пыли и позволяет видеть объекты, недоступные наблюдению в других участках спектра.

Источники

Фрагмент одного из так называемых Глубоких полей «Хаббла» . В 1995 году космический телескоп в течение 10 суток накапливал свет, приходящий с одного участка неба. Это позволило увидеть чрезвычайно слабые галактики, расстояние до которых составляет до 13 млрд световых лет (менее одного миллиарда лет от Большого взрыва). Видимый свет от таких далеких объектов испытывает значительное красное смещение и становится инфракрасным.

Наблюдения велись в области, далекой от плоскости галактики, где видно относительно мало звезд. Поэтому большая часть зарегистрированных объектов - это галактики на разных стадиях эволюции.

Гигантская спиральная галактика, обозначаемая также как M104, расположена в скоплении галактик в созвездии Девы и видна нам почти с ребра. Она обладает огромным центральным балджем (шарообразное утолщение в центре галактики) и содержит около 800 млрд звезд - в 2-3 раза больше, чем Млечный Путь.

В центре галактики находится сверхмассивная черная дыра с массой около миллиарда масс Солнца. Это определено по скоростям движения звезд вблизи центра галактики. В инфракрасном диапазоне в галактике отчетливо просматривается кольцо газа и пыли, в котором активно рождаются звезды.

Приемники

Главное зеркало диаметром 85 см изготовлено из бериллия и охлаждается до температуры 5,5 К для снижения собственного инфракрасного излучения зеркала.

Телескоп был запущен в августе 2003 года по программе четырех великих обсерваторий NASA , включающей:

  • гамма-обсерваторию «Комптон» (1991–2000, 20 кэВ -30 ГэВ ), см. Небо в гамма-лучах с энергией 100 МэВ ,
  • рентгеновскую обсерваторию «Чандра» (1999, 100 эВ -10 кэВ ),
  • космический телескоп «Хаббл» (1990, 100–2100 нм ),
  • инфракрасный телескоп «Спитцер» (2003, 3–180 мкм ).

Ожидается, что срок службы телескопа «Спитцер» составит около 5 лет. Свое название телескоп получил в честь астрофизика Лаймана Спитцера (1914–97), который в 1946 году, задолго до запуска первого спутника, опубликовал статью «Преимущества для астрономии внеземной обсерватории», а спустя 30 лет убедил NASA и американский Конгресс начать разработку космического телескопа «Хаббл».

Обзоры неба

Небо в ближнем инфракрасном диапазоне 1–4 мкм и в среднем инфракрасном диапазоне 25 мкм (COBE/DIRBE)

В ближнем инфракрасном диапазоне Галактика просматривается еще более отчетливо, чем в видимом.

А вот в среднем ИК-диапазоне Галактика едва видна. Наблюдениям сильно мешает пыль, находящаяся в Солнечной системе. Она расположена вдоль плоскости эклиптики, которая наклонена к плоскости Галактики под углом около 50 градусов.

Оба обзора получены инструментом DIRBE (Diffuse Infrared Background Experiment) на борту спутника COBE (Cosmic Background Explorer). В ходе этого эксперимента, начатого в 1989 году, были получены полные карты инфракрасной яркости неба в диапазоне от 1,25 до 240 мкм .

Земное применение

В основе прибора лежит электронно-оптический преобразователь (ЭОП), позволяющий значительно (от 100 до 50 тысяч раз) усиливать слабый видимый или инфракрасный свет.

Объектив создает изображение на фотокатоде, из которого, как и в случае ФЭУ , выбиваются электроны. Далее они разгоняются высоким напряжением (10–20 кВ ), фокусируются электронной оптикой (электромагнитным полем специально подобранной конфигурации) и падают на флуоресцентный экран, подобный телевизионному. На нем изображение рассматривают в окуляры.

Разгон фотоэлектронов дает возможность в условиях низкой освещенности использовать для получения изображения буквально каждый квант света, однако в полной темноте требуется подсветка. Чтобы не выдать присутствие наблюдателя, для этого пользуются прожектором ближнего ИК-диапазона (760–3000 нм ).

Существуют также приборы, которые улавливают собственное тепловое излучение предметов в среднем ИК-диапазоне (8–14 мкм ). Такие приборы называются тепловизорами, они позволяют заметить человека, животное или нагретый двигатель за счет их теплового контраста с окружающим фоном.

Вся энергия, потребляемая электрическим обогревателем, в конечном счете, переходит в тепло. Значительная часть тепла уносится воздухом, который соприкасается с горячей поверхностью, расширяется и поднимается вверх, так что обогревается в основном потолок.

Во избежание этого обогреватели снабжают вентиляторами, которые направляют теплый воздух, например, на ноги человека и способствуют перемешиванию воздуха в помещении. Но есть и другой способ передачи тепла окружающим предметам: инфракрасное излучение обогревателя. Оно тем сильнее, чем горячее поверхность и больше ее площадь.

Для увеличения площади радиаторы делают плоскими. Однако при этом температура поверхности не может быть высокой. В других моделях обогревателей используется спираль, разогреваемая до нескольких сотен градусов (красное каление), и вогнутый металлический рефлектор, который создает направленный поток инфракрасного излучения.

Различные достижения науки и техники широко используются в медицинской практике, как для диагностики, так и для терапии различных патологических состояний. На сегодняшний день даже в небольших поликлиниках есть ряд приборов, которые делают диагностику и лечение простыми, доступными и эффективными. Так медиками широко применяется инфракрасное излучение или инфракрасные лучи, которые были открыты еще более двухсот лет назад. Они обладают множеством качеств, и используются в лечебных и профилактических целях. Итак, темой нашего сегодняшнего разговора станет инфракрасное излучение в медицине, использование которого обсудим чуть более подробно.

Как влияет инфракрасное излучение на человека?

На сегодняшний день медики пришли к выводу, что инфракрасные лучи характеризуются довольно большим спектром действия. Они отлично активируют обменные процессы, способствуют расширению сосудов (среди которых и капилляры) и активизируют процессы капиллярного кровообращения. Также инфракрасное излучение характеризуется спазмолитическими качествами (может устранять спазмы) и нейтрализует болезненные ощущения. Подобный метод влияния на организм оказывает еще и выраженное противовоспалительное воздействие и способствует активации внутриклеточных реакций.

Если инфракрасные лучи применяются в умеренной дозировке, они характеризуются общеоздоровительными свойствами.

На сегодняшний день учеными разработано множество препаратов, которые широко применяют в физиотерапевтическом лечении. Однако стоит отметить, что неумеренное применение излучения в медицине, даже казалось бы безобидных инфракрасных лучей, вызывает ожоги и прочие негативные реакции в организме.

Как применяют инфракрасные лучи?

Так как инфракрасное излучение стимулирует расширение сосудов и ускорение кровотока, оно используется в медицинской практике для улучшения и активации кровообращения. При обращении коротких инфракрасных лучей на кожу, происходит раздражение ее рецепторов, из-за чего гипоталамус подает сигнал о необходимости расслабления гладким мышцам, расположенным в кровеносных сосудах. Благодаря этому происходит расширение капилляров, вен и артерий, также ускоряется кровоток.

Инфракрасное излучение стимулирует активацию метаболизма на клеточном уровне и помогает на порядок оптимизировать течение процессов нейрорегуляции.

Применение инфракрасного излучения в медицине положительно сказывается на общем состоянии иммунитета. Активная выработка макрофагоцитов приводит к ускорению фагоцитоза, другими словами защитные реакции организма усиливаются на клеточном и жидкостном уровнях. Параллельно стимулируется выработка аминокислот, также усиленно вырабатываются ферменты и питательные вещества.

Инфракрасные лучи применяются в медицине в качестве отличного обеззараживающего средства. Их воздействие на организм приводит к гибели ряда бактерий, а также к нейтрализации значительного количества агрессивных веществ.

В каких случаях применяют инфракрасные лучи в медицине?

Инфракрасную терапию применяют как составляющую часть комплексного лечения. Она позволяет справиться с сильными болями, уменьшая степень их выраженности и даже устраняя болевой синдром. Такое воздействие приводит к восстановлению водно-солевого баланса, к улучшению процессов памяти. Инфракрасное лечение позволяет достичь лимфодренажного эффекта, нормализовать кровообращение (и в головном мозгу) и насыщение кровью тканей. Также такая терапия помогает нормализовать давление, ускорить выведение токсинов и солей тяжелых металлов, ускорить синтез эндорфинов и мелатонина. Еще ее проведение активизирует выработку гормонов.

Инфракрасное излучение помогает уничтожить ряд патогенных организмов, в том числе и грибковых, а также подавить рост и активность раковых клеточек. Подобное воздействие характеризуется противоядерными качествами и стимулирует работу и восстановление иммунитета.

При терапии инфракрасными лучами достигается дезодорирующий эффект, устраняется гипертонус и чрезмерное напряжение мышц. Такое лечение помогает избавиться от эмоционального напряжения, нормализовать сон и оптимизировать функции внутренних органов.

Болезни, которые лечат инфракрасным излучением

Инфракрасные лучи помогают справиться с рядом недугов дыхательной системы: с пневмонией, гриппом и бронхиальной астмой. Они могут применяться в коррекции онкологических заболеваний и аденомы. Такая терапия способствует устранению спаек, лечению язвенных поражений ЖКТ и эпидемического паротита.

Инфракрасное излучение помогает справиться с ожирением, варикозным расширением вен, отложениями солей. Его применяют для устранения шпор, натоптышей, мозолей, плохо заживающих ран и целого ряда кожных заболеваний. Медики используют свойства инфракрасных лучей в терапии ожогов, обморожений и пролежней.

Еще такое воздействие способствует терапии сосудистых недугов, болезней периферической нервной системы и паралича.

Активация обменных процессов и нормализация кровотока при терапии инфракрасными лучами помогает органам и тканям поскорее восстановиться и вернуться к полноценной деятельности. А систематическое и умеренное влияние позволяет повысить тканевую регенерацию, устранить воспаления, защититься от инфекций и повысить местную сопротивляемость.

На сегодняшний день аппараты инфракрасного излучения находятся практически в каждой поликлинике в физиотерапевтическом кабинете.

В невидимой области электромагнитного спектра, которая начинается за видимым красным светом и заканчивается перед микроволновым излучением между частотами 10 12 и 5∙10 14 Гц (или находится в диапазоне длин волн 1-750 нм). Название происходит от латинского слова infra и означает «ниже красного».

Применение инфракрасных лучей разнообразно. Они используются для визуализации объектов в темноте или в дыму, отопления саун и подогрева крыльев воздушных судов для защиты от обледенения, в ближней связи и при проведении спектроскопического анализа органических соединений.

Открытие

Инфракрасные лучи были обнаружены в 1800 г. британским музыкантом и астрономом-любителем немецкого происхождения Уильямом Гершелем. Он с помощью призмы разделил солнечный свет на составляющие его компоненты и за красной частью спектра с помощью термометра зарегистрировал увеличение температуры.

ИК-излучение и тепло

Инфракрасное излучение часто называют тепловым. Следует, однако, отметить, что оно является лишь его следствием. Тепло - это мера поступательной энергии (энергии движения) атомов и молекул вещества. «Температурные» датчики фактически измеряют не тепло, а только различия в ИК-излучении различных объектов.

Многие учителя физики инфракрасным лучам традиционно приписывают всю тепловую радиацию Солнца. Но это не совсем так. С видимым солнечным светом поступает 50% всего тепла, и электромагнитные волны любой частоты при достаточной интенсивности могут вызвать нагрев. Однако справедливо будет сказать, что при комнатной температуре объекты выделяют тепло в основном в полосе среднего инфракрасного диапазона.

ИК-излучение поглощается и испускается вращениями и вибрациями химически связанных атомов или их групп и, следовательно, многими видами материалов. Например, прозрачное для видимого света оконное стекло ИК-радиацию поглощает. Инфракрасные лучи в значительной степени абсорбируются водой и атмосферой. Хотя они и невидимы для глаз, их можно ощутить кожей.

Земля как источник инфракрасного излучения

Поверхность нашей планеты и облака поглощают солнечную энергию, большую часть которой в виде ИК-радиации отдают в атмосферу. Определенные вещества в ней, в основном пар и капли воды, а также метан, углекислый газ, оксид азота, хлорфторуглероды и гексафторид серы, поглощают в инфракрасной области спектра и переизлучают во всех направлениях, в том числе на Землю. Поэтому из-за парникового эффекта земная атмосфера и поверхность намного теплее, чем если бы вещества, поглощающие ИК-лучи, в воздухе отсутствовали.

Это излучение играет важную роль в теплопередаче и является неотъемлемой частью так называемого парникового эффекта. В глобальном масштабе влияние инфракрасных лучей распространяется на радиационный баланс Земли и затрагивает почти всю биосферную активность. Практически каждый объект на поверхности нашей планеты испускает электромагнитное излучение в основном в этой части спектра.

Области ИК-диапазона

ИК-диапазон часто разделяется на более узкие участки спектра. Немецкий институт стандартов DIN определил такие области длин волн инфракрасных лучей:

  • ближний (0,75-1,4 мкм), обычно используемый в волоконно-оптической связи;
  • коротковолновой (1,4-3 мкм), начиная с которого значительно возрастает поглощение ИК-излучения водой;
  • средневолновой, также называемый промежуточным (3-8 мкм);
  • длинноволновый (8-15 мкм);
  • дальний (15-1000 мкм).

Однако эта схема классификации не используется повсеместно. Например, в некоторых исследованиях указываются следующие диапазоны: ближний (0,75-5 мкм), средний (5-30 мкм) и длинный (30-1000 мкм). Длины волн, используемые в телекоммуникации, подразделяются на отдельные полосы из-за ограничений детекторов, усилителей и источников.

Общая система обозначений оправдана реакциями человека на инфракрасные лучи. Ближняя ИК-область наиболее близка к длине волны, видимой человеческим глазом. Среднее и дальнее ИК-излучение постепенно удаляются от видимой части спектра. Другие определения следуют различным физическим механизмам (таким как пики эмиссии и поглощение воды), а самые новые основаны на чувствительности используемых детекторов. Например, обычные кремниевые сенсоры чувствительны в области около 1050 нм, а арсенид индий-галлия - в диапазоне от 950 нм до 1700 и 2200 нм.

Четкая граница между инфракрасным и видимым светом не определена. Глаз человека значительно менее чувствителен к красному свету, превышающему длину волны 700 нм, однако интенсивное свечение (лазера) можно видеть примерно до 780 нм. Начало ИК-диапазона определяется в разных стандартах по-разному - где-то между этими значениями. Обычно это 750 нм. Поэтому видимые инфракрасные лучи возможны в диапазоне 750-780 нм.

Обозначения в системах связи

Оптическая связь в ближней ИК-области технически подразделяется на ряд полос частот. Это связано с различными поглощающими и передающими материалами (волокнами) и детекторами. К ним относятся:

  • О-диапазон 1,260-1,360 нм.
  • Е-диапазон 1,360-1,460 нм.
  • S-диапазон 1,460-1,530 нм.
  • C-диапазон 1,530-1,565 нм.
  • L-диапазон 1,565-1,625 нм.
  • U-диапазон 1,625-1,675 нм.

Термография

Термография, или тепловидение - это тип инфракрасного изображения объектов. Поскольку все тела излучают в ИК-диапазоне, а интенсивность радиации увеличивается с температурой, для ее обнаружения и получения снимков можно использовать специализированные камеры с ИК-датчиками. В случае очень горячих объектов в ближней инфракрасной или видимой области, этот метод называется пирометрией.

Термография не зависит от освещения видимым светом. Следовательно, можно «видеть» окружающую среду даже в темноте. В частности, теплые предметы, в том числе люди и теплокровные животные, хорошо выделяются на более холодном фоне. Инфракрасная фотография ландшафта улучшает отображение объектов в зависимости от их теплоотдачи: голубое небо и вода кажутся почти черными, а зеленая листва и кожа ярко проявляются.

Исторически термография широко использовалась военными и службами безопасности. Кроме того, она находит множество других применений. Например, пожарные используют ее, чтобы видеть сквозь дым, находить людей и локализовать горячие точки во время пожара. Термография может выявить патологический рост тканей и дефекты в электронных системах и схемах из-за их повышенного выделения тепла. Электрики, обслуживающие линии электропередач, могут обнаружить перегревающиеся соединения и детали, что сигнализирует о нарушении их работы, и устранить потенциальную опасность. При нарушении теплоизоляции специалисты-строители могут увидеть утечки тепла и повысить эффективность систем охлаждения или обогрева. В некоторых автомобилях высокого класса тепловизоры устанавливаются для помощи водителю. С помощью термографических изображений можно контролировать некоторые физиологические реакции у людей и теплокровных животных.

Внешний вид и способ работы современной термографической камеры не отличаются от таковых у обычной видеокамеры. Возможность видеть в инфракрасном спектре является настолько полезной функцией, что возможность записи изображений часто является опциональной, и модуль записи не всегда доступен.

Другие изображения

В ИК-фотографии ближний инфракрасный диапазон захватывается с помощью специальных фильтров. Цифровые фотоаппараты, как правило, блокируют ИК-излучение. Однако дешевые камеры, у которых нет соответствующих фильтров, способны «видеть» в ближнем ИК-диапазоне. При этом обычно невидимый свет выглядит ярко-белым. Особенно это заметно во время съемки вблизи освещенных инфракрасных объектов (например, лампы), где возникающие помехи делают снимок блеклым.

Также стоит упомянуть Т-лучевую визуализацию, которая представляет собой получение изображения в дальнем терагерцовом диапазоне. Отсутствие ярких источников делает такие снимки технически более сложными, чем большинство других методов ИК-визуализации.

Светодиоды и лазеры

Искусственные источники инфракрасного излучения включают, помимо горячих объектов, светодиоды и лазеры. Первые представляют собой небольшие недорогие оптоэлектронные устройства, изготовленные из таких полупроводниковых материалов, как арсенид галлия. Они используются в качестве оптоизоляторов и в качестве источников света в некоторых системах связи на основе волоконной оптики. Мощные ИК-лазеры с оптической накачкой работают на основе двуокиси и окиси углерода. Они используются для инициации и изменения химических реакций и разделения изотопов. Кроме того, они применяются в лидарных системах определения дистанции до объекта. Также источники инфракрасного излучения используются в дальномерах автоматических самофокусирующих камер, охранной сигнализации и оптических приборах ночного видения.

ИК-приемники

К приборам обнаружения ИК-излучения относятся термочувствительные устройства, такие как термопарные детекторы, болометры (некоторые из них охлаждаются до температур, близких к абсолютному нулю, чтобы снизить помехи от самого детектора), фотогальванические элементы и фотопроводники. Последние изготавливаются из полупроводниковых материалов (например, кремния и сульфида свинца), электрическая проводимость которых увеличивается при воздействии инфракрасных лучей.

Обогрев

Инфракрасное излучение используется для нагрева - например, для отопления саун и удаления льда с крыльев самолетов. Кроме того, оно все чаще применяется для плавления асфальта во время укладки новых дорог или ремонта поврежденных участков. ИК-излучение может использоваться при приготовлении и подогреве пищи.

Связь

ИК-длины волн применяются для передачи данных на небольшие расстояния, например, между компьютерной периферией и персональными цифровыми помощниками. Эти устройства обычно соответствуют стандартам IrDA.

ИК-связь обычно используется внутри помещений в районах с высокой плотностью населения. Это наиболее распространенный способ дистанционного управления устройствами. Свойства инфракрасных лучей не позволяют им проникать сквозь стены, и поэтому они не взаимодействуют с техникой в соседних помещениях. Кроме того, ИК-лазеры используются в качестве источников света в оптоволоконных системах связи.

Спектроскопия

Инфракрасная радиационная спектроскопия - это технология, используемая для определения структур и составов (главным образом) органических соединений путем изучения пропускания ИК-излучения через образцы. Она основана на свойствах веществ поглощать определенные его частоты, которые зависят от растяжения и изгиба внутри молекул образца.

Характеристики инфракрасного поглощения и излучения молекул и материалов дают важную информацию о размере, форме и химической связи молекул, атомов и ионов в твердых телах. Энергии вращения и вибрации квантуются во всех системах. ИК-излучение энергии hν, испускаемое или поглощаемое данной молекулой или веществом, является мерой разности некоторых внутренних энергетических состояний. Они, в свою очередь, определяются атомным весом и молекулярными связями. По этой причине инфракрасная спектроскопия является мощным инструментом определения внутренней структуры молекул и веществ или, когда такая информация уже известна и табулирована, их количества. ИК-методы спектроскопии часто используются для определения состава и, следовательно, происхождения и возраста археологических образцов, а также для обнаружения подделок произведений искусства и других предметов, которые при осмотре под видимым светом напоминают оригиналы.

Польза и вред инфракрасных лучей

Длинноволновое ИК-излучение применяется в медицине с целью:

  • нормализации артериального давления путем стимуляции кровообращения;
  • очищения организма от солей тяжелых металлов и токсинов;
  • улучшения кровообращения мозга и памяти;
  • нормализации гормонального фона;
  • поддержания водно-солевого баланса;
  • ограничения распространения грибков и микробов;
  • обезболивания;
  • снятия воспаления;
  • укрепления иммунитета.

Вместе с тем ИК-излучение может нанести вред при острых гнойных заболеваниях, кровотечениях, острых воспалениях, болезнях крови, злокачественных опухолях. Неконтролируемое продолжительное воздействие ведет к покраснению кожи, ожогам, дерматиту, тепловому удару. Коротковолновые ИК-лучи опасны для глаз - возможно развитие светобоязни, катаракты, нарушений зрения. Поэтому для отопления должны применяться исключительно источники длинноволнового излучения.

Что представляет собой инфракрасное излучение? Определение гласит, что инфракрасными лучами является электромагнитное излучение, которое подчиняется оптическим законам и имеет природу видимого света. Инфракрасные лучи имеют спектральную зону, находящуюся между красным видимым светом и коротковолновым радиоизлучением. Для инфракрасной области спектра имеется разделение на коротковолновые, средневолновые и длинноволновые. Обогревающий эффект от таких лучей высокий. Принята аббревиатура для инфракрасных излучения — ИК.

ИК-излучение

Производители сообщают разную информацию об обогревающих приборах, сконструированных по принципу рассматриваемого излучения. На одних может быть указано, что прибор инфракрасный, на другом — что он длинноволновый или темный. Все это на практике относится к инфракрасному излучению, длинноволновые обогреватели обладают наименьшей температурой излучающей поверхности, и выделяются волны в большей массе в длинноволновой зоне спектра. Они же получили наименование темных, так как при температуре они не отдают света и не сияют, как в других случаях. У средневолновых обогревателей температура поверхностей более высокая, и они получили название серых. К светлым относится коротковолновый прибор.

Оптические характеристики вещества в инфракрасных областях спектра имеют отличия от оптического свойства в обычной повседневности. Обогревательные приборы, которые используются человеком каждый день, отдают инфракрасные лучи, но вы их не видите. Вся разница в длине волны, она варьируется. Обычный радиатор отдает лучи, именно таким образом происходит нагрев в комнате. Волны инфракрасного излучения присутствуют в жизни человека естественным путем, солнце отдает именно их.

Инфракрасное излучение относится к разряду электромагнитных, то есть глазами его не увидеть. Длина волны находится в диапазоне от 1 миллиметра до 0,7 микрометра. Самым большим источником ик-лучей является солнце.

ИК-лучи для отопления

Наличие отопления, основанное на этой технологии, позволяет избавиться от недостатков конвекционной системы, которая связана с циркуляцией потока воздуха в помещениях. Конвекция поднимает и переносит пыль, мусор, создает сквозняк. Если поставить электрический инфракрасный обогреватель, то он будет работать по принципу солнечных лучей, эффект будет как от солнечного тепла в прохладную погоду.

Инфракрасная волна является формой энергии, это естественный механизм, позаимствованный в природе. Эти лучи способны нагревать не только предметы, но и само воздушное пространство. Волны пронизывают воздушные слои и обогревают предметы и живые ткани. Локализация источника рассматриваемого излучения не так важна, если прибор стоит на потолке, до пола греющие лучи будут прекрасно доходить. Важно, что инфракрасное излучение позволяет оставлять воздух влажным, оно не высушивает его, как это делают другие виды отопительных приборов. Производительность приборов на основе инфракрасного излучения крайне высокая.

Инфракрасное излучение не требует больших энергетических затрат, поэтому возникает экономия для бытового использования данной разработки. Ик-лучи подходят для работы на больших пространствах, главное, верно выбрать длину лучей и настроить правильно приборы.

Вред и польза инфракрасного излучения

Длинные инфракрасные лучи, попадающие на кожу, вызывают реакцию нервных рецепторов. Это обеспечивает наличие тепла. Поэтому во многих источниках инфракрасное излучение получает название теплового. Большая часть излучаемого оказывается поглощена влажностью, которая содержится в верхнем слое кожного покрова человека. Поэтому повышается температура кожи, и за счет этого происходит обогрев всего тела.

Бытует мнение, что ик-излучение приносит вред. Это не так.

Исследования показывают, что длинноволновые излучения безопасны для организма, более того, от них есть польза.

Они усиливают иммунитет, стимулируют регенерацию и улучшение состояния внутренних органов. Эти лучи с длиной 9,6 мкм используются в медицинской практике с лечебными целями.

Коротковолновое ик-излучение работает иначе. Оно проникает глубоко в ткани и греет внутренние органы, минуя кожный покров. Если облучать кожу такими лучами, то капиллярная сетка расширяется, кожа краснеет, и могут появиться признаки ожога. Для глаз такие лучи опасны, они приводят к образованию катаракты, нарушают водно-солевой баланс, провоцируют судороги.

Тепловой удар человек получает из-за коротковолнового излучения. Если повысить температуру головного мозга хотя бы на градус, то уже появляются признаки удара или отравления:

  • тошнота;
  • частый пульс;
  • затемнение в глазах.

Если перегрев происходит на два и более градуса, то развивается менингит, который опасен для жизни.

Интенсивность инфракрасного излучения зависит от некоторых факторов. Важно расстояние до нахождения источников тепла и показатель температурного режима. Длинноволновое инфракрасное излучение важно в жизнедеятельности, и без него обойтись нельзя. Вред может быть только тогда, когда длина волны неправильная, и время, которое она воздействует на человека, большое.

Как обезопасить человека от вреда инфракрасного излучения?

Не все инфракрасные волны вредны. Следует опасаться коротковолновой инфракрасной энергии. Где она встречается в повседневной жизни? Нужно избегать тел с температурой выше 100 градусов. К этой категории относятся сталеплавильное оборудование, электродуговая печь. На производствах сотрудники носят специально разработанное обмундирование, оно обладает защитным экраном.

Самым полезным инфракрасным обогревающим средством являлась русская печь, тепло от нее было лечебным и полезным. Однако сейчас никто такими приспособлениями не пользуется. Инфракрасные обогреватели прочно вошли в обиход, а инфракрасные волны используются широко в промышленности.

Если спираль, отдающая тепло, в инфракрасном приборе защищена теплоизолятором, то излучение будет мягким и длинноволновым, а это безопасно. Если у прибора открытый нагревательный элемент, то инфракрасное излучение будет жестким, коротковолновым, и это опасно для здоровья.

Для того чтобы разобраться в конструкции прибора, нужно изучить технический паспорт. Там будет информация об инфракрасных лучах, используемых в конкретном случае. Обращайте внимание, какова длина волны.

Не всегда однозначно вредно инфракрасное излучение, испускают опасность только открытые источники, короткие лучи и длительное нахождение под ними.

Следует беречь глаза от источника волн, при появлении дискомфорта уходить из-под влияния ИК-лучей. Если на коже появляется непривычная сухость, значит, лучи сушат липидный слой, а это очень хорошо.

Инфракрасное излучение в полезных диапазонах используется в качестве лечения, методы физиотерапии основываются на работе с лучами и электродами. Однако все воздействие проводится под наблюдением специалистов, самостоятельно лечиться инфракрасными приборами не стоит. Время действия должно быть строго определено медицинскими показаниями, нужно исходить из целей и задач лечения.

Считается, что инфракрасное излучение неблагоприятно для систематического воздействия на маленьких детей, поэтому желательно тщательно выбирать обогревательные приборы для спальни и детских комнат. Потребуется помощь специалистов, чтобы настроить безопасную и эффективную инфракрасную сетку в квартире или доме.

Не стоит отказываться от современных технологий из-за предрассудков по незнанию.

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ (ИК-излучение, ИК-лучи), электромагнитное излучение с длинами волн λ от около 0,74 мкм до около 1-2 мм, то есть излучение, занимающее спектральную область между красным концом видимого излучения и коротковолновым (субмиллиметровым) радиоизлучением. Инфракрасное излучение относится к оптическому излучению, однако в отличие от видимого излучения оно не воспринимается человеческим глазом. Взаимодействуя с поверхностью тел, оно нагревает их, поэтому часто его называют тепловым излучением. Условно область инфракрасного излучения разделяют на ближнюю (λ = 0,74-2,5 мкм), среднюю (2,5-50 мкм) и далёкую (50-2000 мкм). Инфракрасное излучение открыто У. Гершелем (1800) и независимо У. Волластоном (1802).

Спектры инфракрасного излучения могут быть линейчатыми (атомные спектры), непрерывными (спектры конденсированных сред) или полосатыми (молекулярные спектры). Оптические свойства (коэффициенты пропускания, отражения, преломления и т.п.) веществ в инфракрасном излучении, как правило, значительно отличаются от соответствующих свойств в видимом или ультрафиолетовом излучении. Многие вещества, прозрачные для видимого света, непрозрачны для инфракрасного излучения определённых длин волн, и наоборот. Так, слой воды толщиной в несколько сантиметров непрозрачен для инфракрасного излучения с λ > 1 мкм, поэтому вода часто используется в качестве теплозащитного фильтра. Пластинки из Ge и Si, непрозрачные для видимого излучения, прозрачны для инфракрасного излучения определённых длин волн, чёрная бумага прозрачна в далёкой ИК-области (такие вещества используют в качестве светофильтров при выделении инфракрасного излучения).

Отражательная способность большинства металлов в инфракрасном излучении значительно выше, чем в видимом излучении, и возрастает с увеличением длины волны (смотри Металлооптика). Так, отражение поверхностей Al, Au, Ag, Cu инфракрасного излучения с λ = 10 мкм достигает 98%. Жидкие и твёрдые неметаллические вещества обладают селективным (зависящим от длины волны) отражением инфракрасного излучения, положение максимумов которого зависит от их химического состава.

Проходя через земную атмосферу, инфракрасное излучение ослабляется вследствие рассеяния и поглощения атомами и молекулами воздуха. Азот и кислород не поглощают инфракрасное излучение и ослабляют его лишь в результате рассеяния, которое для инфракрасного излучения значительно меньше, чем для видимого света. Молекулы Н 2 О, О 2 , О 3 и др., присутствующие в атмосфере, селективно (избирательно) поглощают инфракрасное излучение, причём особенно сильно поглощают инфракрасное излучение пары воды. Полосы поглощения Н 2 О наблюдаются во всей ИК-области спектра, а полосы СО 2 - в её средней части. В приземных слоях атмосферы имеется лишь небольшое число «окон прозрачности» для инфракрасного излучения. Наличие в атмосфере частиц дыма, пыли, мелких капель воды приводит к дополнительному ослаблению инфракрасного излучения в результате его рассеяния на этих частицах. При малых размерах частиц инфракрасное излучение рассеивается меньше, чем видимое излучение, что используют в ИК-фотографии.

Источники инфракрасного излучения. Мощный естественный источник инфракрасного излучения - Солнце, около 50% его излучения лежит в ИК-области. На инфракрасное излучение приходится от 70 до 80% энергии излучения ламп накаливания; его испускают электрическая дуга и различные газоразрядные лампы, все типы электрических обогревателей помещений. В научных исследованиях источниками инфракрасного излучения служат ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др. Излучение некоторых типов лазеров также лежит в ИК-области спектра (например, длина волны излучения лазеров на неодимовом стекле составляет 1,06 мкм, гелий-неоновых лазеров - 1,15 и 3,39 мкм, СО 2 -лазеров - 10,6 мкм).

Приёмники инфракрасного излучения основаны на преобразовании энергии излучения в другие виды энергии, доступные для измерения. В тепловых приёмниках поглощённое инфракрасное излучение вызывает повышение температуры термочувствительного элемента, которое и регистрируется. В фотоэлектрических приёмниках поглощение инфракрасного излучения приводит к появлению или изменению силы электрического тока или напряжения. Фотоэлектрические приёмники (в отличие от тепловых) селективны, то есть чувствительны лишь к излучению определённой области спектра. Фоторегистрация инфракрасного излучения осуществляется с помощью специальных фотоэмульсий, однако они чувствительны к нему только для длин волн до 1,2 мкм.

Применение инфракрасного излучения. ИК-излучение широко применяют в научных исследованиях и для решения различных практических задач. Спектры испускания и поглощения молекул и твёрдых тел лежат в ИК-области, их изучают в инфракрасной спектроскопии, в структурных задачах, а также используют в качественном и количественном спектральном анализе. В далёкой ИК-области лежит излучение, возникающее при переходах между зеемановскими подуровнями атомов, ИК-спектры атомов позволяют изучать структуру их электронных оболочек. Фотографии одного и того же объекта, полученные в видимом и инфракрасном диапазонах, вследствие различия коэффициентов отражения, пропускания и рассеяния могут значительно различаться; на ИК-фотографии можно увидеть детали, невидимые на обычной фотографии.

В промышленности инфракрасное излучение используют для сушки и нагрева материалов и изделий, в быту - для обогрева помещений. На основе фотокатодов, чувствительных к инфракрасному излучению, созданы электронно-оптические преобразователи, в которых не видимое глазом ИК-изображение объекта преобразуется в видимое. На основе таких преобразователей построены различные ночного видения приборы (бинокли, прицелы и т.п.), позволяющие в полной темноте обнаруживать объекты, вести наблюдение и прицеливание, облучая их инфракрасным излучением от специальных источников. При помощи высокочувствительных приёмников инфракрасного излучения осуществляют теплопеленгацию объектов по их собственному инфракрасному излучению и создают системы самонаведения на цель снарядов и ракет. ИК-локаторы и ИК-дальномеры позволяют обнаруживать в темноте предметы, температура которых выше температуры окружающей среды, и измерять расстояния до них. Мощное излучение ИК-лазеров используют в научных исследованиях, а также для осуществления наземной и космической связи, для лазерного зондирования атмосферы и т. д. Инфракрасное излучения используется для воспроизведения эталона метра.

Лит.: Шрайбер Г. Инфракрасные лучи в электронике. М., 2003; Тарасов В. В., Якушенков Ю. Г. Инфракрасные системы «смотрящего» типа. М., 2004.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top