Картографические проекции их виды и особенности. Картографические проекции и их классификация

Картографические проекции их виды и особенности. Картографические проекции и их классификация

При переходе от физической поверхности Земли к ее отображению на плоскости (на карте) выполняют две операции: проектирование земной поверхности с ее сложным рельефом на поверхность земного эллипсоида, размеры которого установлены посредством геодезических и астрономических измерений, и изображение поверхности эллипсоида на плоскости посредством одной из картографических проекций.
Картографическая проекция - определенный способ отображения поверхности эллипсоида на плоскости.
Отображение земной поверхности на плоскости производится различными способами. Самый простой из них - перспективный . Суть его заключается в проектировании изображения с поверхности модели Земли (глобуса, эллипсоида) на поверхность цилиндра или конуса с последующим разворотом в плоскость (цилиндрические, конические) или непосредственным проектированием сферического изображения на плоскость (азимутальные).
Одним из простых способов понимания того, как картографические проекции изменяют пространственные свойства, является визуализация проекции света сквозь Землю на поверхность, которая называется проекционной поверхностью.
Представьте себе, что поверхность Земли прозрачна, и на ней нанесена картографическая сетка. Оберните кусок бумаги вокруг Земли. Источник света в центре Земли отбросит тени от сетки координат на кусок бумаги. Вы можете теперь развернуть бумагу и положить ее на плоскость. Форма координатной сетки на плоской поверхности бумаги очень отличается от ее формы на поверхности Земли (рис. 5.1).

Рис. 5.1. Картографическая сетка географической системы координат, спроектированная на цилиндрическую поверхность

Проекция карты исказила картографическую сетку; объекты, расположенные у полюса, вытянуты.
Построение перспективным способом не требует использования законов математики. Обратите внимание на то, что в современной картографии картографические сетки строят аналитическим (математическим) способом. Его суть заключается в расчете положения узловых точек (точек пересечения меридианов и параллелей) картографической сетки. Расчет выполняется на основе решения системы уравнений, которые связывают географическую широту и географическую долготу узловых точек (φ, λ ) с их прямоугольными координатами (х, у ) на плоскости. Эта зависимость может быть выражена двумя уравнениями вида:

х = f 1 (φ, λ); (5.1)
у = f 2 (φ, λ), (5.2)

называемыми уравнениями картографических проекций. Они позволяют вычислять прямоугольные координаты х, у изображаемой точки по географическим координатам φ и λ . Число возможных функциональных зависимостей и, следовательно, проекций неограниченно. Необходимо лишь, чтобы каждая точка φ , λ эллипсоида изображалась на плоскости однозначно соответствующей точкой х, у и чтобы изображение было непрерывным.

5.2. ИСКАЖЕНИЯ

Разложить сфероид на плоскость нисколько не легче, чем расплющить кусок арбузной кожуры. При переходе на плоскость, как правило, искажаются углы, площади, формы и длины линий, поэтому для конкретных целей можно создать проекции, которые значительно уменьшат какой-либо один вид искажений, например, площадей. Картографическим искажением называют нарушение геометрических свойств участков земной поверхности и расположенных на них объектов при их изображении на плоскости .
Искажения всех видов тесно связаны между собой. Они находятся в такой зависимости, что уменьшение одного вида искажения сразу же влечет увеличение другого. При уменьшении искажений площадей увеличиваются искажения углов и т.д. Рис. 5.2 демонстрирует, как трехмерные объекты сжимаются для того, чтобы их можно было поместить на плоскую поверхность.

Рис. 5.2. Проектирование сферической поверхности на поверхность проекции

На различных картах искажения могут быть различных размеров: на крупномасштабных они практически неощутимы, но на мелкомасштабных они бывают очень велики.
В середине XIX века французским ученым Николя Аугустом Тиссо была дана общая теория искажений. В своей работе он предложил использовать специальные эллипсы искажений, которые представляют собой бесконечно малые эллипсы в любой точке карты, являющиеся отображением бесконечно малых окружностей в соответствующей точке на поверхности земного эллипсоида или шара. Эллипс становится окружностью в точке нулевых искажений. Изменение формы эллипса отражает степень искажения углов и расстояний, а размера - степень искажения площадей.

Рис. 5.3. Эллипс на карте (а ) и соответствующий ему круг на глобусе (б )

Эллипс искажений на карте может занимать различное положение относительно меридиана, проходящего через его центр. Ориентировка эллипса искажений на карте обычно определяется азимутом его большой полуоси . Угол между северным направлением меридиана, проходящего через центр эллипса искажений, и его ближайшей большой полуосью называется углом ориентировки эллипса искажений. На рис. 5.3, а этот угол обозначен буквой А 0 , а соответствующий ему угол на глобусе α 0 (рис. 5.3, б ).
Азимуты любого направления на карте и на глобусе всегда отсчитываются от северного направления меридиана по ходу часовой стрелки и могут иметь значения от 0 до 360°.
Любое произвольное направление (ОК ) на карте или на глобусе (О 0 К 0 ) может быть определено или азимутом данного направления (А - на карте, α - на глобусе) или углом между ближайшей к северному направлению меридиана большой полуосью и данным направлением (v - на карте, u - на глобусе).

5.2.1. Искажения длин

Искажение длин - базовое искажение. Остальные искажения из него логически вытекают. Искажение длин означает непостоянство масштаба плоского изображения, что проявляется в изменении масштаба от точки к точке, и даже в одной и той же точке в зависимости от направления.
Это означает, что на карте присутствует 2 вида масштаба:

  • главный масштаб (М);
  • частный масштаб .

Главным масштабом карты называют степень общего уменьшения земного шара до определенных размеров глобуса, с которого земная поверхность переносится на плоскость. Он позволяет судить об уменьшении длин отрезков при перенесении их с земного шара на глобус. Главный масштаб записывается под южной рамкой карты, но это не значит, что отрезок измеренный в любом месте карты будет соответствовать расстоянию на земной поверхности.
Масштаб в данной точке карты по данному направлению называют частным . Он определяется как отношение бесконечно малого отрезка на карте dl К к соответствующему ему отрезку на поверхности эллипсоида dl З . Отношение частного масштаба к главному, обозначаемое через μ , характеризует искажение длин

(5.3)

Для оценки отклонения частного масштаба от главного пользуются понятием увеличения масштаба (С ), определяемого отношением

(5.4)

Из формулы (5.4) следует, что:

  • при С = 1 частный масштаб равен главному масштабу (µ = M ), т. е. искажения длин в данной точке карты по дан ному направлению отсутствуют;
  • при С > 1 частный масштаб крупнее главного (µ > M );
  • при С < 1 частный масштаб мельче главного (µ < М ).

Например, если при главном масштабе карты 1: 1 000 000 увеличение масштаба С равно 1,2, то µ = 1,2/1 000 000 = 1/833 333, т. е. одному сантиметру на карте соответствует примерно 8,3 км на местности. Частный масштаб крупнее главного (величина дроби больше).
При изображении поверхности глобуса на плоскости частные масштабы численно будут больше или меньше главного масштаба. Если принять главный масштаб равным единице (М = 1), то частные масштабы численно будут больше или меньше единицы. В этом случае под частным масштабом, численно равным увеличению масштаба, следует понимать отношение бесконечно малого отрезка в данной точке карты по данному направлению к соответствующему бесконечно малому отрезку на глобусе:

(5.5)

Отклонение частного масштаба (µ ) от единицы определяет искажение длины в данной точке карты по данному направлению (V ):

V = µ - 1 (5.6)

Часто искажение длины выражают в процентах к единице, т. е. к главному масштабу, и называют относительным искажением длины :

q = 100(µ - 1) = V×100 (5.7)

Например, при µ = 1,2 искажение длины V = +0,2 или относительное искажение длины V = +20%. Это означает, что отрезок длиной 1 см , взятый на глобусе, изобразится на карте отрезком длиной 1,2 см .
Судить о наличии на карте искажения длин удобно путем сравнения величины отрезков меридианов между соседними параллелями. Если они повсеместно равны, то искажения длин по меридианам нет, если такого равенства нет (рис. 5.5 отрезки АВ и CD ), то искажение длин линий имеется.


Рис. 5.4. Часть карты восточного полушария с показом картографических искажений

Если карта отображает такую большую территорию, что на ней показаны и экватор 0º и параллель 60° широты, то нетрудно по ней установить, имеется ли искажение длин вдоль параллелей. Для этого достаточно сравнить длину отрезков экватора и параллели с широтой 60° между соседними меридианами. Известно, что параллель 60° широты в два раза короче экватора. Если таково же соотношение указанных отрезков на карте, то искажения длин по параллелям нет; в противном случае оно имеется.
Наибольший показатель искажения длин у данной точки (большая полуось эллипса искажений) обозначают латинской буквой а , а самый меньший (малая полуось эллипса искажений) - b . Взаимно перпендикулярные направления, по которым действуют наибольший и наименьший показатели искажения длин, называют главными направлениями .
Для оценки различных искажений на картах из всех частных масштабов наибольшее значение имеют частные масштабы по двум направлениям: по меридианам и по параллелям. Частный масштаб по меридиану принято обозначать буквой m , а частный масштаб по параллели - буквой n.
В пределах мелкомасштабных карт сравнительно небольших территорий (например, Украины) отклонения масштабов длин от указанного на карте масштаба невелики. Ошибки при измерении длин в этом случае не превышают 2 - 2,5% от измеряемой длины, и ими в работе со школьными картами можно пренебречь. К некоторым картам для приближенных измерений прилагается измерительная масштабная линейка, сопровождаемая пояснительным текстом.
На морских картах , построенных в проекции Меркатора и на которых локсодромия изображается прямой линией, не дается специального линейного масштаба. Его роль выполняют восточная и западная рамки карты, представляющие собой меридианы, разбитые на деления через 1′ по широте.
В морской навигации расстояния принято оценивать в морских милях. Морская миля - это средняя длина дуги меридиана в 1′ по широте. Она заключает в себе 1852 м . Таким образом, рамки морской карты фактически разбиты на отрезки равные одной морской миле. Определив по прямой расстояние между двумя точками на карте в минутах меридиана, получают действительное расстояние в морских милях по локсодромии.


Рис 5.5. Измерение расстояний по морской карте.

5.2.2. Искажения углов

Искажения углов логически вытекают из искажения длин. За характеристику искажений углов на карте принимают разность углов между направлениями на карте и соответствующими направлениями на поверхности эллипсоида.
За показатель искажения углов между линиями картографической сетки принимают величину отклонения их от 90° и обозначают его греческой буквой ε (эпсилон).
ε = Ө - 90°, (5.8)
где в Ө (тэта) - измеренный на карте угол между меридианом и параллелью.

На рисунке 5.4 обозначено, что угол Ө равен 115°, следовательно, ε = 25°.
В точке, где угол пересечения меридиана и параллели остается на карте прямым, углы между другими направлениями могут быть измененными на карте, поскольку в каждой данной точке величина искажения углов может изменяться с переменой направления.
За общий показатель искажения углов ω (омега) принимают наибольшее искажение угла в данной точке, равное разности его величины на карте и на поверхности земного эллипсоида (шара). При известны х показателях а и b величину ω определяют по формуле:

(5.9)

5.2.3. Искажения площадей

Искажения площадей логически вытекают из искажения длин. За характеристику искажения площадей принимают отклонение площади эллипса искажений от исходной площади на эллипсоиде .
Простой способ выявления искаженности этого вида состоит в сравнении площадей клеток картографической сетки, ограниченных одноименными параллелями: при равенстве площадей клеток искажения нет. Это имеет место, в частности, на карте полушария (рис. 4,4), на которой заштрихованные клетки различаются по форме, но имеют одинаковую площадь.
Показатель искажения площадей (р ) вычисляют как произведение наибольшего и наименьшего показателей искажения длин в данном месте карты
p = а×b (5.10)
Главные направления в данной точке карты могут совпадать с линиями картографической сетки, но могут с ними не совпадать. Тогда показатели а и b по известным m и n вычисляют по формулам:

(5.11)
(5.12)

Входящий в уравнения показатель искажения р узнают в этом случае по произведению:

p = m×n×cos ε , (5.13)

Где ε (эпсилон) - величина отклонения угла пересечения картографической сетки от 9 0°.

5.2.4. Искажения форм

Искажение форм состоит в том, что форма участка или занятой объектом территории на карте отлична от их формы на уровенной поверхности Земли. Наличие искажения этого вида на карте можно установить путем сопоставления формы клеток картографической сетки, расположенных на одной широте: если они одинаковы, то искажения нет. На рисунке 5.4 две заштрихованные клетки различием формы свидетельствуют о наличии искажения данного вида. Можно также выявить искаженность формы определенного объекта (материка, острова, моря) по соотношению его ширины и длины на анализируемой карте и на глобусе.
Показатель искажения форм (k) зависит от различия наибольшего (а ) и наименьшего (b ) показателей искажения длин в данном месте карты и выражается формулой:

(5.14)

При исследовании и при выборе картографической проекции используют изоколы - линии равных искажений. Они могут наноситься на карту в виде пунктирных линий с целью показа величин искажений.


Рис. 5.6. Изоколы наибольших искажений углов

5.3. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ ПО ХАРАКТЕРУ ИСКАЖЕНИЙ

Для различных целей создаются различные по характеру искажений проекции. Характер искажений проекции определяется отсутствием в ней определенных искажений (углов, длин, площадей). В зависимости от этого все картографические проекции по характеру искажений подразделяются на четыре группы:
— равноугольные (конформные);
— равнопромежуточные (эквидистантные);
—равновеликие (эквивалентные);
— произвольные.

5.3.1. Равноугольные проекции

Равноугольными называются такие проекции, в которых направления и углы изображаются без искажений. Углы, измеренные на картах равноугольных проекций, равны соответствующим углам на земной поверхности. Бесконечно малая окружность в этих проекциях всегда остается окружностью.
В равноугольных проекциях масштабы длин в любой точке по всем направлениям одинаковы, поэтому у них нет искажения формы бесконечно малых фигур и нет искажения углов (рис. 5.7, Б). Это общее свойство равноугольных проекций выражает формула ω = 0°. Но формы реальных (конечных) географических объектов, занимающих целые участки на карте, искажаются (рис. 5.8, а). У равноугольных проекций наблюдаются особенно большие искажения площадей (что отчетливо демонстрируют эллипсы искажений).

Рис. 5.7. Вид эллипсов искажений в проекциях равновеликих —- А, равноугольных — Б , произвольных — В , в том числе, равнопромежуточных по меридиану — Г и равнопромежуточных по параллели — Д. На схемах показано искажение угла 45°.

Эти проекции используются для определения направлений и прокладки маршрутов по заданному азимуту, поэтому их всегда используют на топографических и навигационных картах. Недостатком равноугольных проекций является то, что в них сильно искажаются площади (рис. 5.7, а).


Рис. 5.8. Искажения в цилиндрической проекции:
а - равноугольной; б - равнопромежуточной; в - равновеликой

5.6.2. Равнопромежуточные проекции

Равнопромежуточными проекциями называют проекции, у которых масштаб длин одного из главных направлений сохраняется (остается неизменным) (рис. 5.7, Г. рис. 5.7, Д.) Применяются главным образом для создания мелкомасштабных справочных карт и карт звездного неба.


5.6.3. Равновеликие проекции

Равновеликими называются проекции, в которых нет искажений площадей, т. е. площадь фигуры, измеренной на карте, равна площади этой же фигуры на поверхности Земли. В равновеликих картографических проекциях масштаб площади повсюду имеет одну и ту же величину. Это свойство равновеликих проекций можно выразить формулой:

P = a× b = Const = 1 (5.15)

Неизбежным следствием равновеликости этих проекций является сильное искажение у них углов и форм, что хорошо поясняют эллипсы искажений (рис. 5.7, A).

5.6.4. Произвольные проекции

К произвольным относятся проекции, в которых имеются искажения длин, углов и площадей. Необходимость использования произвольных проекций объясняется тем, что при решении некоторых задач возникает необходимость в измерении углов, длин и площадей на одной карте. Но ни одна проекция не может быть одновременно и равноугольной, и равнопромежуточной, и равновеликой. Ранее уже говорилось, что с уменьшением изображаемого участка поверхности Земли на плоскости уменьшаются и искажения изображения. При изображении небольших участков земной поверхности в произвольной проекции величины искажений углов, длин и площадей незначительны, и при решении многих задач их можно не учитывать.

5.4. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ ПО ВИДУ НОРМАЛЬНОЙ КАРТОГРАФИЧЕСКОЙ СЕТКИ

В картографической практике распространена классификация проекций по виду вспомогательной геометрической поверхности, которая может быть использована при их построении. С этой точки зрения выделяют проекции: цилиндрические , когда вспомогательной поверхностью служит боковая поверхность цилиндра; конические , когда вспомогательной плоскостью является боковая поверхность конуса; азимутальные , когда вспомогательная поверхность - плоскость (картинная плоскость).
Поверхности, на которые проектируют земной шар, могут быть к нему касательными или секущими его. Они могут быть и по-разному ориентированы.
Проекции, при построении которых оси цилиндра и конуса совмещались с полярной осью земного шара, а картинная плоскость, на которую проектировалось изображение, размещалась касательно в точке полюса, называются нормальными.
Геометрическое построение названных проекций отличается большой наглядностью.


5.4.1. Цилиндрические проекции

Для простоты рассуждения вместо эллипсоида воспользуемся шаром. Заключим шар в цилиндр, касательный по экватору (рис. 5.9, а).


Рис. 5.9. Построение картографической сетки в равновеликой цилиндрической проекции

Продолжим плоскости меридианов ПА, ПБ, ПВ, ... и примем пересечения этих плоскостей с боковой поверхностью цилиндра за изображение на ней меридианов. Если разрезать боковую поверхность цилиндра по образующей аАа 1 и развернуть ее на плоскость, то меридианы изобразятся параллельными равноотстоящими прямыми линиями аАа 1 , бБб 1 , вВв 1 ..., перпендикулярными экватору АБВ.
Изображение параллелей может быть получено различными способами. Один из них - продолжение плоскостей параллелей до пересечения с поверхностью цилиндра, что даст в развертке второе семейство параллельных прямых линий, перпендикулярных меридианам.
Полученная цилиндрическая проекция (рис. 5.9, б) будет равновеликой , так как боковая поверхность шарового пояса АГЕД, равная 2πRh (где h - расстояние между плоскостями АГ и ЕД), соответствует площади изображения этого пояса в развертке. Главный масштаб сохраняется вдоль экватора; частные масштабы по параллели увеличиваются, а по меридианам уменьшаются по мере удаления от экватора.
Другой способ определения положения параллелей основан на сохранении длин меридианов, т. е. на сохранении главного масштаба вдоль всех меридианов. В этом случае цилиндрическая проекция будет равнопромежуточной по меридианам (рис. 5.8, б).
Для равноугольной цилиндрической проекции необходимо в любой точке постоянство масштаба по всем направлениям, что требует увеличения масштаба вдоль меридианов по мере удаления от экватора в соответствии с увеличением масштабов вдоль параллелей на соответствующих широтах (см. рис. 5.8, а).
Нередко вместо касательного цилиндра используют цилиндр, секущий сферу по двум параллелям (рис. 5.10), вдоль которых при развертке сохраняется главный масштаб. В этом случае частные масштабы вдоль всех параллелей между параллелями сечения будут меньше, а на остальных параллелях - больше главного масштаба.


Рис. 5.10. Цилиндр, секущий шар по двум параллелям

5.4.2. Конические проекции

Для построения конической проекции заключим шар в конус, касающийся шара по параллели АБВГ (рис. 5.11, а).


Рис. 5.11. Построение картографической сетки в равнопромежуточной конической проекции

Аналогично предыдущему построению продолжим плоскости меридианов ПА, ПБ, ПВ, ... и примем их пересечения с боковой поверхностью конуса за изображение на ней меридианов. После развертки боковой поверхности конуса на плоскости (рис. 5.11, б) меридианы изобразятся радиальными прямыми ТА, ТБ, ТВ,..., исходящими из точки Т. Обратите внимание на то, что углы между ними (схождение меридианов) будут пропорциональны (но не равны) разностям долгот. Вдоль параллели касания АБВ (дуги окружности радиусом ТА) сохраняется главный масштаб.
Положение других параллелей, изображающихся дугами концентрических окружностей, можно определить из определенных условий, одно из которых - сохранение главного масштаба вдоль меридианов (АЕ = Ае) - приводит к конической равнопромежуточной проекции.

5.4.3. Азимутальные проекции

Для построения азимутальной проекции воспользуемся плоскостью, касательной к шару в точке полюса П (рис. 5.12). Пересечения плоскостей меридианов с касательной плоскостью дают изображение меридианов Па, Пе, Пв,... в виде прямых, углы между которыми равны разностям долгот. Параллели, являющиеся концентрическими окружностями, могут быть определены различным путем, например, проведены радиусами, равными выпрямленным дугам меридианов от полюса до соответствующей параллели ПА = Па. Такая проекция будет равнопромежуточной по меридианам и сохраняет вдоль них главный масштаб.


Рис. 5.12. Построение картографической сетки в азимутальной проекции

Частным случаем азимутальных проекций являются перспективные проекции, построенные по законам геометрической перспективы. В этих проекциях каждая точка поверхности глобуса переносится на картинную плоскость по лучам, выходящим из одной точки С , называемой точкой зрения. В зависимости от положения точки зрения относительно центра глобуса проекции подразделяются на:

  • центральные - точка зрения совпадает с центром глобуса;
  • стереографические - точка зрения располагается на поверхности глобуса в точке, диаметрально противоположной точке касания картинной плоскости к поверхности глобуса;
  • внешние - точка зрения вынесена за пределы глобуса;
  • ортографические - точка зрения вынесена в бесконечность, т. е. проектирование осуществляется параллельными лучами.


Рис. 5.13. Виды перспективных проекций: а - центральная;
б - стереографическая; в - внешняя; г - ортографическая.

5.4.4. Условные проекции

Условные проекции - проекции, для которых нельзя подобрать простых геометрических аналогов. Их строят, исходя из каких-либо заданных условий, например желательного вида географической сетки, того или иного распределения искажений на карте, заданного вида сетки и др. В частности, к условным принадлежат псевдоцилиндрические, псевдоконические, псевдоазимутальные и другие проекции, полученные путем преобразования одной или нескольких исходных проекций.
У псевдоцилиндрических проекций экватор и параллели - прямые, параллельные друг другу линии (что роднит их с цилиндрическими проекциями), а меридианы - кривые, симметричные относительно среднего прямолинейного меридиана (рис. 5.14)


Рис. 5.14. Вид картографической сетки в псевдоцилиндрической проекции.

У псевдоконических проекций параллели - дуги концентрических окружностей, а меридианы - кривые, симметричные относительно среднего прямолинейного меридиана (рис. 5.15);


Рис. 5.15. Картографическая сетка в одной из псевдоконических проекций

Построение сетки в поликонической проекции можно представить путем проектирования участков градусной сетки глобуса на поверхность нескольких касательных конусов и последующей развертки в плоскость образовавшихся на поверхности конусов полос. Общий принцип такого проектирования показан на рисунке 5.16.

Рис. 5.16. Принцип построения поликонической проекции:
а - положение конусов; б - полосы; в - развертка

Буквами S на рисунке обозначены вершины конусов. На каждый конус проектируют широтный участок поверхности глобуса, примыкающий к параллели касания соответствующего конуса.
Для внешнего облика картографических сеток в поликонической проекции характерно, что меридианы имеют форму кривых линий (кроме среднего — прямого), а параллели — дуги эксцентрических окружностей.
В поликонических проекциях, используемых для построения мировых карт, приэкваториальный участок проектируют на касательный цилиндр, поэтому на полученной сетке экватор имеет форму прямой линии, перпендикулярной среднему меридиану.
После развертки конусов получают изображение этих участков в виде полос на плоскости; полосы соприкасаются по среднему меридиану карты. Окончательный вид сетка получает после ликвидации разрывов между полосами путем растяжений (рис. 5.17).


Рис. 5.17. Картографическая сетка в одной из поликонических

Многогранные проекции - проекции, получаемые путем проектирования на поверхность многогранника (рис. 5.18), касательного или секущего шар (эллипсоид). Чаще всего каждая грань представляет собой равнобочную трапецию, хотя возможны и иные варианты (например, шестиугольники, квадраты, ромбы). Разновидностью многогранных являются многополосные проекции, причем полосы могут «нарезаться» и по меридианам, и по параллелям. Такие проекции выгодны тем, что искажения в пределах каждой грани или полосы совсем невелики, поэтому их всегда используют для многолистных карт. Топографические и обзорно-топографические создают исключительно в многогранной проекции, и рамка каждого листа представляет собой трапецию, составленную линиями меридианов и параллелей. За это приходится "расплачиваться" - блок листов карт нельзя совместить по общим рамкам без разрывов.


Рис. 5.18. Схема многогранной проекции и расположение листов карт

Необходимо отметить, что в наши дни для получения картографических проекций не пользуются вспомогательными поверхностями. Никто не помещает шар в цилиндр и не надевает на него конус. Это всего лишь геометрические аналогии, позволяющие понять геометрическую суть проекции. Изыскание проекций выполняют аналитически. Компьютерное моделирование позволяет достаточно быстро рассчитать любую проекцию с заданными параметрами, а автоматические графопостроители легко вычерчивают соответствующую сетку меридианов и параллелей, а при необходимости - и карту изокол.
Существуют специальные атласы проекций, позволяющие подобрать нужную проекцию для любой территории. В последнее время созданы электронные атласы проекций, с помощью которых легко отыскать подходящую сетку, сразу оценить ее свойства, а при необходимости провести в интерактивном режиме те или иные модификации или преобразования.

5.5. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ В ЗАВИСИМОСТИ ОТ ОРИЕНТИРОВАНИЯ ВСПОМОГАТЕЛЬНОЙ КАРТОГРАФИЧЕСКОЙ ПОВЕРХНОСТИ

Нормальные проекции - плоскость проектирования касается земного шара в точке полюса или ось цилиндра (конуса) совпадает с осью вращения Земли (рис. 5.19).


Рис. 5.19. Нормальные (прямые) проекции

Поперечные проекции - плоскость проектирования касается экватора в какой-либо точке или ось цилиндра (конуса) совпадает с плоскостью экватора (рис. 5.20).




Рис. 5.20. Поперечные проекции

Косые проекции - плоскость проектирования касается земного шара в любой заданной точке (рис. 5.21).


Рис. 5.21. Косые проекции

Из косых и поперечных проекций наиболее часто используют косые и поперечные цилиндрические, азимутальные (перспективные) и псевдоазимутальные проекции. Поперечные азимутальные применяют для карт полушарий, косые - для территорий, имеющих округлую форму. Карты материков часто составляют в поперечных и косых азимутальных проекциях. Поперечно-цилиндрическая проекция Гаусса - Крюгера применяется для государственных топографических карт.

5.6. ВЫБОР ПРОЕКЦИЙ

На выбор проекций влияет много факторов, которые можно сгруппировать следующим образом:

  • географические особенности картографируемой территории, ее положение на Земном шаре, размеры и конфигурация;
  • назначение, масштаб и тематика карты, предполагаемый круг потребителей;
  • условия и способы использования карты, задачи, которые будут решаться по карте, требования к точности результатов измерений;
  • особенности самой проекции - величины искажений длин, площадей, углов и их распределение по территории, форма меридианов и параллелей, их симметричность, изображение полюсов, кривизна линий кратчайшего расстояния.

Первые три группы факторов задаются изначально, четвертая - зависит от них. Если составляется карта, предназначенная для навигации, обязательно должна быть использована равноугольная цилиндрическая проекция Меркатора. Если картографируется Антарктида, то почти наверняка будет принята нормальная (полярная) азимутальная проекция и т.д.
Значимость названных факторов может быть различной: в одном случае на первое место ставят наглядность (например, для настенной школьной карты), в другом - особенности использования карты (навигация), в третьем - положение территории на земном шаре (полярная область). Возможны любые комбинации, а следовательно - и разные варианты проекций. Тем более что выбор очень велик. Но все же можно указать некоторые предпочтительные и наиболее традиционные проекции.
Карты мира обычно составляют в цилиндрических, псевдоцилиндрических и поликонических проекциях. Для уменьшения искажений часто используют секущие цилиндры, а псевдоцилиндрические проекции иногда дают с разрывами на океанах.
Карты полушарий всегда строят в азимутальных проекциях. Для западного и восточного полушарий естественно брать поперечные (экваториальные), для северного и южного полушарий - нормальные (полярные), а в других случаях (например, для материкового и океанического полушарий) — косые азимутальные проекции.
Карты материков Европы, Азии, Северной Америки, Южной Америки, Австралии с Океанией чаще всего строят в равновеликих косых азимутальных проекциях, для Африки берут поперечные, а для Антарктиды - нормальные азимутальные.
Карты отдельных стран , административных областей, провинций, штатов выполняют в косых равноугольных и равновеликих конических или азимутальных проекциях, но многое зависит от конфигурации территории и ее положения на земном шаре. Для небольших по площади районов задача выбора проекции теряет актуальность, можно использовать разные равноугольные проекции, имея в виду, что искажения площадей на малых территориях почти неощутимы.
Топографические карты Украины создают в поперечно-цилиндрической проекции Гаусса, а США и многие другие западные страны - в универсальной поперечно-цилиндрической проекции Меркатора (сокращенно UТМ). Обе проекции близки по своим свойствам; по существу та и другая являются многополостными.
Морские и аэронавигационные карты всегда даются исключительно в цилиндрической проекции Меркатора, а тематические карты морей и океанов создают в самых разнообразных, иногда довольно сложных проекциях. Например, для совместного показа Атлантического и Северного Ледовитого океанов применяют особые проекции с овальными изоколами, а для изображения всего Мирового океана - равновеликие проекции с разрывами на материках.
В любом случае при выборе проекции, в особенности для тематических карт, следует иметь в виду, что обычно искажения на карте минимальны в центре и быстро возрастают к краям. Кроме того, чем мельче масштаб карты и обширнее пространственный охват, тем большее внимание приходится уделять «математическим» факторам выбора проекции, и наоборот - для малых территорий и крупных масштабов более существенными становятся «географические» факторы.

5.7. РАСПОЗНАВАНИЕ ПРОЕКЦИЙ

Распознать проекцию, в которой составлена карта, - значит установить ее название, определить принадлежность к тому или иному виду, классу. Это нужно для того, чтобы иметь представление о свойствах проекции, характере, распределении и величине искажений - словом, для того, чтобы знать, как пользоваться картой, чего от нее можно ожидать.
Некоторые нормальные проекции сразу распознаются по виду меридианов и параллелей. Например, легко узнаваемы нормальные цилиндрические, псевдоцилиндрические, конические, азимутальные проекции. Но даже опытный картограф не сразу распознает многие произвольные проекции, потребуются специальные измерения по карте, чтобы выявить их равноугольность, равновеликость или равнопромежуточность по одному из направлений. Для этого существуют особые приемы: сперва устанавливают форму рамки (прямоугольник, окружность, эллипс), определяют, как изображены полюсы, затем измеряют расстояния между соседними параллелями вдоль по меридиану, площади соседних клеток сетки, углы пересечения меридианов и параллелей, характер их кривизны и т.п.
Существуют специальные таблицы-определители проекций для карт мира, полушарий, материков и океанов. Проведя необходимые измерения по сетке, можно отыскать в такой таблице название проекции. Это даст представление о ее свойствах, позволит оценить возможности количественных определений по данной карте, выбрать соответствующую карту с изоколами для внесения поправок.

Видео
Виды проекций по характеру искажений

Вопросы для самоконтроля:

  1. Какие элементы составляют математическую основу карты?
  2. Что называют масштабом географической карты?
  3. Что называют главным масштабом карты?
  4. Что называют частным масштабом карты?
  5. Чем обусловлено отклонение частного масштаба от главного на географической карте?
  6. Как измерить расстояние между точками на морской карте?
  7. Что представляет собой эллипс искажений и для каких целей он используется?
  8. Как можно определить по эллипсу искажений наибольший и наименьший масштабы?
  9. Какие существует методы переноса поверхности земного эллипсоида на плоскость, в чем их сущность?
  10. Что называют картографической проекцией?
  11. Как классифицируют проекции по характеру искажений?
  12. Какие проекции называют равноугольными, как изобразить эллипс искажений на этих проекциях?
  13. Какие проекции называют равнопромежуточными, как изобразить эллипс искажений на этих проекциях?
  14. Какие проекции называют равновеликими, как изобразить эллипс искажений на этих проекциях?
  15. Какие проекции называют произвольными?

Картографическая проекция – способ построения изображения поверхности Земли и, прежде всего, сетки меридианов и параллелей (координатной сетки) на плоскости. В каждой проекции координатная сетка изображается по-разному, характер искажений также различен, т.е. проекции имеют определенные различия, что вызывает необходимость их классифицировать. Все картографические проекции принято классифицировать по двум признакам:

По характеру искажений;

По виду нормальной сетки меридианов и параллелей.

По характеру искажений проекции делятся на следующие группы :

1. Равноугольные (комфорные) – проекции, в которых бесконечно малые фигуры на картах подобны соответствующим фигурам на земной поверхности. Эти проекции получили широкое распространение в аэронавигации, так как они позволяют наиболее просто определять направления и углы. Кроме того, конфигурация небольших площадных ориентиров передается без искажений, что существенно для ведения визуальной ориентировки.

2. Равновеликие (эквивалентные) – проекции, в которых сохраняется отношение площадей на картах и на земной поверхности. Эти проекции нашли применение в мелкомасштабных обзорных географических картах.

3. Равнопромежуточные – проекции, в которых расстояние по меридиану и параллели изображаются без искажений. Эти проекции применяются для создания справочных карт.

4. Произвольные – проекции, не обладающие ни одним из перечисленных выше свойств. Эти проекции широко применяются в аэронавигации, так как имеют практически небольшие искажения углов, длин и площадей, что позволяет их не учитывать.

По виду нормальной координатной сетки меридианов и параллелей проекции делятся на: конические, поликонические, цилиндрические и азимутальные .



Построение картографической сетки может быть представлено как результат проектирования поверхности Земли на вспомогательную геометрическую фигуру: конус, цилиндр или плоскость (рис. 2.2) .


Рис. 2.2. Расположение вспомогательной геометрической фигуры

В зависимости от расположения вспомогательной геометрической фигуры относительно оси вращения Земли, различают три вида проекций (рис. 2.2):

1. Нормальные – проекции, в которых ось вспомогательной фигуры совпадает с осью вращения Земли.

2. Поперечные – проекции, в которых ось вспомогательной фигуры перпендикулярна к оси вращения Земли, т.е. совпадает с плоскостью экватора.

3. Косые – проекции, в которых ось вспомогательной фигуры составляет с осью вращения Земли косой угол.

Конические проекции. Для решения задач аэронавигации из всех конических проекций применяется нормальная равноугольная коническая проекция, построенная на касательном или секущем конусе.

Нормальная равноугольная коническая проекция на касательном конусе. На картах, составленных в этой проекции, меридианы имеют вид прямых, сходящихся к полюсу (рис. 2.3). Параллели представляют собой дуги концентрических окружностей, расстояние между которыми увеличивается по мере удаления от параллели касания. В этой проекции издаются для авиации карты масштаба 1: 2 000 000, 1: 2 500 000, 1: 4 000 000 и 1: 5 000 000.

Рис. 2.3. Нормальная равноугольная коническая проекция на касательном конусе

Нормальная равноугольная коническая проекция на секущем конусе. На картах, составленных в этой проекции, меридианы изображены прямыми сходящимися линиями, а параллели дугами окружностей (рис. 2.4). В этой проекции издаются для авиации карты масштаба 1: 2 000 000 и 1: 2 500 000.



Рис. 2.4. Нормальная равноугольная коническая проекция на

секущем конусе

Поликонические проекции. Практического применения в авиации поликонические проекции не имеют, но она положена в основу международной проекции, в которой издают большинство авиационных карт.

Видоизмененная поликоническая (международная) проекция. В 1909 г. в Лондоне международный комитет разработал видоизмененную поликоническую проекцию для карт масштаба 1: 1 000 000, которая получила название международной. Меридианы в этой проекции имеют вид прямых линий, сходящихся к полюсу, а параллели – дуг концентрических окружностей (рис. 2.5).

Рис. 2.5. Видоизмененная поликоническая проекция

Лист карты занимает по широте 4°, а по долготе 6°. В настоящее время эта проекция является самой распространенной и в ней издается большинство авиационных карт масштабов 1: 1 000 000, 1: 2 000 000 и 1: 4 000 000.

Цилиндрические проекции. Из цилиндрических проекций в аэронавигации нашли применение нормальная, поперечная и косая проекции .

Нормальная равноугольная цилиндрическая проекция. Эта проекция была предложена в 1569 г. голландским картографом Меркатором. На картах, составленных в этой проекции, меридианы имеют вид прямых, параллельных между собой и отстоящих друг от друга на расстояниях, пропорциональных разности долгот (рис. 2.6). Параллели – прямые, перпендикулярные меридианам. Расстояния между параллелями увеличивается с увеличением широты. В нормальной равноугольной цилиндрической проекции издаются морские навигационные карты.


Рис. 2.6. Нормальная равноугольная цилиндрическая проекция

Равноугольная поперечно-цилиндрическая проекция. Эта проекция была предложена немецким математиком Гауссом. Проекция строится по математическим законам. Для уменьшения искажения длин поверхность Земли разрезается на 60 зон. Каждая такая зона занимает по долготе 6°. Из рис. 2.7 видно, что средний меридиан в каждой зоне и экватор изображаются прямыми взаимно перпендикулярными линиями. Все остальные меридианы и параллели изображаются кривыми малой кривизны. В равноугольной поперечно-цилиндрической проекции составлены карты масштабов 1: 500 000, 1: 200 000 и 1: 100 000 и крупнее.



Рис. 2.7. Равноугольная поперечно-цилиндрическая проекция

Косая равноугольная цилиндрическая проекция. В этой проекции наклон цилиндра к оси вращения Земли подбирают таким образом, чтобы его боковая поверхность касалась оси маршрута (рис. 2.8). Меридианы и параллели в рассматриваемой проекции имеют вид кривых линий. На картах в этой проекции в полосе по 500 – 600 км от осевой линии маршрута искажение длин не превышает 0.5%. В косой равноугольной цилиндрической проекции издаются карты масштабов 1: 1 000 000, 1: 2 000 000 и 1: 4 000 000 для обеспечения полетов по отдельным протяженным трассам.


Рис. 2.8. Косая равноугольная цилиндрическая проекция

Азимутальные проекции. Из всех азимутальных проекций для целей аэронавигации применяют, в основном, центральные и стереографические полярные проекции.

Центральная полярная проекция. На картах, составленных в этой проекции, меридианы имеют вид прямых линий, расходящихся от полюса под углом, равным разности долгот (рис. 2.9). Параллели – концентрические окружности, расстояния между которыми по мере удаления от полюса увеличиваются. В этой проекции ранее издавались карты Арктики и Антарктики масштабов 1: 2 000 000 и 1: 5 000 000.


Рис. 2.10. Стереографическая полярная проекция

В стереографической полярной проекции издаются карты Арктики и Антарктики масштабов 1: 2 000 000 и 1: 4 000 000.

ЛЕКЦИЯ №4

КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ

K артографическими проекциями называют математические способы изображения на плоскости поверхности земного эллипсоида или шара. Изображение градусной сетки Земли на карте называют картографической сеткой, а точки пересечения меридианов и параллелей - узловыми точками.

Построение карт включает сначала изображение на плоскости (бумаге) картографической сетки, а затем заполнение клеток сетки контурами и другими обозначениями географических объектов. Построение сетки может быть осуществлено различными способами. Так, при применении перспективных проекций картографическая сетка получается как бы проектированием узловых точек с поверхности шара на плоскость (рис.4) или на другую геометрическую поверхность (конус, цилиндр), которая затем развертывается в плоскость без искажений. Пример практического построения перспективным способом картографической сетки северного полушария приведен на рисунке 4.

Картинная плоскость Р касается здесь поверхности северного полушария в точке Северного полюса. Прямолинейными проектирующими лучами из центра К узловые точки пересечения меридиана с экватором и параллелями 30° и 60° широты переносятся на картинную плоскость. Тем самым определяются радиусы этих параллелей на плоскости. Меридианы изображаются на плоскости прямыми линиями, исходящими из точки полюса и отстоящими друг от друга под равными углами. На рисунке изображена половина сетки. Вторую половину легко мысленно представить, а при необходимости и построить.

Построение карты методами перспективных проекций не требует использования высшей математики, поэтому их начали применять еще задолго до ее разработки, с глубокой древности. Ныне в картографическом производстве карты строят неперспективными метода ми - путем расчета положения узловых точек картографической сетки на плоскости. Расчет выполняют, решая систему уравнений, связывающих широту и долготу узловых точек с их прямоугольными координатами X и Y на плоскости. Применяемые при этом уравнения довольно сложны. Примером сравнительно простых формул могут быть следующие:

Х=R´ sin j

Y= R ´ cos j-sinl.

В этих уравнениях R - радиус (средний) Земли, округленно принимаемый за 6370 км, а j, l - географические координаты узловых точек.

Классификация картографических проекций

Применяемые для построения географических карт проекции можно группировать по разным классификационным признакам, из которых основными являются: а) вид «вспомогательной поверхности» и ее ориентировка, б) характер искажений.

Классификация картографических проекций по виду вспомога тельной поверхности и ее ориентировке. Картографические сетки карт получают в современном производстве аналитическим путем. Однако в названиях проекций сохранены по традиции термины «цилиндрические», «конические» и другие, соответствующие способам геометрических построений, к которым в прошлом прибегали для построения сеток) Использование при объяснении этих терминов поможет уяснить особенности полученных на их основе картографических сеток. В настоящее время данный классификационный признак трактуется как вид нормальной картографической сетки

Цилиндрические проекции . При построении цилиндрических проекций представляют, что узловые точки, а значит, и линии градусной сети проектируют с шаровой поверхности глобуса на боковую поверхность цилиндра, ось которого совпадает с осью глобуса, а диаметры обоих тел равны (рис.5). Используя касательный цилиндр в качестве вспомогательной поверхности, учитывают, что узловые точки экватора - А, В, С, D и другие одновременно находятся и на глобусе, и на цилиндре. Другие же узловые точки переносятся с глобуса на поверхность цилиндра. Так, точки Е и F , расположенные на одном меридиане с точкой С, переносятся в точки £" и F \ При этом они на цилиндре расположатся на прямой, перпендикулярной линии экватора. Это и определяет форму меридианов в данной проекции. Параллели на поверхность цилиндра проектируются в форме окружностей, параллельных линии экватора (например, параллель, в которой находятся точки F [ и e").

При развертке поверхности цилиндра в плоскость все линии картографической сетки оказываются прямыми, меридианы перпендикулярны параллелям и отстоят друг от друга на равных расстояниях. Таков общий вид картографической сетки, построенной с помощью цилиндра, касательного к глобусу и имеющего с ним общую ось

У таких цилиндрических проекций линией нулевых искажений служит экватор, а изоколы имеют форму прямых, параллельных экватору; главные направления совпадают с линиями картографической сетки, при этом с удалением от экватора искажения увеличиваются.

В этих проекциях применяют также проектирование на цилиндры с диаметром меньшим, чем диаметр глобуса, и по-разному относительно глобуса расположенные. В зависимости от ориентировки цилиндра полученные картографические сетки (как и сами проекции) называют нормальными, косыми или поперечными. Нормальные цилиндрические сетки строят на цилиндрах, оси которых совпадают с осью глобуса; косые - на цилиндрах, ось которых составляет с осью глобуса острый угол; поперечные сетки образуются с помощью цилиндра, ось которого составляет прямой угол с осью глобуса.

Нормальная цилиндрическая картографическая сетка на касательном цилиндре имеет линию нулевых искажений на экваторе. Нормальная сетка на секущем цилиндре имеет две линии нулевых иска­жений, расположенных вдоль параллелей сечения цилиндра с глобусом (с широтами j1 и j2). При этом, вследствие сжатия участка сетки между линиями нулевых искажений, масштабы длин по параллелям оказываются здесь меньше главного; во внешнюю же сторону от линий нулевых искажений они больше главного масштаба - как результат растяжения параллелей при проектировании с глобуса на цилиндр.

Косая цилиндрическая сетка на секущем цилиндре имеет в северной части линию нулевых искажений в форме прямой, перпендикулярной к среднему меридиану карты и касательной к параллели с широтой j; внешний вид сетки представлен кривыми линиями меридианов и параллелей.

Примером поперечной цилиндрической проекции может служить проекция Гаусса-Крюгера, в которой каждый поперечно расположенный цилиндр используется для проектирования поверхности одной зоны Гаусса.

Конические проекции. Для построения картографических сеток в конических проекциях используют нормальные конусы - касательный или секущий.

рис.6

рис.7

У всех нормальных конических проекций специфичен внешний вид картографической сетки: меридианы - прямые, сходящиеся в точке, изображающей на плоскости вершину конуса, параллели - дуги концентрических окружностей с центром в точке схода меридианов. У сеток, построенных на касательных конусах, одна линия нулевых искажений, с удалением от которой искажения увеличиваются (рис.6). Изоколы у них имеют форму дуг окружностей, совпадающих с параллелями. Сетки, построенные на секущем конусе (рис. 6 Б), имеют тот же облик, но иное распределение искажений: линий нулевых искажений у них две. Между ними частные масштабы вдоль параллелей меньше главного, а на внешних участках сетки - больше главного масштаба. Главные направления у всех нормальных конических сеток совпадают с меридианами и параллелями.

Азимутальные проекции. Азимутальными называют картографические сетки, которые получают проектированием градусной сетки глобуса на касательную плоскость (рис.). Нормальную ази мутальную сетку получают в результате переноса на плоскость, касательную к глобусу в точке полюса (рис. 7 А), попереч ную - при касании плоскости в точке экватора (рис. 7, Б) и ко сую - при переносе на иначе ориентированную плоскость (рис.7 , В). Внешний вид сеток хорошо виден на рисунке 7.

Все азимутальные сетки имеют в отношении искажений следующие общие свойства: точкой нулевых искажений (ТНИ) служит точка касания глобуса с плоскостью (обычно она располагается в центре карты); величины искажений с удалением во все стороны от ТНИ возрастают, поэтому изоколы у азимутальных проекций имеют форму концентрических окружностей с центром в ТНИ. Главные направления следуют по радиусу и перпендикулярным им линиям. Название этой группы проекций связано с тем, что на картографической сетке, построенной в азимутальной проекции, в бывшей точке касания глобуса и плоскости (т. е. в точке нулевых искажений) азимуты всех направлений не искажаются

Поликонические проекции. Построение сетки в поликонической проекции можно представить путем проектирования участков градусной сетки глобуса на поверхность нескольких касательных конусов и последующей развертки в плоскость образовавшихся на поверхности конусов полос. Общий принцип такого проектирования показан на рисунке 8. Буквами на рисунке 8, А обозначены вершины конусов.,На каждый проектируют широтный участок поверхности глобуса, примыкающий к параллели касания соответствующего конуса. После развертки конусов получают изображение этих участков в виде полос на плоскости; полосы соприкасаются по среднему меридиану карты. Окончательный вид сетка получает после ликвидации разрывов между полосами путем растяжений.

рис.8

Для внешнего облика картографических сеток в поликонической проекции характерно, что меридианы имеют форму кривых линий (кроме среднего - прямого), а параллели - дуги эксцентрических окружностей. В поликонических проекциях, используемых для построения мировых карт, приэкваториальный участок проектируют на касательный цилиндр, поэтому на полученной сетке экватор имеет форму прямой линии, перпендикулярной среднему меридиану.

Картографические сетки в поликонических проекциях имеют в приэкваториальных участках масштабы длин, близкие к главным. Вдоль меридианов и параллелей они увеличены сравнительно с главным масштабом, что особенно заметно в периферийных частях. Соответственно в этих частях значительно искажены и площади

Условные проекции . К условным относят такие проекции, в которых вид получаемых картографических сеток невозможно представить на основе проектирования на какую-нибудь вспомогательную поверхность. Получают их часто аналитическим путем (на основе решения систем уравнений). Это очень большая группа проекций. Из них выделяют по особенностям внешнего вида картографической сетки псевдоцилиндрические проекции (рис.9). Как видно из рисунка, у псевдоцилиндрических проекций экватор и параллели - прямые, параллельные друг другу (что роднит их с цилиндрическими проекциями), а меридианы у них - кривые линии.

Рис.9

.

Вид эллипсов искажений в проекциях равновеликих - А, равноугольных - Б, произвольных - В, в том числе, равнопромежуточных по меридиану - Г и равнопромежуточных по параллели - Д. На схемах показано искажение угла 45°

Картографические проекции различают по характеру искажений и по построению. По характеру искажений выделяют проекции:

1) Равноугольные, сохраняющие величину углов, здесь а= b . Эллипсы искажений имеют вид окружностей разной площади.

2) Равновеликие, сохраняющие площади объектов. В них р =mn cos e =l; следовательно, увеличение масштаба длин по параллелям вызывает уменьшение масштаба длин по меридианам и искажение углов и форм.

3) Произвольные, искажающие углы и площади. Среди них выделяется группа равнопромежуточных проекций, в которых сохраняется главный масштаб по одному из главных направлений.

Большое практическое значение имеет подразделение проекций по территориальному охвату на проекции для карт мира, полушарий, материков и океанов, государств и их частей.

Ниже приведены таблицы внешних признаков широко распространенных проекций для разных территорий, составленные.

Таблица 1

Таблица для определения картографических сеток карт восточного и западного полушарий

Как изменяются промежутки по:

Среднему меридиану и экватору

Меридиану и экватору от центра к краям полушария

Какими линиями изображаются параллели

Название проекций

Уменьшаются от 1 приблизительно до 0,7

Кривыми, увеличивающими кривизну с удалением от среднего меридиана к крайним

Равновеликая экваториальная азимутальная Ламберта

Уменьшаются от 1 приблизительно до 0,8

Экваториальная азимутальная Гинзбурга

Увеличиваются от 1 приблизительно до 2

Дугами окружностей

Экваториальная стереографическая

Сильно уменьшаются

Экваториальная ортографическая

Таблица 2

Таблица для определения проекций картографических сеток мировых карт

Форма рамки, карты или вид всей сетки

Какими линиями изображаются параллели и меридианы

Как изменяются, промежутки по среднему меридиану с удалением от экватора

Название проекции

Рамка-прямоугольник

Параллели-прямые, меридианы-кривые

Увеличиваются между параллелями 70 и 80° почти в 1,5 раза больше чем между экватором и параллелью 10°

Псевдоцилин-дрическая проекция ЦНИИГАиК

Сетка и рамка- прямоугольник

Параллели и меридианы-прямые

Сильно увеличиваются: между параллелями 60 и 80° приблизительно в 3 раза больше, чем между экватором и параллелью 20°

Цилиндрическая Меркатора

Сетка и рамка- прямоугольник

Параллели меридианы-прямые

Увеличиваются:

параллелями

приблизительно

в 2 2/з раза

больше, чем

между экватором

и параллелью 20°

Цилиндрическая Урмаева

Определение картографических проекций географических карт определяют при помощи таблиц и вычислений. Прежде всего выясняют, какая территория изображена на анализируемой карте и какой таблицей следует воспользоваться при определении проекции. Затем определяют вид параллелей и меридианов и характер промежутков между параллелями по прямому меридиану. Определяют также характер меридианов: не являются ли они прямыми или же прямой только средний меридиан а остальные - кривые, симметричные относительно среднего. Прямолинейность меридианов проверяется при помощи линейки. Если меридианы оказались прямыми, уточняют, параллельны ли они между собой. При рассмотрении параллелей выясняют, являются ли параллели дугами окружностей, кривыми или прямыми линиями. Это устанавливается путем сравнения стрелок провеса для дуг равных хорд: при равных стрелках провеса линии - дуги окружностей, при неравных стрелках провеса параллели - сложные кривые. Для выяснения характера кривизны линии можно поступить также следующим образом. На листе кальки отмечают три точки этой кривой. Если при передвижении листка вдоль линии все три точки совпадут с кривой, то данная кривая будет дугой окружности. Если параллели окажутся дугами, следует проверить их концентричность, для чего измеряют расстояния между соседними параллелями в середине карты и на краю. При постоянстве этих расстояний дуги концентричны.

Как прямые конические, так и азимутальные полярные проекции имеют прямолинейные, расходящиеся из одной точки меридианы. Участок сетки прямой конической проекции можно отличить от участка сетки полярной азимутальной проекции путем измерения угла между двумя меридианами, отстоящими друг от друга на 60-90°. Если этот угол оказался меньше соответствующей разности долгот, подписанных на карте, то это - коническая проекция, если равен разности долгот - азимутальная.

Определение средних размеров искажений для географических объектов может быть выполнено двумя путями:

1) посредством измерения отрезков меридианов и параллелей по карте и последующих вычислений по формулам;

2) по картам с изоколами.

В первом случае сначала вычисляют частные масштабы по меридианам (т) и параллелям \{п) и выражают их в долях главного масштаба:

где -l 1 длина дуги меридиана на карте, L 1 -длина дуги меридиана на эллипсоиде, l 2 - длина дуги параллели на карте, L 2 - длина дуги параллели на эллипсоиде { L 1 и L 2 берут из таблиц приложения; М - знаменатель главного масштаба.

Затем измеряют на карте транспортиром угол e между касательными к параллели и меридиану в заданной точке; определяют отклонение угла q от 90°; e =q -90°.

На основе известных формул, вычисляют величины искажений р, a , b , w , к.

Во втором случае – используют карты изокол. С этих карт берут значения для 2-3 точек объектов с точностью, допускаемой визуальным интерполированием, затем можно установить, к какой группе по характеру искажений относится данная проекция.

Картографи-ческие проекции — это математические способы изображения на плоскости поверхности земного шара (эллипсоида).

Точнее всего форму Зем-ли передает глобус , потому что он такой же шарообраз-ный, как наша планета . Но глобусы занимают много места, их трудно брать в дорогу, нель-зя вложить в книгу. Они имеют очень мелкий масштаб , на них нельзя подробно показать небольшой участок земной поверхнос-ти.

Картографических проек-ций существует множество. Самые распространённые — азимутальная , цилиндрическая , коническая . В зависимости от вида картографической проекции наибольшие искажения могут быть в одном или другом месте карты, а градусная сеть может выглядеть по-разному.

Какую проекцию выбрать, зави-сит от назначения карты, от размера изображаемой терри-тории и широты, на которой она расположена. Например, для вытянутых в средних ши-ротах стран, таких, как Рос-сия, удобно использовать коническую проекцию, для полярных областей азимутальную, а для карт мира, отдельных материков, океанов часто применяют цилиндрическую проекцию.

Карта — плоское, искаженное изображение земной поверхности, на котором искажения подчинены определенному математическому закону.
Положение любой точки на плоскости может быть определено пересечением двух координатных линий, которые однозначно соответствовали бы координатным линиям на Земле (?, ?). Отсюда следует, что для получения плоского изображения земной поверхности нужно сначала нанести на плоскость систему координатных линий, которая соответствовала бы таким же линиям на сфере. Имея нанесенную на плоскость систему меридианов и параллелей, можно теперь нанести на эту сетку любые точки Земли.
Картографическая сетка — условное изображение географической сетки земных меридианов и параллелей на карте в виде прямых или кривых линий.
Картографическая проекция — способ построения картографической сетки на плоскости и изображение на ней сферической поверхности Земли, подчиненный определенному математическому закону.
Картографические проекции по характеру искажений делятся на:
1. Равноугольные (конформные) = проекции, не искажающие углов. Сохраняется подобие фигур. Масштаб изменяется с изменением? и?. Отношение площадей не сохраняется (о. Гренландия? Африке, SАфр. ? 13,8 Sо.Гренландия).
2. Равновеликие (эквивалентные) — проекции, на которых масштаб площадей везде одинаков и площади на картах пропорциональны соответствующим площадям в натуре. Равенства углов и подобия фигур не сохраняются. Масштаб длин в каждой точке не сохраняется по разным направлениям.
3. Произвольные — проекции, заданные несколькими условиями, но не обладающие ни свойствами равноугольности, ни свойствами равновеликости. Ортодромическая проекция — дуга большого круга изображается прямой линией.

Картографические проекции по способу построения картографической сетки делятся на:
1. Цилиндрические — проекции, на которых картографическая сетка меридианов и параллелей получается путем проецирования земных координатных линий на поверхность цилиндра, касающегося условного глобуса (или секущего его), с последующей разверткой этого цилиндра на плоскость.
Прямая цилиндрическая проекция — ось цилиндра совпадает с осью Земли;
Поперечная цилиндрическая проекция — ось цилиндра перпендикулярна оси Земли;
Косая цилиндрическая проекция — ось цилиндра расположена к оси Земли под углом отличным от 0° и 90°.
2. Конические — проекции, на которых картографическая сетка меридианов и параллелей получается путем проецирования земных координатных линий на поверхность конуса, касающегося условного глобуса (или секущего его), с последующей разверткой этого конуса на плоскость. В зависимости от положения конуса относительно оси Земли различают:
Прямую коническую проекцию — ось конуса совпадает с осью Земли;
Поперечную коническую проекцию — ось конуса перпендикулярна оси Земли;
Косую коническую проекцию — ось конуса расположена к оси Земли под углом отличным от 0° и 90°.
3. Азимутальные — проекции, в которых меридианы — радиальные прямые, исходящие из одной точки (центральной), под углами равными соответствующим углам в натуре, а параллели?-концентрические окружности, проведенные из точки схождения меридианов (ортографические, внешние, стереографические, центральные, полярные, экваториальные, горизонтные).
Меркаторская проекция
Предложенная Меркатором проекция относится к разряду нормальных цилиндрических равноугольных проекций.
Карты, построенные в этой проекции, называются меркаторскими, а проекция — проекция Меркатора или меркаторская проекция.
В меркаторской проекции все меридианы и параллели прямые и взаимноперпендикулярные линии, а линейная величина каждого градуса широты постепенно увеличивается с возрастанием широты, соответственно растягиванию параллелей, которые все в этой проекции по длине равны экватору.
Проекция Меркатора по характеру искажений относится к классу равноугольных.
Для получения морской навигационной карты в проекции Меркатора условный глобус помещают внутрь касательного цилиндра таким образом, чтобы их оси совпали.
Затем проецируют из центра глобуса меридианы на внутренние стенки цилиндра. При этом все меридианы изобразятся прямыми, параллельными между собой и перпендикулярными экватору линиями. Расстояния между ними равны расстояниям между теми же меридианами по экватору глобуса. Все параллели растянутся до величины экватора. При этом параллели, ближайшие к экватору, растянутся на меньшую величину и по мере удаления от экватора и приближения к полюсу величина их растяжения увеличивается.
Закон растяжения параллелей (рис. 1).

а) б) в)
Рис. 1. Закон растяжения параллелей
R и r – радиус Земли и произвольной параллели (СС?).
? – широта произвольной параллели (СС?).
Из прямоугольного треугольника ОС?К получим:
R = r sec?
Обе части равенства умножим на 2?, получим:
2? R = 2? r sec?
где 2? R – длина экватора;
2? r – длина параллели в широте?.
Следовательно, длина экватора равна длине соответствующей параллели, умноженной на секанс широты этой параллели. Все параллели, удлиняясь до длины экватора, растягиваются пропорционально sec?.
Разрезав цилиндр по одной из образующих, и развернув его на плоскость, получим сетку взаимно перпендикулярных меридианов и параллелей (рис. 1б).
Эта сетка не удовлетворяет требованию равноугольности, т.к. изменились расстояния между меридианами по параллели, ибо каждая параллель растянулась и стала равной длине экватора. В результате фигуры с поверхности Земли перенесутся на сетку в искаженном виде. Углы в природе не будут соответствовать углам на сетке.
Очевидно, для того, чтобы не было искажений, т.е. чтобы сохранить на карте подобие фигур, а следовательно, и равенство углов, необходимо все меридианы в каждой точке растянуть на столько, на сколько растянулись в данной точке параллели, т.е. пропорционально sec?. При этом эллипс на проекции вытянется в направлении малой полуоси и станет кругом, подобным острову круглой формы на поверхности Земли. Радиус круга станет равным большой полуоси эллипса, т.е. будет в sec? раз больше круга на поверхности Земли (рис. 1в).
Полученная таким образом картографическая сетка и проекция будут полностью удовлетворять требованиям, предъявленным к морским навигационным картам, т.е. проекцией Меркатора.
Поперечная цилиндрическая проекция
Поперечная цилиндрическая проекция применяется для составления морских навигационных карт и карт-сеток на приполюсные районы для?Г > 75?80°N(S).
Как и нормальная цилиндрическая проекция Меркатора, эта проекция является равноугольной (не искажает углы).
При построении и использовании карт в данной проекции применяется система квазигеографических координат («квази» (лат.) – как бы»), которая получается следующим образом (рис. 2):

Рис. 2. Поперечная цилиндрическая проекция
? Северный полюс условно помещается в точку с координатами: ?Г = 0°, ?Г = 180° (р-н Тихого океана), а южный полюс – в точку с координатами: ?Г = 0°, ?Г = 0° (р-н Гвинейского залива).
Полученные точки называются квазиполюсами: PNq – северным, PSq – южным.
? Проведя квазимеридианы и квазипараллели относительно квазиполюсов, получим новую систему координат, повернутую на 90° относительно географической.
Координатными осями этой системы будут:
1. начальный квазимеридиан – большой круг, проходящий через северный географический полюс (PN) и квазиполюсы (PNq и PSq), он совпадает с географическим (?Г = 0° и?Г = 180°) Гринвичским (начальным) меридианом;
2. квазиэкватор – большой круг, проходящий через географический полюс (PN) и точки на экваторе с долготами: ?Г = 90°Е (р-н Индийского океана) и?Г = 90°W (р-н Галапагоских островов).
Координатными линиями этой системы являются:
3. квазимеридианы – большие круги, проходящие через квазиполюсы;
4. квазипараллели – малые круги, плоскости которых параллельны плоскости квазиэкватора.
Положение любой точки на поверхности Земли на картах в поперечной цилиндрической проекции определяется квазиширотой (?q) и квазидолготой (?q).
? Квазиширота (?q) — угол при центре Земли (шара) между плоскостью квазиэкватора и радиусом, проведенным в данную точку земной поверхности. Квазиширота определяет положение квазипараллелей; отсчитывается от квазиэкватора к квазиполюсам: к PNq — + ?q и к PSq — –?q от 0° до 90°.
? Квазидолгота (?q) — двугранный угол при квазиполюсе между плоскостями начального квазимеридиана и квазимеридиана данной точки. Квазидолгота определяет положение квазимеридианов; отсчитывается от географического полюса PN по квазиэкватору к востоку (+?q) и к западу (–?q) от 0° до 180°.
Началом отсчета квазигеографических координат является географический северный полюс (т. PN).
Основные уравнения поперечной цилиндрической равноугольной проекции имеют вид:

y = R ?q; m = n = sec ?q
где

– радиус Земли (м);
m и n – частные масштабы по квазимеридиану и квазипараллели.

где а = 3437,74?.
Для эллипсоида Красовского: а = 6378245 м.
Переход от географических координат к квазикоординатам выполняется по формулам:
sin ?q = ?cos ? cos ?; tg ?q = ctg ? sin ?
sin ? = ?cos ?q cos ?q; tg ? = ?ctg ?q sin ?q
Прямой линией на такой карте изображается квазилоксодромия, пересекающая квазимеридианы под одним и тем же квазикурсом Кq (рис. 3).

Рис. 3. Квазилоксодромия
Локсодромия, вследствие кривизны географических меридианов, сходящихся на полюсе, будет изображаться кривой линией, обращенной выпуклостью к экватору.
Ортодромия же представит собой кривую малой кривизны, обращенную выпуклостью в сторону ближайшего квазиполюса.
Таким образом, при построении квазигеографической сетки карты используются формулы, аналогичные формулам для нормальной проекции Меркатора с заменой в них географических координат квазигеографическими.
Главный масштаб карт и карт-сеток относят к квазиэкватору.
Географические меридианы изображаются кривыми, близкими к прямым линиям.
Географические параллели изображаются кривыми линиями, близкими к окружностям.
Квазикурс (Кq) – угол между квазисеверной частью квазимеридиана и направлением носовой части продольной оси судна (отсчитывается по часовой стрелке от 0° до 360°).
Для перехода от географических направлений к направлениям в квазигеографической системе координат используется угол перехода Q – угол между географическим меридианом и квазимеридианом, значение которого можно получить из треугольника АPNPNq (рис. 2).

Кq = ИК? Q
В широтах >80°, когда соs ?q ? 1, получим:
sin Q = sin ?
т.е. в высоких широтах угол перехода практически равен долготе точки.
Прокладка курса на такой карте относительно географических или квазигеографических меридианов осуществляется по формуле:
ИК = Кq + ?; Кq = ИК? ?
Для прокладки расстояний необходимо пользоваться специальными вертикальными шкалами с линейным масштабом в морских милях, находящимися за боковыми рамками карт.
Для приполюсных районов Северного Ледовитого океана (СЛО) издаются карты М 1:500.000, на которых красным цветом нанесены квазипараллели, а черным цветом – географические меридианы и параллели с двойной оцифровкой красным и зеленым цветом. Это позволяет использовать карту-сетку в двух районах, симметричных относительно географических меридианов 0°…..180° и 90°Е…..90°W.
По аналогии с нормальной проекцией Меркатора на картах и картах-сетках в поперечной проекции Меркатора прямой линией изображается квазилоксодромия – кривая на поверхности Земли, пересекающая квазимеридианы под постоянным углом Кq (при?q ? 15° ее можно принимать за кратчайшую линию).
Уравнение квазилоксодромии:
?q2 ? ?q1 = tg Кq (Dq2 ? Dq1)
где?q2 ? ?q1 – разность квазидолгот точек;
Dq2 ? Dq1 – разность квазимеридиональных частей (табл. 26 «МТ-75» или табл. 2.28а «МТ-2000»).
Если известен главный масштаб карты или карты-сетки
МГ = 1: CГ
по квазиэкватору, то частный масштаб
МТ = 1: CТ
в точке с квазиширотой?q вычисляется по формуле:
МТ = МГ sec ?qТ
или
CТ = CГ cos ?qТ
(масштаб карт увеличивается по мере удаления от квазиэкватора).
Перспективные картографические проекции
Перспективные проекции применяются для составления некоторых справочных и вспомогательных карт (обзорные карты обширных районов, ортодромические карты, ледовые карты и пр.).
Эти проекции представляют собой частный случай азимутальных проекций.
(Азимутальные проекции – проекции, в которых меридианами являются радиальные прямые, исходящие из одной точки (центральной точки) под углами, равными соответствующим углам в натуре, а параллели – концентрические окружности, проведенные из точки схождения меридианов).

Рис. 4. Перспективные проекции
В перспективных проекциях (рис. 4) поверхность Земли (сферы) переносится на картинную плоскость методом проецирования с помощью пучка прямых, исходящих из одной точки – точки зрения (ТЗ).
Картинная плоскость может отстоять от поверхности сферы на некотором расстоянии (КП1), касаться сферы (КП2), или пересекать ее.
Точка зрения (т. О) лежит в одной из точек на перпендикуляре к картинной плоскости, проходящем через центр сферы.
Точку пересечения картинной плоскости с перпендикуляром называют центральной точкой карты (ЦТ).
В зависимости от положения точки зрения (ТЗ) одна и та же точка (т. К0) будет отстоять на различных расстояниях? от ЦТ карты, что и будет определять характер искажений, присущих данной проекции.
Наиболее распространенными перспективными проекциями являются – гномоническая (центральная) и стереографическая.
В гномонической проекции точка зрения (ТЗ) совпадает с центром сферы (ТЗ — в т. О1).
Сетка меридианов и параллелей карты строится по формулам, связывающим прямоугольные координаты точек с их географическими координатами.
В зависимости от положения центральной точки (ЦТ) карты, гномоническая проекция может быть (рис. 5):
a. нормальной (полярной) – если центральная точка (ЦТ) совмещена с географическими полюсом (рис. 5а);
b. экваториальной (поперечной) – если центральная точка (ЦТ) расположена на экваторе (рис. 5б);
c. косой – если центральная точка (ЦТ) расположена в некоторой промежуточной широте (рис. 5в).

а) б) в)
Рис. 5. Гномонические проекции
Общие свойства карт в гномонической проекции:
1) большие искажения как формы, так и размеров фигур, возрастающие по мере удаления от центральной точки (ЦТ) карты, поэтому измерение расстояний и углов на такой карте затруднено.
Измеряемые по карте углы и расстояния, называемые гномоническими, могут довольно значительно отличаться от истинных значений, вследствие чего для точных измерений карты в данной проекции не применяются;
2) отрезки дуги большого круга (ортодромии) изображаются прямыми линиями, что позволяет использовать гномоническую проекцию при построении ортодромических карт.
Карты в гномонической проекции строятся, как правило, в мелких масштабах для участков поверхности Земли меньше полушария, а сжатие Земли не учитывается.
В стереографической проекции картинная плоскость касается поверхности сферы, а точка зрения (ТЗ) расположена в т. О2 (рис. 4), являющейся антиподом точки касания. Эта проекция равноугольная, однако, для решения навигационных задач она неудобна, так как основные линии – локсодромия и ортодромия – изображаются в этой проекции сложными кривыми.
Стереографическая проекция является одной из основных для построения справочных и обзорных карт обширных территорий.
Равноугольная картографическая проекция Гаусса
Равноугольная проекция Гаусса применяется для составления топографических и речных карт, а также и планшетов.
Основной картографической сеткой этой проекции является сетка прямоугольных координат.
В прямоугольной системе координат проекции Гаусса вся поверхность земного эллипсоида разбита на 60 6-ти градусных зон, ограниченных меридианами, каждая из которых имеет свое начало координат – точку пересечения осевого меридиана зоны с экватором.

Рис. 6. Равноугольная проекция Гаусса
Счет зон введется от Гринвичского меридиана к Е от № 1 до № 60. Любую заданную точку в пределах зоны (т. А – рис. 6) получают в пересечении 2-х координатных линий:
1. дуги эллипса nAn?, параллельной осевому меридиану зоны и
2. кратчайшей линии АА?, проведенной из данной точки А перпендикулярно осевому меридиану.
За начало координат в каждой зоне принимается точка пересечения осевого меридиана с экватором.
Удаление точки А? (основание перпендикуляра) от экватора определяется абсциссой Х, а удаление малого круга nn? от осевого меридиана – ординатой У.
Абсциссы Х во всех зонах отсчитываются в обе стороны от экватора («+» — к N).
Ординате У приписывается знак «плюс» (+), когда заданная точка удалена к Е (востоку) от осевого меридиана зоны, и знак «минус» (–), когда заданная точка удалена от осевого меридиана к W (западу).
Для определения отечественного номера зоны, в которой расположена заданная точка с долготой?, применяют формулу:
n = (? + 3°)/6
(ближайшее целое число от 1 до 60).
Деление долготы? производится до ближайшего целого числа (для? = 55°Е? n = 10).
Для вычисления долготы L0 осевого меридиана зоны применяют формулу:
L0 = 6 n ? 3°
(для n = 10 ? L0 = 57°Е).
N – международная нумерация зон (от меридиана 180° к востоку).
Для?E: N = n + 30 и n = N – 30 (для восточного полушария).
Для?W: N = n – 30 и n = N + 30 (для западного полушария).
В табл. 2.31а «МТ-2000» указаны значения отечественных (n) и международных (N) номеров долготных зон, их границы и долгота (?0) осевого меридиана? см. табл. 10.1.
Прямоугольная система координат применяется при производстве топографических работ, составлении топографических карт, расчете направлений и расстояний между точками при малых расстояниях.
Граничными линиями карты в проекции Гаусса служат меридианы и параллели.
Положение заданной точки на карте определяют указанием плоских прямоугольных координат Х и У.
Этим координатам соответствуют километровые линии:
Х = const – параллельна экватору, и
У = const – параллельная осевому меридиану зоны.
Плоские координаты Х и У являются функциями географических координат точки и в общем виде могут быть представлены выражениями:
X = f1 (?,l); Y = f2 (?,l)
где l – разность долгот заданной точки и осевого меридиана, т.е.
l = ? ? L0
Вид функций f1 и f2 выводится так, чтобы обеспечивалось свойство равноугольности проекции при постоянном масштабе вдоль осевого меридиана зоны.
Километровые линии – линии одинаковых значений абсцисс X = const или ординат Y = const, выраженные целым числом км.
Километровые линии (X = const и У = const) ? два семейства взаимно перпендикулярных прямых и оцифровываются соответствующими значениями координат в км. На картах в проекции Меркатора линии X изображаются кривыми, обращенными выпуклостью к полюсу, а линии Y – кривыми, выпуклостью к осевому меридиану и расходящимся по мере удаления от экватора.
Для исключения отрицательных значений ординат оцифровка осевого меридиана увеличена на 500 км.
(При Х = 6656 и У = 23612 ? заданная точка удалена от экватора по осевому меридиану на 6656 км, находится в 23-й зоне и имеет условную ординату 612, а фактически? 112 км к Е).
Прямоугольные координаты Х и У выражают обычно в метрах.
Рамки карт в проекции Гаусса разбиты на минуты по широте и долготе. Значения широт и долгот параллелей и меридианов, ограничивающих карту, надписываются в углах рамки.
Меридианы и параллели на карту не наносятся. При необходимости их можно провести через соответствующие деления минут широты и долготы на рамках карты.
Угол между километровой линией У = const и истинным меридианом называется сближением или схождением меридианов. Этот угол (?) отсчитывается от северной части истинного меридиана по часовой стрелке до северной части километровой линии У = const
Схождению меридианов приписывают знак «плюс» (+), если заданная точка расположена к Е (востоку) от осевого меридиана, и знак «минус» (–), если она расположена к W (западу) от осевого меридиана зоны.
При известных координатах? и? заданной точки угол? вычисляется по формуле:
? = (? ? L0) sin ?
где L0 – долгота осевого меридиана зоны.

Ввиду ограниченной ширины зоны кратчайшие линии на картах в проекции Гаусса, изображаются практически прямыми линиями, а масштаб по всей карте постоянен.
Эти свойства, а также наличие сетки прямоугольных координат являются главными причинами широкого применения данной проекции при всех топографических, геодезических и гидрографических работах.
Для решения задач, связанных с использованием как географических, так и прямоугольных координат точек, а также с прокладкой отрезков локсодромий, применяются карты, составленные в нормальной проекции Меркатора с дополнительно нанесенной сеткой прямоугольных координат Гаусса. Основные свойства таких карт полностью соответствуют таковым для нормальной проекции Меркатора.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top