Медицина будущего: какие технологии позволят людям победить старость, болезни и смерть? Какой будет медицина будущего Как будет развиваться медицина в будущем.

Медицина будущего: какие технологии позволят людям победить старость, болезни и смерть? Какой будет медицина будущего Как будет развиваться медицина в будущем.

На завершившемся в Сочи XIX Всемирном фестивале молодежи и студентов особое внимание уделили здравоохранению

Российские делегаты и гости фестиваля, прибывшие из 150 стран, смогли принять участие в дискуссионно-образовательной программе «Экология и здоровье», организованной Минздравом России совместно с Всероссийским общественным движением «Волонтеры-медики» при участии Всемирной организации здравоохранения. Это событие еще раз показало, что молодежная тема, тема подготовки нового поколения врачей, грамотных, целеустремленных, способных работать в медицине завтрашнего дня, - прочно заняла свое место в фокусе внимания руководителей отечественного здравоохранения.

Сегодня между различными профессиональными сферами развернулась настоящая борьба за молодых людей, выбирающих свой жизненный путь. Здравоохранение, сфера ИТ, различные инженерные и гуманитарные направления пытаются привлечь к себе внимание старших школьников и их родителей. Все понимают: энергия, талант и творчество нового поколения - залог прогресса уже в самом ближайшем будущем.

Аргументы отечественной медицины в этом споре очень весомы и не остаются без должной оценки в обществе. Прежде всего - это обновленная и проходящая сегодня через серьезные трансформации система профессионального медицинского образования. В последние годы в ней произошло несколько революционных событий. Например, были внедрены новые - третьего поколения - стандарты обучения будущих врачей. Они принципиально ориентированы на практику и предусматривают возможность регулярной модернизации программы для включения в нее новых методик и медицинских технологий диагностики и лечения. В прошлом году обучение по новым стандартам первыми завершили стоматологи и фармацевты, в этом году - студенты всех медицинских специальностей.

Затем всех выпускников медвузов, прошедших обучение по новым программам, ждала впервые появившаяся в нашей стране система допуска врачей и фармацевтов к профессиональной деятельности - аккредитация. Первичная аккредитация выпускников проводится уже второй год. Она включает в себя теоретический экзамен и практические испытания. Причем оценивают квалификацию выпускников не только их собственные преподаватели, но и практикующие врачи и руководители медицинских учреждений - их будущие работодатели. Таким образом, медицинское образование и реальная врачебная практика получают постоянно действующий механизм обратной связи. В Минздраве называют это одним из самых главных шагов к саморегуляции профессионального сообщества. Выпускники, прошедшие первичную аккредитацию, получают допуск к работе на должностях «стартового уровня» даже без интернатуры.

Еще одно важное нововведение - новый порядок поступления в ординатуру, разработанный совместно с вузовским сообществом и утвержденный приказом Минздрава. Если раньше вопрос о том, брать студента в ординатуру или нет, решал ректорат конкретного вуза, то теперь процесс будет осуществляться на основании единых для всей страны условий, что сделает процедуру более прозрачной и беспристрастной. Если говорить конкретно, то в качестве вступительного экзамена студенты теперь проходят теоретическую часть аккредитационного испытания, что исключает предвзятость (база вопросов для аккредитации едина и размещена в Интернете, а принимает экзамен та же многосторонняя независимая комиссия). Кроме того, при поступлении в ординатуру принимаются во внимание баллы за достижения во время учебы, которые также рассчитываются по единой системе (например, за получение стипендий и грантов, красный диплом и пр.). Унификация дает возможность выпускнику поступить в ординатуру любого медицинского вуза России по единым правилам.

С завершением обучения в вузе образование врачей теперь не заканчивается - в стране начала работу система непрерывного медицинского образования, использующая современные информационные технологии, возможности удаленного обучения и стажировок в ведущих клиниках и институтах. Постепенно в эту систему будет включен весь врачебный корпус страны, а полученные в ней знания необходимо будет подтверждать в ходе регулярных - раз в пять лет - реаккредитаций.

Что же касается студентов, то для них образовательный процесс, ограниченный стенами аудиторий, - хоть и важнейшая, но еще не достаточная составляющая полноценного профессионального образования. Очень важна атмосфера, в которую погружаются будущие врачи на все время своего обучения. Для создания творческой, вдохновляющей на достижения атмосферы необходимо, чтобы молодые люди могли общаться между собой на профессиональные темы, обмениваться идеями, расширять кругозор, чтобы они имели доступ к профессионалам отрасли... Поэтому в стране сегодня существует множество мероприятий, которые становятся площадками для такого общения между студентами, молодыми специалистами, корифеями врачебного дела и научными светилами. Например, начиная с 2012 года проходит ежегодный Форум студентов медицинских и фармацевтических вузов. Два года назад на нем был принят этический кодекс студентов медицинских и фармацевтических учебных заведений, который был распространен во всех высших образовательных медучреждениях страны.

В прошлом году в рамках Всероссийского молодежного образовательного форума «Территория смыслов» впервые проводилась смена для молодых ученых и преподавателей в сфере здравоохранения. Перед участниками выступили министр Вероника Скворцова и другие руководители отрасли. Участники форума разработали свою программу и план развития здравоохранения России, продумали механизмы его модернизации на муниципальном, региональном и федеральном уровнях. Победителем конкурса проектов стала разработка интернет-портала и мобильного приложения, содержащих справочную информацию, полезную молодым врачам в начале их профессиональной деятельности.

На Всемирном фестивале молодежи и студентов в рамках дискуссионно-образовательной программы «Экология и здоровье» обсуждались глобальные вопросы здравоохранения и медицинской этики, лекции читали известные представители научного сообщества и организаторы медицины. Делегатам рассказали о возможностях сферы охраны здоровья - от арктической до космической медицины, от оказания медицинской помощи в местах военных действий до амбулаторных отделений поликлиник. На симуляционных тренингах участники фестиваля «примеряли роль» директоров клиник или членов делегаций ВОЗ и, например, пытались остановить надвигающуюся эпидемию. Да что там - у них была возможность даже прочесть чужие мысли с помощью компьютера! Конкурс молодежных проектов был посвящен наиболее актуальным вопросам современного здравоохранения: от работы с «большими данными» до подготовки профессионалов для медицины завтрашнего дня. «Этот фестиваль не только помогает в налаживании международных связей, обмене знаниями и технологиями, - считает Вероника Скворцова, - но и способствует укреплению престижа профессии медицинского работника, демонстрирует молодежи, что медицина - не только ответственное занятие, но и очень увлекательное».

Программа «Экология и здоровье» разрабатывалась с участием Всероссийского общественного движения «Волонтеры-медики», которое было создано при поддержке Минздрава и сейчас стремительно растет. Сегодня, по данным Совета студентов медицинских и фармацевтических вузов при Минздраве России, в медицинских вузах страны активно действуют более 12,5 тысячи волонтеров, которые помогают не менее чем 1,2 млн пациентов. Только за последний год количество студентов, принимающих участие в волонтерских проектах, выросло на треть. В 2016 году было проведено 185 волонтерских мероприятий в детских домах, 550 - в школах, 175 - в образовательных организациях высшего и среднего образования, 555 - в домах престарелых, реабилитационных центрах и больницах, более 100 - в торговых центрах и на городских площадках. Волонтеры выполняют не только чисто медицинскую функцию, - но еще и социальную, культурную, спортивную, педагогическую, санитарно-просветительскую, даже экологическую. Например, волонтеры - очень активные доноры. В этом году около 7 тысяч студентов участвовали в сотне акций, посвященных Дню донора, и сдали в общей сложности 800 литров крови. Кроме того, волонтеры активно помогают врачам больниц и работникам «скорой», дежурят на массовых мероприятиях, чтобы в случае чего оказать зрителям первую помощь, информируют население о болезнях и факторах риска, привлекают внимание к социально значимым проблемам здравоохранения. Еще волонтеры из различных вузов встречаются и общаются как между собой, так и с представителями НКО, госучреждений, бизнес-структур. Ежегодно проходит Всероссийский съезд движения «Волонтеры-медики». Лучшие 250 волонтеров-медиков со всей страны прошли сертифицированный курс обучения в Государственном научно-исследовательском центре профилактической медицины Минздрава России. В этом году на базе РНИМУ им. Н.И. Пирогова был создан Федеральный центр поддержки добровольчества в сфере охраны здоровья. Его основная цель - помощь волонтерским движениям и методическая поддержка, продвижение добровольческих инициатив, а также объединение их ресурсов для крупных проектов в сфере охраны здоровья.

Стремительно модернизируемое и настраиваемое на использование самых передовых технологий медицинское образование, заинтересованное отношение молодых людей к освоению своей профессии, их активное участие в волонтерских проектах и медицинских форумах, возросший интерес к профессии врача в обществе - все это вселяет обоснованную надежду не только на будущее медицины в нашей стране, но и на укрепление здоровья всего общества. И не только в сугубо медицинском смысле.

Революционные изменения происходят сегодня в различных сферах. Медицина в этом плане также старается не отставать, не смотря на свою традиционную консервативность. Новые препараты, новые методы лечения, новые технологии внедряются в медицину. Большинство устаревших методов лечения не обходятся без радикальных изменений.

То, что мы могли увидеть пару лет назад только в книгах фантастики, сегодня бурно обсуждается на медицинских конференциях, посвященных инновациям. Большой упор делается в последнее время на компьютерные технологии, которые внедряются в хирургию, используются для терапевтических и диагностических целей.

В медицине будущего важную роль отводят не лечению заболеваний, а их профилактике и раннему прогнозированию . Большое развитие получает внедрение диагностических приборов. Прогнозирование заболевания дает возможность экономить на лечении больного.

Благодаря интернету можно проводить консультации дистанционно, что экономит время не только пациента, но и врача.

Персональная электронная медицинская карта

Одним из этапов совершенствования современной медицины является персонализация данных и повышение коммуникации между врачами. Легкий доступ к истории болезни, позволяет назначать своевременное эффективное лечение.

Ведение медицинских карт постепенно может перейти в сеть. «Облачный» софт используется для хранения больших объемов информации в интернете. Благодаря интернету врачи разных клиник получают доступ к данным пациента. Электронные медицинские карты дают возможность своевременно узнавать о здоровье больного, назначать эффективное лечение. Связывание оборудования медицинского учреждения в единую сеть позволит получать данные обследования на портативные устройства врачей. В Соединенных Штатах Америки некоторые клиники уже работают по такому принципу. У врачей имеются планшеты, на которые поступает информация о пациенте: какие лекарства прописаны, результаты анализов и т.д.

Внедрение интернет-технологий экономит время пациента и врача. Не надо добираться до поликлиники, стоит только включить компьютер и можно связаться с медицинским учреждением. Некоторые врачи в России уже сейчас практикуют консультации по Skype . Видеозвонки дают возможность не только произвести опрос, но и сделать общий осмотр, что часто достаточно для общего представление о здоровье человека. Если все-таки необходима встреча с врачом, то записаться на прием можно также через интернет. Такой сервис можно уже сегодня встретить в некоторых клиниках, в том числе и в Москве.

Как будет проводиться диагностика заболеваний в будущем

Развитие медицинских технологий идет к тому, чтобы люди могли бы следить за своим здоровьем самостоятельно. Сегодня в каждом доме можно увидеть тонометры . Больные сахарным диабетом используют портативные глюкометры .

Аппараты для измерения давления, весы и другое портативное оборудование оснащается беспроводными передатчиками, которые позволяют данные сразу переносить на компьютер и вести учет за своим здоровьем.

К списку публикаций

Технологии замены суставов и костей прошли долгий путь за последние десятилетия, части на пластиковой и керамической основе взяли верх над металлическими частями, а новейшее поколение искусственных костей и суставов заходит еще дальше: их будут делать из биоматериалов, чтобы они практически слились с телом.

Это стало возможным, конечно же, благодаря 3D-печати (к этой теме мы будем возвращаться неоднократно). Хирурги главного госпиталя Саутгемптона в Великобритании изобрели технику, с помощью которой имплант бедра пожилого пациента удерживается на месте с помощью «клея», изготовленного из собственных стволовых клеток пациента. Кроме того, профессор Университета Торонто Боб Пиллиар вывел процесс на новый уровень, создав импланты нового поколения, которые на самом деле имитируют кость человека.

Используя процесс, который связывает компонент кости на замену (с применением ультрафиолетового света) в невероятно сложные структуры с чрезвычайной точностью, Пиллиар и его команда создает крошечную сеть каналов и траншеек, по которым перевозятся питательные вещества в самом импланте.

Выращенные костные клетки пациента затем распределяются по этой сети, замыкая кость с имплантом. Со временем компонент искусственной кости растворяется, а выросшие естественным образом клетки и ткани сохраняют форму импланта.

Крошечный кардиостимулятор


С момента имплантации первого кардиостимулятора в 1958 году, эта технология, конечно, значительно улучшилась. Впрочем, после гигантских скачков в развитии в 1970-х, в середине 80-х все как-то застопорилось. Компания Medtronic, которая создала первый кардиостимулятор, работающий на батарейке, выходит на рынок с устройством, которое может произвести такую же революцию в области кардиостимуляторов, как и ее первое устройство. Оно размером с витаминку и не требует хирургического вмешательства.

Эта новая модель вводится через катетер в паху (!), крепится к сердцу маленькими зубцами и поставляет необходимые регулярные электрические импульсы. В то время как обычные кардиостимуляторы, как правило, требуют сложного хирургического вмешательства, создания «кармашка» для устройства рядом с сердцем, крошечная версия существенно упрощает эту процедуру и снижает частоту осложнений на 50%: 96% пациентов не выявляли никаких признаков осложнений.

И хоть Medtronic вполне может быть первым на этом рынке (имея полученное одобрение FDA), другие крупные производители кардиостимуляторов разрабатывают конкурентные устройства и не собираются оставаться за пределами рынка, годовой объем которого составляет 3,6 миллиарда долларов. Medtronic начала разработку крошечных спасителей в 2009 году.

Глазной имплант от Google


Вездесущий провайдер поисковой системы и мировой гегемон Google, похоже, планирует интегрировать технологии в каждый аспект нашей жизни. Впрочем, стоит признать, что вместе с кучей хлама Google выдает на-гора и стоящие идеи. Одно из последних предложений Google может как изменить мир, так и превратить его в кошмар.

Проект, который известен как Google Contact Lens, представляет собой контактную линзу: имплантируясь в глаз, она заменяет естественный хрусталик глаза (который разрушается в этом процессе) и приспосабливается, исправляя плохое зрение. Линза крепится к глазу с помощью того же материала, который используется при производстве мягких контактных линз, и имеет множество практических медицинских применений - вроде считывания кровяного давления пациентов с глаукомой, уровней глюкозы у пациентов с диабетом или беспроводного обновления с учетом ухудшений зрения пациента.

В теории, искусственный глаз Google может полностью восстановить зрение. Конечно, это еще не камера, которая имплантируется прямо вам в глаза, но поговаривают, что к этому все идет. Кроме того, непонятно, когда линза появится на рынке. Но патент был получен, а клинические испытания подтвердили возможность процедуры.


За последние десятилетия достижения в области создания искусственной кожи явили нам существенный прогресс, но два недавних прорыва из совершенно разных областей могут открыть новые направления для исследований. Ученый Роберт Лангер из Массачусетского технологического института разработал «вторую кожу», которую назвал XPL («сшитый полимерный слой»). Невероятно тонкий материал имитирует упругую молодую кожу - этот эффект проявляется мгновенно при создании, но теряет силу примерно через день.

А вот профессор химии Чао Вонг из Калифорнийского университета в Риверсайде работает над еще более футуристическим полимерным материалом: который может самовосстанавливаться от повреждений при комнатной температуре и пронизан крошечными металлическими частицами, которые могут проводить электричество, для лучших измерений. Профессор уверяет, что не пытается создать кожу для супергеров, но признает, что является большим фанатом Росомахи и пытается привнести научную фантастику в настоящий мир.

Что примечательно, некоторые самовосстанавливающиеся материалы уже появились на рынке - например, самовосстанавливающееся покрытие телефона LG Flex, которое Вонг приводит в качестве примера возможного применения таких технологий в будущем. Короче говоря, этот чувак действительно пытается создать супергероев.

Импланты мозга, восстанавливающие двигательные способности


Двадцатичетырехлетний Ян Буркхарт пережил ужасную аварию в возрасте девятнадцати лет, которая парализовала его от груди до пальцев ног. В течение последних двух лет он работал с докторами, которые настраивали и экспериментировали с устройством, имплантированным в его мозг - микрочипом, который считывает электрические импульсы мозга и переводит их в движение. Хоть устройство и далеко от совершенства - его можно использовать только в лаборатории, когда имплант подключен к компьютеру с помощью рукава на руке - оно позволило пациенту свинтить крышку с бутылки и даже поиграть в видеоигру.

Ян признает, что может и не получить выгоду от этих технологий. Он делает это больше чтобы доказать возможность концепции и показать, что его конечности, разъединенные с мозгом, можно заново к нему подключить с помощью посторонних средств.

Впрочем, вполне вероятно, что его помощь хирургии головного мозга и эксперименты, которые проводят по три раза в неделю, окажут огромную поддержку в продвижении этой технологии для будущих поколений. Хотя подобные процедуры использовались для частичного восстановления движений обезьян, это первый пример успешного преодоления нервного разъединения, которое вызывает паралич у человека.

Биоабсорбируемые трансплантаты


Стенты - сетчатые полимерные трубки, которые вставляются хирургическим путем в артерии, препятствуя их блокированию - сущее зло, которое приводит к осложнениям у пациента и демонстрируют умеренную эффективность. Потенциал осложнений, особенно у молодых пациентов, делает результаты недавнего исследования с участием биоабсорбируемых сосудистых трансплантатов весьма перспективными.

Процедура называется эндогенное восстановление тканей. Давайте простыми словами: в случае с молодыми пациентами, которые родились без некоторых необходимых соединений в сердце, врачи смогли создать эти соединения, используя продвинутый материал, который выступает в качестве «лесов», позволяя телу копировать его структуру с помощью органических материалов, а сам имплант впоследствии растворяется. Исследование было ограниченным, с участием всего пятерых молодых пациентов. Но все пятеро выздоровели без каких-либо осложнений.

Хотя эта концепция не нова, новый материал (состоящий из «супрамолекулярных биоабсорбируемых полимеров, изготовленных с использованием проприетарной технологии электропрядения») представляет собой важный шаг вперед. Стенты предыдущего поколения состояли из других полимеров и даже металлических сплавов и выдавали смешанные результаты, что привело к медленному принятию этого метода лечения во всем мире.

Хрящ из биостекла


Еще одна 3D-печатная полимерная конструкция может произвести революцию в методах лечения весьма изнурительных заболеваний. Группа ученых из Имперского колледжа Лондона и Университета Милано-Бикокка создали материал, который назвали «биостеклом»: комбинацию кремний-полимера, имеющую прочные и гибкие свойства хряща.

Биостеклянные импланты напоминают стенты, о которых мы говорили выше, но делаются из совершенно другого материала для совершенно другого применения. Одним из предложенных использований таких имплантов является выстраивание лесов для поощрения естественного выращивания хряща. Также они обладают саморегенерацией и могут восстанавливаться, если связи будут разорваны.

Несмотря на то, что первым испытанием метода будет замена межпозвоночного диска, другая - постоянная - версия импланта находится в стадии разработки для лечения травм колена и других травм в районах, где хрящ уже не отрастить. делает импланты более дешевыми и доступными в производстве и еще более функциональными, чем другие импланты этого типа, которые доступны нам в настоящее время и, как правило, выращиваются в лаборатории.

Самовосстанавливающиеся полимерные мышцы


Чтобы не отставать от коллег, стэнфордский химик Ченг-Хи Ли в поте лица работает над материалом, который может быть строительным блоком для фактической искусственной мышцы, которая может превзойти в качествах наши хилые мускулы. Его соединение - подозрительно органическое соединение кремния, азота, кислорода и углерода - способно растягиваться до 40-кратной своей длины, а после возвращаться в нормальное положение.

Также оно может восстанавливаться от проколов за 72 часа и заново закрепляться после разрывов, вызванных железной «солью» в компоненте. Правда, для этого части мышцы нужно поместить рядом. Куски пока не ползут друг к другу. Пока.

На текущий момент единственным слабым местом этого прототипа является его ограниченной электропроводность: при воздействии электрического поля вещество увеличивается всего на 2%, в то время как настоящие мышцы - на 40%. Это должно быть преодолено в кратчайшие сроки - и тогда Ли, ученые с биостеклянными хрящами и доктор Росомаха смогут собраться вместе и обсудить, что делать дальше.


Этот метод, который изобрел Дорис Тейлор, директор регенеративной медицины в Техасском институте сердца, не сильно отличается от упомянутых выше 3D-печатных биополимеров и прочего. Метод, который доктор Тейлор уже продемонстрировал на животных - и готов продемонстрировать на людях - совершенно фантастический.

Если коротко, сердце животного - свиньи, например - замачивается в химической ванне, которая разрушает и высасывает все клетки, кроме белка. Остается пустой «призрак сердца», который затем можно наполнить собственными стволовыми клетками пациента.

Как только необходимый биологический материал оказывается на месте, сердце подключается к устройству, которое заменяет искусственную систему кровообращения и легкие («биореактор»), пока не станет функционировать как орган и его можно будет пересадить пациенту. Этот метод Тейлор успешно продемонстрировал на крысах и свиньях.

Этот же метод имел успех и с менее сложными органами вроде мочевого пузыря и трахеи. Впрочем, процесс далек от совершенства, но когда его достигнет, очереди пациентов, ожидающих сердца для пересадки, могут прекратиться полностью.

Инъекция мозговой сети


Наконец у нас есть передовая технология, способная быстро, просто и совершенно опутать мозг сетью с помощью одной инъекции. Исследователи из Гарвардского университета разработали электропроводящую полимерную сеть, которая буквально впрыскивается в мозг, где проникает в его закоулки и сливается с веществом мозга.

Пока что сеть, состоящая из 16 электрических элементов, была пересажена в мозг двух мышей на пять недель без иммунного отторжения. Исследователи предсказывают, что крупномасштабное устройство такого плана, состоящее из сотен подобных элементов, может активно контролировать мозг до каждого отдельного нейрона в ближайшем будущем и пригодится при лечении неврологических расстройств вроде болезни Паркинсона и инсульта.

В конце концов, это исследование может привести ученых к более глубокому пониманию высших когнитивных функций, эмоций и других функций мозга, которые в настоящее время остаются непонятными.

В середине июня 2019 года консалтинговая компания Accenture выпустила исследование Digital Health Tech Vision, посвящённое использованию технологий в здравоохранении. По мнению экспертов, больницы и другие медицинские учреждения должны готовить себя к использованию блокчейна , искусственного интеллекта , дополненной реальности и квантовых вычислений .

К середине 2019 года эти технологии, которые в Accenture объединяют аббревиатурой DARQ (с англ. distributed ledger technology, AI, augmented reality и quantum computing), находятся на ранней стадии развития в медицинском секторе, однако в дальнейшем они смогут трансформировать здравоохранение .

2018: Как изменится здравоохранение к 2030 году: 5 технотрендов

В отчете компании Aruba (входит в HPE), вышедшем в апреле 2018 года, утверждается, что в течение 10 лет, по мере того как организации здравоохранения будут менять подход к оказанию услуг пациентам, внедряя технологии Интернета вещей , процедура медицинского осмотра изменится таким образом, что пациенты будут больше взаимодействовать с датчиками, камерами и роботизированным оборудованием, а не с врачами и медсестрами.

Отчет «Создание больницы 2030 года» (`Building the Hospital of 2030`) содержит результаты опроса высшего руководства организаций здравоохранения и футурологов. Он демонстрирует высокую вероятность и необходимость создания интеллектуальных рабочих пространств в области здравоохранения, которые будут включать в себя мобильные устройства, облачные технологии и технологии Интернета вещей. Кроме того, в отчете описывается, как эти изменения отразятся на обслуживании пациентов и повышении уровня клинической медицины.

В исследовании высказываются пять основных предположений по поводу того, как изменится здравоохранение к 2030 году.

1. Самодиагностика. Специальные мобильные приложения, носимые устройства и инструменты позволят видеть результат диагностики, следить за состоянием своего здоровья и даже самостоятельно делать снимки. Таким образом, пациенты получат возможность проводить диагностику широкого спектра заболеваний в домашних условиях без посещения больниц или поликлиник.

2. Автоматизированная больница. В приемных отделениях будут использоваться технологии обработки изображений и датчики, определяющие частоту сердечных сокращений, температуру тела и частоту дыхания, когда пациент входит в учреждение, а также устройства, которые смогут измерить кровяное давление и сделать ЭКГ в течение 10 секунд. Благодаря этому можно будет автоматически определять очередность оказания медицинской помощи и даже в тот же момент ставить диагноз.

3. Увеличение свободного времени медицинских работников вдвое. Врачи и медсестры, которым сейчас приходится тратить до 70% времени на административные процессы, смогут быстро анализировать снимки и истории болезни на мобильных устройствах. Благодаря этому у них появится значительно больше времени, которое они смогут уделять уходу за пациентами.

4. Хранилища цифровых данных. Цифровые карты пациентов будут интегрированы в устройства, что позволит автоматически обновлять информацию о состоянии здоровья и плане лечения. Таким образом медицинский персонал, сможет оперативно получать более полные данные в реальном времени для принятия оптимальных решений.

5. Принятие искусственного интеллекта. Искусственный интеллект (ИИ) будет играть все более важную роль в диагностике и лечении, а поддержка новых технологий со стороны общества вырастет. Люди будут охотнее соглашаться на автоматизированное обследование, при условии, что услуги будут разрабатываться и внедряться с учетом интересов пациентов, им разъяснят преимущества, а согласие на процедуру будет предварительно запрошено.

Профессор Университетского колледжа Лондона д-р Хью Монтгомери (Hugh Montgomery) рассказывает о возможностях повышения уровня медицинского обслуживания с помощью искусственного интеллекта:


Маниш Джунеджа (Maneesh Juneja), футуролог, занимающийся прогнозами в области цифровой медицины, делится мнением о перспективах самостоятельного медицинского ухода:

«Предположим, через 10 лет у вас будет выявлен диабет или повышенное артериальное давление. После этого вы сможете контролировать прием лекарств, и вам не нужно будет так часто посещать медицинские учреждения для корректировки плана лечения. Система будет удаленно анализировать ваше состояние в реальном времени, определять отклонения от режима питания или курса лечения и отправлять вам цифровые уведомления на умные часы или очки дополненной реальности ».

Согласно отчету Aruba, такие возможности совсем не относятся к научной фантастике. Подобное развитие технологий сможет сыграть решающую роль в улучшении ухода за населением преклонного возраста (по данным ООН, к 2030 году количество людей в мире в возрасте от 60 лет вырастет на 56%) и существенно повысить потребность в более качественных медицинских услугах.


Создатели отчета отмечают, что организации здравоохранения уже делают первые шаги по внедрению цифровых технологий, осознавая потребность в модернизации. Согласно исследованию Aruba, около двух третей медучреждений (64%) начали подключать приборы для контроля за состоянием пациентов к своей сети, а 41% организаций - устройства диагностической визуализации и рентгеновские аппараты. Эти активности являются этапами реализации стратегии Интернета вещей, которая предполагает объединение в сеть миллионов медицинских, носимых и мобильных устройств, эффективно обменивающихся актуальной информацией и обеспечивающих более качественное медицинское обслуживание.

Однако этот подход по состоянию на 2018 год сопряжен с определенными рисками. 89% организаций здравоохранения, которые реализуют стратегию Интернета вещей, столкнулись с утечками данных. В связи с распространением огромного количества новых устройств в ближайшие 10 лет основной проблемой для организаций станет сохранение пристального внимания ко всем устройствам, подключенным к сети и обменивающимся медицинскими данными, для контроля за выполнением строгих правил безопасности.

22.12.2015

Здоровье человека — это наукоемкая индустрия, которая развивается с невероятной скоростью. Как ее изменят новые технологии и кто будет востребован на рынке труда в течение 20 следующих лет? «Учёба.ру» ставит диагноз будущему медицины.

За последние 100 лет наука спасения человеческих жизней сделала огромный шаг вперед, проникнув в тайны человеческого тела и психики. Она научилась бороться с инфекционными заболеваниям, разработала пластическую хирургию, освоила новые средства хирургического вмешательства, шла нога в ногу с последними достижениями миниатюризации. Мы больше не болеем оспой, забыли, что такое чума, знаем, как пересаживать сердце. Все это привело к тому, что в течение XX века средняя продолжительность жизни на планете выросла с 35 до 65 лет.

Медицина продвинулась очень далеко в решении самых разных проблем, связанных со здоровьем человека, но, увы, не решила их все. Сегодня перед ней стоят вызовы не меньшего масштаба чем век назад. До сих пор не покорен рак, неизвестные ранее вирусы возникают с завидной регулярностью, антибиотики теряют свою силу, новые привычки и образ жизни приносят новые болезни. При этом мы находимся в эпицентре генетической революции, усиленно изучаем структуру мозга, надеемся на большие данные и роботов, ждем прорывов в борьбе со старением. Тот, кто сегодня планирует связать свою жизнь с медициной, должен повнимательнее присмотреться к передовому краю ее развития и понять, как она может измениться к 2035 году.

Робот-хирург Da Vinci

Основным поставщиком новых технологий и профессий во всех областях человеческого труда сегодня являются информационные технологии. Врачи не исключение. Медицинские учреждения поголовно переходят с аналогового учета на цифровой, осваивают системы компьютерного анализа и прогнозирования. Тектонические сдвиги в системе здравоохранения в обозримом будущем связаны с возрастающей мощностью вычислений и работой с большими данным. В 2015 году компания Google объявила о запуске первого квантового компьютера D-Wave. Каким он будет через 20 лет, можно только гадать, но совершенно точно - очень и очень быстрыми. Таким скоростям и объемам понадобятся специалисты с продвинутым знанием IT, которые в состоянии управлять огромными массивами данных и заниматься их поддержкой - в будущем IT-медики и аналитики будут востребованы в медицине не меньше, чем медсестры или стоматологи.

Рука об руку с суперкомпьютерами идут системы автоматизации и робототехнические комплексы. Роботы-хирурги Da Vinci, выполняющие операция различной сложности, главным образом гистерэктомии и простатэктомии, уже присутствуют в более чем 2000 медицинских учреждений, 25 из которых находятся в России. Эти машины еще не полностью автономны, и вряд ли станут такими в скором времени. Они нуждаются в квалифицированных инженерах и операторах с навыками программирования - профессиях, которые точно будут необходимы и через 20 лет. Хирург и изобретатель из MIT Катерина Мор рассказывает в своей лекции на TED о том, что роботы могут дать врачами настоящие суперспособности, - а ведь их использование в медицине еще даже не начиналось.

Сетевые технологии и компьютеризация отрасли выводит на первый план персонализированные медицинские сервисы. Развитие трикодеров, аппаратов, способных ставить диагнозы автономно от врача, мобильных приложений и нательных датчиков-гаджетов только добавит масла в огонь. Известный генетик и исследователь цифровой медицины Эрик Тополь называет этот процесс «эмансипацией пациента» и считает, что информация и быстрая экспертиза вскоре будет не только доступна каждому без посещения кабинета доктора, но и позволит предсказывать и предотвращать большинство серьезных заболеваний на лету.

Здравоохранение выйдет за порог поликлиник и больниц, разгрузив их от мелких процедур и ненужной бюрократии. Так сформируется огромный рынок персонализированной терапии. Личные онлайн-врачи существуют и сегодня, но в течение ближайших десятилетий именно они будут доминировать в профессиональной среде. Ни один заинтересованный в здоровом образе жизни человек не откажется от мгновенного доступа к экспертному мнению, особенно, если для этого существует удобная платформа, а средства диагностики находятся под рукой. Работа врача будет схожа с работой персонального тренера и психоаналитика. Чтобы построить успешную карьеру в таком мире, понадобится квалификации, которые сегодня преподаются не в медицинских, а маркетинговых институтах - клиенториентированность и умение работать с людьми.


Дмитрий ШАМЕНКОВ,

врач, основатель «Системы управления здоровьем»,

эксперт по разработке и внедрению новых технологий в медицине,

член Экспертной коллегии Фонда развития Инновационного центра

«Сколково» по биомедицинским проектам.

«В вопросах здравоохранения не стоит отделять Россию от всего мира. Мы имеем те же самые проблемы, что и граждане европейских стран, стран Азии или Америки. Новые вызовы возникают очень быстро, однако на подходе новые решения. Думаю, что в ближайшем будущем стоит уделить внимание интеграции медицины и других наук. В первую очередь, биотехнологий, информационных технологий и когнитивных технологий. Появление новых материалов, роботехнических устройств, глубокого машинного обучения, генной инженерии, развитие социальных сетей и искусственного интеллекта полностью и непредсказуемым образом меняют нас самих и наш подход к медицине.

Уверенно можно сказать, что медицина будущего - это информационная медицина, ориентированная на раннюю профилактику и высокотехнологичное протезирование. Я думаю, что доктор будущего - это сеть саморегулируемых квантовых компьютеров, глубоко изучивших геном человечества, наши поведенческие характеристики, а также все научные исследования, когда-либо проведенные нами. Главная проблема, которую останется решить человеку в будущем - это научиться жить свободным от диктата такой системы. Чтобы успеть это сделать, учиться нужно уже сегодня. Мы живем в самое удивительное время за всю историю человечества».

Процесс персонализации медицины будет подхвачен прорывами в области генетики. В начале XXI века был завершен международный проект «Геном человека» по расшифровке ДНК. Исследования обошлись в 3 млрд долларов, а уже через 15 лет стоимость персонального секвенирования генома упала ниже 1000 долларов. Через 20 лет эта процедура будет проводиться в момент рождения, и каждый будет знать особенности своего генома, как группу крови. На рынке труда появятся консультанты-генетики. Они помогут в интерпретации результатов, проанализируют общее состояние здоровья и отправят пациента к нужному специалисту.

Схема работы CRISPR/Cas9

Еще интереснее, как новые технологии в области генетических исследований затронут здоровье человека напрямую. Например, наделавшая много шума система CRISPR/Cas9 - метод монтирования ДНК, который уже сегодня позволяет манипулировать генами напрямую. На данный момент технология выступает подспорьем в борьбе с тяжелыми болезнями и открывает фантастические перспективы в области перестройки ДНК эмбрионов. И хотя до полного понимания влияния механизмов работы человеческого генома на здоровье пока далеко - требуются дополнительные исследования - генетика кардинально меняет лицо медицины. «Это больше не научная фантастика», - так доктор Джордж Дэйли из Гарвардской медицинской школы характеризует происходящие изменения. В течение 20 лет CRISPR/Cas9 станет тем более обычным делом, требующим квалифицированных специалистов.

Генетические манипуляции и некоторые другие новые технологии, вроде пересадки лица, нейробиологии и изготовления искусственных органов, потребуют от общества поисков новых норм и правил регулирования медицинской отрасли. Для этого понадобятся эксперты с кардинально новым багажом знаний - медицинских, философских, социальных и политических. Сегодня это направление известно как «биоэтика» и уже появилось в программах ведущих университетов. Востребованность специалистов, обеспечивающих этические рамки работы с новыми технологиями, будет расти с каждым новым научным прорывом. Клонирование, трансплантология, моделирование ДНК, эвтаназия и другие чувствительные вопросы будут решаться под пристальным надзором специалистов в области биоэтики.

Кроме генетики, наука предоставит медицинской отрасли ряд специалистов в области биоимиджинга, таргетированой терапии, нейробиологии, оптогенетики, регенеративной медицины и нанотехнологий. Эти научные области сегодня вызывают наибольший интерес не только у экспертов, но и у бизнес-сообщества. Предприниматель и член стратегического комитета ИНВИТРО Сергей Шуплецов отмечает, что «в ближайшие 15 лет многие механические технологии будут вытеснены биотехнологиями. В первую очередь, это коснется здоровья. К примеру, будут изобретены препараты, которые нельзя назвать в полной мере лекарственными. Они будут контролировать и стимулировать естественные защитные силы организма».

Особенно хорошо в России представлены технологии 3D-биопринтинга. Так, российские специалисты одними из первых напечаталио рганный конструкт щитовидной железы мыши с помощью российского же биопринтера Fabion. Биопечать - это процесс воссоздания с копии органа на основе живых клеток организма. «Волшебство» происходит в специальном многофункциональном устройстве, чей масштаб совсем скоро дорастет до человеческих нужд. Лидеры индустрии в России - первая отечественная частная лаборатория, работающая в области трехмерной органной биопечати, 3D Bioprinting Solutions. Успешные опыты сегодня свидетельствуют о том, что через 20 лет в этом поле не будет недостатка работы.


Чтобы расширить понимание процессов, в результате которых происходит поражение клеток, и получить новые инструменты противодействия тяжелым заболеваниям, важно развитие новых техник лабораторных наблюдений, наподобие биоимиджинга. Российские специалисты преуспели и в этой области. Представители ИПФ РАН делают одни из самых качественных установок для флуоресцентного биоимджинга, которые играют большую роль в онкологических исследованиях и фармакологии. Другие актуальные разработки в области биотехнологий касаются наночипов, стволовых клеток и нейроинтерфесов. Специалисты в этих областях сегодня ценятся на вес золота и не потеряют свой статус до 2035 года.

Развитие современной медицины и общее повышение уровня жизни привели к тому, что демографическая структура населения сильно поменялась. В развитых и развивающихся странах появляется всё больше пожилых людей. По данным Росстата, к 2030 году треть населения России будет пенсионного возраста. Вероятно, это не предел, учитывая развитие совершенно новой области знаний - life science, которая ставит своей целью увеличить продолжительность жизни или вовсе победить старение. Группа филантропов во главе в Юрием Мильнером и Марком Цукербергом ежегодно вручает премию Breakthrough Prize и 3 млн долларов лучшим исследователям именно в этом направлении. Идея, что человек может, в среднем, жить больше 100 лет, находит всё больше приверженцев среди серьезных ученых.

Изменение демографической ситуации окажет заметное влияние на здравоохранение будущего. Во-первых, это приведет к появлению нового типа медицинских работников - специалистов по достойной старости, чьи способности и знания будут нарасхват в обществе, где доминируют люди старше 60 лет. Во-вторых, наука о продлении жизни сможет серьезно изменить структуру отрасли, став буфером всех новых технологий, которые будут необходимы стареющему населению для поддержания высокого качества жизни: от пластической хирургии до биопечати новых органов взамен обветшавших. Спрос на качественные медицинские услуги будет пропорциоанльно расти.

Медицину ждут большие, но вполне прогнозируемые перемены. Следующие 20 лет станут эпохой персонализации, компьютеризации и биотехнологизации отрасли. Это не значит, что индустрия испытает серьезный кризис. Совсем наоборот. Новые технологии скорее приоткрывают перед человечеством золотую эру здравоохранения. Всё больше болезней поддаются лечению. Затраты на здоровье растут с каждым годом. Инновации расширяют рынок медицинских услуг, добавляя россыпь новых рабочих мест, а процессы автоматизации пока не угрожают даже самому низкоквалифицированному персоналу. В будущем медицина останется при лучших своих качествах - будет интересной, благородной и выгодной профессией, и главное - на любой вкус.

Врачи будущего

IT-медик Специалист по биоэтике Хирург-оператор
Специалист в области IT, баз данных и медицинского программного обеспечения. Изучает и решает спорные медицинские вопросы с точки зрения закона и морали. Оператор автоматизированных хирургических систем.
Генетический консультант ДНК-хирург Онлайн-терапевт
Занимается проведением генетического анализа и интерпретацией его результатов. Специалист в области монтирования ДНК и манипуляции с генами. Специалист широкого профиля, оказывающий персональные медицинские услуги в удаленном режиме.
Эксперт в области life science Специалист по трансляционной медицине Клинический геронтолог
Специалист, занимающийся вопросами максимизации здорового образа жизни и ее продления. Способствует переносу фундаментальных исследований в биомедицине в общую медицинскую практику. Специалист по здоровой старости.
Тканевый инженер
Профессионал в области биопечати.


Точки входа в медицину будущего в России

Российское медицинское образование сегодня продолжается от шести до 18 лет. Сразу после вузовской «шестилетки» выпускники могут стать только терапевтами или педиатрами. Постдипломное образование для получения специальности займет еще от двух до пяти лет. Дольше всего учатся те, кто хочет стать доктором наук: в этом случае продолжительность образования будет сравнима с продолжительностью жизни человека, достигшего совершеннолетия.

Учёба.ру


Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top