Опухоли новообразования. Опухоли: причины развития, строение и классификация

Опухоли новообразования. Опухоли: причины развития, строение и классификация

Иммунитет человека представляет собой врожденную или приобретенную защиту внутренней среды от проникновения и распространения вирусов и бактерий. Хорошая иммунная система способствует формированию крепкого здоровья и стимулирует умственную и физическую активность индивида. Подробнее разобраться с особенностями формирования и выработки иммунитета поможет представленная публикация.

Из чего состоит иммунитет человека?

Иммунная система человека — представляет собой сложный механизм, состоящий из нескольких видов иммунитета.

Виды иммунитета человека:

Естественный — представляет собой переданную по наследству невосприимчивость человека к определенного рода заболеваниям.

  • Врожденный — передается индивиду на генетическом уровне от потомков. Подразумевает под собой передачу не только устойчивость к некоторым заболеваниям, но и предрасположенность к развитию других (сахарный диабет, онкологические заболевания, инсульт);
  • Приобретенный — формируется в результате индивидуального развития человека в течение жизни. При попадании в человеческий организм вырабатывается иммунная память на основании которой при повторном заболевании ускоряется процесс выздоровления.

Искусственный — выступает в качестве иммунной защищенности, которая формируется в результате искусственного воздействия на иммунитет индивида посредством осуществления вакцинации.

  • Активный — защитные функции организма вырабатываются в результате искусственного вмешательства и введения ослабленных антител;
  • Пассивный — образуется путем передачи антител с молоком матери или в результате осуществления инъекции.

Помимо перечисленных видов устойчивости к заболеваниям человека выделяют: локальный и общий, специфический и неспецифичекий, инфекционный и неифекционный, гуморальный и клеточный.

Взаимодействие всех видов иммунитета обеспечивает правильное функционирование и защиту внутренних органов.

Немаловажной составляющей устойчивости индивида являются клетки, которые выполняют важные функции в организме человека:

  • Выступают основными составляющими клеточного иммунитета;
  • Регулируют воспалительные процессы и реакции организма на проникновение болезнетворных микроорганизмов;
  • Принимают участие в восстановлении тканей.

Основные клетки иммунитета человека:

  • Лимфоциты (Т лимфоциты и В лимфоциты) , ответственные за выработку клеток Т — киллеров и Т — хелперов. Оказывают защитные функции внутренней клеточной среды индивида посредством обнаружения и предотвращения распространения опасных микроорганизмов;
  • Лейкоциты — при оказании воздействия на инородные элементы отвечают за выработку специфических антител. Образованные клеточные частицы выявляют опасные микроорганизмы и ликвидируют их. Если чужеродные элементы больше по размеру, чем лейкоциты, то они выделяют специфической вещество, посредством которого уничтожаются элементы.

Также клетками иммунитета человека являются: Нейтрофилы, Макрофаги, Эозинофилы.

Где находится?

Иммунитет в организме человека вырабатывается в органах иммунной системы, в которых формируются клеточные элементы, находящиеся в постоянном движении по кровеносным и лимфатическим сосудам.

Органы иммунной системы человека относятся к категориям центральных и специфических, реагируя на разные сигналы они оказывают воздействие посредством рецепторов.

К центральным относятся:

  • Красный костный мозг — основополагающей функцией органа является выработка кровеносных клеток внутренней среды человека, а также крови;
  • Тимус (вилочковая железа) — в представленном органе происходит формирование и отбор Т — лимфоцитов посредством выработанных гормонов.

К периферийным органам относят:

  • Селезенка — место хранения лимфоцитов и крови. Участвует в разрушении старых кровяных клеток, образовании антител, глобулинов, поддержании гуморального иммунитета;
  • Лимфоузлы — выступают местом хранения и накопления лимфоцитов и фагоцитов;
  • Миндалины и аденоиды — являются скоплениями лимфоидной ткани. Представленные органы несут ответственность за выработку лимфоцитов и защиту дыхательных путей от проникновения инородных микробов;
  • Аппендикс — принимает участие в формировании лимфоцитов и в сохранении полезной микрофлоры организма.

Как вырабатывается?

Иммунитет человека имеет сложное строение и осуществляет защитные функции, препятствующие проникновению и распространению чужеродных микроорганизмов. В процессе оказания защитных функций участвуют органы и клетки иммунной системы. Действие центральных и периферийных органов направлено на формирование клеток, которые принимают участие в выявление и уничтожение инородных микробов. Реакцией на проникновение вирусов и бактерий является воспалительный процесс.

Процесс выработки иммунитета человека заключается в следующих этапах:

В красном костном мозге формируются клетки лимфоциты и происходит созревание лимфоидной ткани;

  • Антигены оказывают воздействие на плазматические клеточные элементы и клетки памяти;
  • Антитела гуморального иммунитета выявляют чужеродные микроэлементы;
  • Сформированные антитела приобретенного иммунитета захватывают и переваривают опасные микроорганизмы;
  • Клетки иммунной системы контролируют и осуществляют регулирование восстановительных процессов внутренней среды.

Функции

Функции иммунной системы человека:

  • Основополагающей функцией иммунитета является контроль и регулирование внутренних процессов организма;
  • Защита — распознание, заглатывание и ликвидация вирусных и бактериальных частиц;
  • Регулятивная — контролирование процесса восстановления поврежденных тканей;
  • Формирование иммунной памяти — при первоначальном попадании в организм человека чужеродных частиц, клеточные элементы запоминают их. При повторном проникновении во внутреннюю среду ликвидация происходит быстрее.

От чего зависит иммунитет человека?

Крепкая иммунная система — ключевой фактор жизнедеятельности индивида. Ослабленная защита организма оказывает значительное влияние на общее состояние здоровья. Хороший иммунитет зависит от внешних и внутренних факторов.

К числу внутренних относится врожденная ослабленная иммунная система, которая передала по наследству и предрасположенность к некоторым заболеваниям: лейкоз, почечная недостаточность, поражения печени, онкологические заболевания, анемия. Также заболевание ВИЧ и СПИДом.

К числу внешних обстоятельств относят:

  • Экологическая обстановка;
  • Ведение неправильного образа жизни (стресс, несбалансированное питание, употребление алкоголя, наркотиков);
  • Отсутствие физических нагрузок;
  • Нехватка витаминов и полезных веществ.

Перечисленные обстоятельства оказывают воздействие на формирование ослабленной иммунной защиты, подвергая здоровье и работоспособность человека рискам.

ОБЩАЯ КЛИНИЧЕСКАЯ ИММУНОЛОГИЯ ГЛАВА 1. СТРОЕНИЕ И ФУНКЦИЯ ИММУННОЙ СИСТЕМЫ

ОБЩАЯ КЛИНИЧЕСКАЯ ИММУНОЛОГИЯ ГЛАВА 1. СТРОЕНИЕ И ФУНКЦИЯ ИММУННОЙ СИСТЕМЫ

1.1. Строение иммунной системы

Иммунная система представляет собой совокупность лимфоидных органов общей массой 1-2,5 кг, не имеющую анатомической связи и вместе с тем работающую весьма согласованно за счет подвижных клеток, медиаторов, а также других факторов. Система слагается из центральных и периферических органов. К центральным относят тимус (вилочковую железу) и костный мозг. В этих органах начинается лимфопоэз: созревание зрелых лимфоцитов из стволовой кроветворной клетки.

Периферические органы включают селезенку, лимфатические узлы и различную неинкапсулированную лимфоидную ткань, расположенную в многочисленных органах и тканях организма Наиболее известными структурами являются миндалины и пейеровы бляшки.

Тимус - лимфоэпителиальный орган, размер которого меняется с возрастом человека. Достигает максимума развития к 10-12 годам, а затем подвергается регрессивным изменениям до старости. В нем происходит развитие Т-лимфоцитов, которые поступают из костного мозга в виде пре-Т-лимфоцитов, происходит их дальнейшее созревание до тимоцитов и уничтожение тех вариантов, которые высокоавидны к антигенам собственных клеток. Эпителиальные клетки тимуса вырабатывают цитокины, способствующие развитию Т-клеток. Тимус тонко реагирует на различные физиологические и патологические состояния. При беременности он временно уменьшается в 2-3 раза. Благодаря продукции многих цитокинов, участвует в регуляции и дифференцировке соматических клеток у плода. Отношение Т-лимфоцитов к остальным клеткам у эмбриона составляет 1:30, а у взрослых 1:1000. Важной особенностью тимуса является постоянно высокий уровень митозов, не зависящий от антигенного раздражения.

Кроветворный костный мозг - место рождения всех клеток иммунной системы и созревания В-лимфоцитов, поэтому у человека рассматривается также как центральный орган гуморального иммунитета. Красный костный мозг к 18-20 годам локализуется только в плоских костях и эпифизах длинных трубчатых костей.

Лимфатические узлы располагаются по ходу лимфатических сосудов. Содержат тимусзависимые (паракортикальные) и тимуснезависимые (герминативные) центры. При воздействии антигенов В-клетки в корковом слое образуют вторичные фолликулы. Строма фолликулов содержит фолликулярные дендритные клетки, создающие окружение для процесса образования антител. Здесь происходят процессы взаимодействия лимфоцитов с антигенпрезентирующими клетками, пролиферация и иммуногенез лимфоцитов.

Селезенка является самым крупным лимфоидным органом, состоящим из белой пульпы, содержащей лимфоциты, и красной пульпы, содержащей капиллярные петли, эритроциты и макрофаги. Помимо функций иммуногенеза, она очищает кровь от чужеродных антигенов и поврежденных клеток организма. Способна депонировать кровь, включая тромбоциты.

Кровь также относится к периферическим лимфоидным органам. В ней циркулируют различные популяции и субпопуляции лимфоцитов, а также моноциты, нейтрофилы и другие клетки. Общее количество циркулирующих лимфоцитов составляет 10 10 .

Небные миндалины представляют парный лимфоидный орган, расположенный в преддверии глотки, позади глоточно-щечного сужения и впереди глоточно-носового сужения. Положение этого органа, вынесенного на периферию и располагающегося на границе дыхательного и пищеварительного трактов, придает ему особую роль информационного центра об антигенах, поступающих во внутреннюю среду организма с пищей, водой, воздухом. Этому способствует огромная суммарная площадь всех крипт, равная 300 см 2 , и возможность ткани тонзилл обусловливать рецепцию антигенов. Диффузная (межузелковая) ткань небных миндалин является тимусзависимой зоной, а центры размножения лимфоидных узелков, по-видимому, составляют В-зону. Миндалины находятся в функциональной связи с тимусом, их удаление способствует более ранней инволюции вилочковой железы. В этом органе синтезируется SIgA, M, G и интерферон. Они обусловливают неспецифическую антиинфекционную резистентность.

Пейеробляшки. Аппендикулярный отросток гистоморфологически состоит из купола с короной, фолликулов, расположенных под куполом, тимусзависимой зоной и связанной с ней слизистой оболочкой в форме грибовидных выступов. Эпителий купола отличается наличием М-клеток, имеющих многочисленные микроскладки и специализирующихся на транспортировке антигенов. К ним примыкают Т-клетки фолликулов, которые также определяются в межфолликулярной зоне. Большая часть лимфоцитов представлена В-клетками фолликулов, основная функция которых заключается в продукции секреторных иммуноглобулинов классов А и Е.

1.2. Клеточные и гуморальные факторы иммунныех реакций

Главными клетками иммунной системы являются лимфоциты. В костном мозгу образуются их родоначальники - стволовые клетки. В эмбриональной печени и костном мозге развиваются предшественники Т-лимфоцитов, которые проходят обязательную стадию созревания в тимусе, после чего попадают в кровоток в виде зрелых Т-лимфоцитов. В циркуляцию из тимуса выходит лишь 0,9-8% клеток, остальные гибнут в вилочковой железе или сразу после выхода из нее. Т-клетки составляют большинство всех лимфоидных клеток - до 70%, являются долгоживущими, постоянно циркулируют, проходя десятки раз через периферические органы иммунной системы. В кровотоке и лимфатической системе они подвергаются дальнейшей дифференцировке. Этот пул периферических лимфоцитов может дифференцироваться в наивные Т-лимфоциты и клетки-памяти. Т-лимфоциты памяти - долгоживущие потомки Т-клеток являются носителями рецепторов к антигенам, полученным от Т-лимфоцитов, ранее ими сенсибилизированных. Наивные лимфоциты циркулируют до контакта с антигеном и расселяются в тимусзависимых зонах лимфоидных органов и барьерных тканях.

Т-лимфоциты ответственны за клеточный иммунитет, а также за противоопухолевую цитотоксичность, являются помощниками в продукции В-клетками иммуноглобулинов. Т-клетки по экспрессии маркерных антигенов CD подразделяются на ряд субпопуляций, выполняющих строго специфические функции.

CD4 или Т-хелперы (помощники), относятся к регуляторным клеткам и подразделяются на Тх1, Тх2 и Тх3.

Клетки Тх1 - при взаимодействии с антигенпрезентирующими клетками распознают антиген, после взаимодействия с цитотоксичес-

кими Т-лимфоцитами обусловливают клеточный иммунный ответ. Тх1 клетки секретируют ИЛ-2, γ-интерферон, фактор некроза опухоли и ГМ-КСМ. Они усиливают воспалительный процесс по типу ГЗТ через активацию макрофагов, что обеспечивает уничтожение внутриклеточных патогенов.

Клетки Тх3 -лимфоциты, регулирующие иммунный ответ посредством цитокина - трансформирующего фактора роста - ТФР-β. ТФР-β - противовоспалительный цитокин, опосредущий иммуносупрессорную активность регуляторных лимфоцитов, играет существенную роль в подавлении противоопухолевого иммунитета и ограничении иммунного ответа при аутоиммунных заболеваниях. Вместе с тем эти клетки не имеют четких специфических маркеров и могут быть выявлены только по функциональной активности.

Фенотипические особенности другой субпопуляции регуляторных клеток - Т-клеток с фенотипом Foxp3CD4CD25 изучены достаточно подробно. Являются естественными регуляторными клетками, выделяют цитокины ИЛ-10, ТФР-β, которые оказывают ингибирующее действие на эффекторные Т-клетки.

Другая важная субпопуляция Т-клеток - Тх17-клетки, характеризующиеся способностью выделять ИЛ-17 - нейтрофил-мобилизующий цитокин в ответ на стимуляцию ИЛ-23, синтезируемым антигенпрезентирующими клетками. Ранняя фаза дифференцировки Тх17-клеток связана с воздействием на наивные CD4 лимфоциты ТФР-β и ИЛ-6. Тх-17 - субпопуляция лимфоцитов играет уникальную роль в интеграции врожденного и адаптивного иммунитета.

Цитотоксические Т-лимфоциты (ЦТЛ) имеют антигенраспознающий рецептор и корецептор CD8 и способны после распознавания антиген-пептида дифференцироваться в клоны цитоксических Т- лимфоцитов, способных к уничтожению клеток-мишеней.

Предшественники В-лимфоцитов дифференцируются в красном костном мозге и после негативной и позитивной селекции покида-

ют костный мозг, рециркулируют по периферическим лимфоидным органам, заселяя В-зависимые зоны в периферических лимфоидных органах. Количество и продолжительность жизни у них существенно меньше, чем у Т-клеток, кроме В-лимфоцитовпамяти. CD27-В-лим- фоциты памяти - это долгоживущие клетки, которые несут на своей мембране IgG и IgA и после стимуляции антигеном мигрируют в костный мозг, где превращаются в плазматические клетки.

В-лимфоциты являются прямыми предшественниками антителообразующих клеток. В норме они продуцируют антитела в небольших количествах. Специфичность их настолько многообразна, что они могут связываться практически с любым чужеродным белком, даже синтетическим, не встречающимся в природе.

Под влиянием специфического антигена В-лимфоциты дифференцируются в плазмобласты, юные и зрелые плазмоциты. Антитела выходят на поверхность лимфоидной клетки и постепенно сползают с нее в кровь. В процессе синтеза может произойти смена классов продуцируемых антител, однако с сохранением их специфичности. Плазмоциты продуцируют специфические АТ со скоростью 50 000 молекул в час.

Известны пять основных классов иммунных глобулинов: IgM, IgG, IgA, IgD, IgE, имеющих следующие характеристики.

IgM являются тяжелыми иммуноглобулинами. Различают 2 субкласса этих белков IgM1 и IgM2 - низкоактивные, которые появляются первыми после антигенного раздражения. Период их полураспада у человека составляет 5 дней. Имеют 10 валентностей, составляя 10% всех классов иммунных глобулинов.

IgG - высокоактивные, синтезируются позднее IgM. В основном образуются при повторной иммунизации. Имеют 4 субкласса - IgG1,G2,G3,G4, двувалентны. Период полураспада достигает 23 дней. Составляют примерно 75% всех иммунных глобулинов.

Также высокоактивны. Известны 2 субкласса - IgA1 и IgA2. Образуются при антигенном раздражении. Составляют от 15 до 30% всех иммуноглобулинов. Имеют период полураспада около 6 суток.

Различают 3 типа IgA: 1 - сывороточный мономерный IgA, составляющий до 80% всех IgA сыворотки, 2 - сывороточный димерный IgА, 3 - секреторный SIgA.

SIgA - высокоактивны. Представляют собой димер из двух мономеров, соединенных секреторным компонентом, образуемым эпителиальными клетками, с помощью которого он может прикреп-

ляться к слизистой оболочке. Эти иммуноглобулины находятся в слюне, пищеварительных соках, секретах бронхов, женском молоке. Они относительно независимы от сывороточной системы, подавляют прикрепление микробов к слизистым оболочкам, обладают мощной противовирусной активностью.

IgD - функция их изучена недостаточно. Встречаются у больных с множественной миеломой и хроническим воспалением. Имеют период полураспада 3 дня. Общее их содержание не превышает 1%. Повидимому, играют важную роль как Ig-рецептор в дифференцировке В-лимфоцитов.

IgE выполняют функцию реагинов. Обусловливают аллергические реакции немедленного типа. Период полураспада 2,5 дня.

Принято считать, что наиболее активно связываются антигенами иммуноглобулины класса G. Однако авидность белков зависит не только от класса, но и характера антигена. Так, IgM более авидны при связывании с крупными антигенами (эритроцитами, фагами, вирусами), а IgG успешнее связываются с более простыми белковыми антигенами.

В 1973 г. были открыты так называемые нулевые клетки, не имеющие маркеров, Т-, В-лимфоцитов. Их популяция является весьма разнородной, она включает естественные киллеры (NK-клетки), составляющие до 10% всех лимфоцитов крови. Типичным маркером клеток-киллеров является низкоаффинный рецептор Fc-фрагмента IgG (CD16) и молекула адгезии СD56. Эти клетки играют важную роль в механизмах врожденного иммунитета, уничтожая злокачественные клетки, инфицированные вирусами, и чужеродные клетки.

Часть нулевых клеток является антителозависимой популяцией с киллерными функциями и свойствами естественных или нормальных (натуральных) киллеров. Антителозависимые киллеры (К- клетки) встречаются в периферической крови человека в количестве 1,5-2,5%. Предназначены для уничтожения злокачественных клеток, трансплантатов с помощью антител класса G, выполняющих роль связующего элемента между мишенью и киллером, а также имеют некоторые другие качества.

1.3. Иммунологические феномены

Основной функцией системы является индукция иммунитета - способа защиты организма от живых тел и веществ, несущих на себе признаки чужеродной информации (Р.В. Петров). Эта функция реа-

лизуется в два этапа: на первом происходит распознавание, на втором - деструкция чужеродных тканей и их выведение.

Помимо указанных субпопуляций, цитотоксической способностью наделены и другие клетки - NK-Т-клетки, несущие на своей поверхности маркеры двух субпопуляций. Они находятся в печени, барьерных органах и элиминируют возбудителей туберкулеза и оппортунистических инфекций. Описаны цитотоксические эффекты и для нелимфоидных элементов: моноцитов, макрофагов, нейтрофилов, эозинофилов, имеющих на своей поверхности рецепторы к Fc-фрагменту. Блокада этих рецепторов иммунными комплексами приводит к утрате цитотоксичности.

Фактически иммунная система обусловливает защиту от инфекционных агентов, элиминирует чужеродные, злокачественные ауто-, модифицированные, стареющие клетки, обеспечивает процесс оплодотворения, освобождение от рудиментарных органов, способствует началу родового акта, реализует программу старения.

Для этого развертывается ряд иммунных феноменов и реакций.

Сущность видового (наследственного) иммунитета обусловлена биологическими особенностями данного вида животных и человека. Он неспецифичен, устойчив, передается по наследству. Зависит от температурного режима, наличия или отсутствия рецепторов для микроорганизмов и их токсинов, метаболитов, необходимых для роста и жизнедеятельности.

Местный иммунитет обеспечивает защиту покровов организма, непосредственно сообщающихся с внешней средой: мочеполовых органов, бронхолегочной системы, желудочно-кишечного тракта. Местный иммунитет является элементом общего. Он обусловлен нормальной микрофлорой, лизоцимом, комплементом, макрофагами, секреторными иммунными глобулинами и другими факторами врожденного иммунитета.

Иммунитет слизистых оболочек представляет один из наиболее изученных компонентов местного иммунитета. Он обусловлен антибактериальными неспецифическими защитными факторами, входящими в слизь (лизоцим, лактоферрин, дефенсины, миелопероксидаза, низкомолекулярные катионные белки, компоненты комплемента и др.); иммуноглобулинами классов А, М, G, продуцируемыми местными мелкими железами, расположенными в подслизистой оболочке; мукоцилиарным клиренсом, связанным с работой ресничек эпителиоцитов; нейтрофилами и макрофагами, мигрирующими из

кровеносного русла, продуцирующими активные формы кислорода и оксида азота; цитотоксическими CD8+ и хелперными CD4+ Т-лимфоцитами, естественными киллерами, расположенными в подслизистой.

Врожденный иммунитет представлен генетически закрепленными механизмами резистентности. Он обусловливает первичную воспалительную реакцию организма на антиген, к его компонентам относят как механические и физиологические факторы, так и клеточные и гуморальные факторы защиты. Он является основой для развития специфических иммунных механизмов.

Приобретенный иммунитет является ненаследственным, специфичным, образуется в процессе жизни индивида. Известны следующие формы приобретенного иммунитета:

естественный активный появляется после перенесенной инфекции, продолжается месяцы, годы или всю жизнь; естественный пассивный возникает вслед за получением материнских антител через плаценту, с молозивом, исчезает после периода лактации, беременности; искусственный активный формируется под влиянием вакцин на многие месяцы или несколько лет; искусственный пассивный обусловливается инъекцией готовых антител. Его продолжительность определяется периодом полураспада введенных γ-глобулинов.

Противовирусный иммунитет обусловлен неспецифическими и специфическими механизмами.

Неспецифические:

мукозальный иммунитет (защитная функция кожи и слизистых оболочек), включая цитокины; система интерферона (α-,β-, γ-); система естественных киллеров, обусловливающих элиминацию патогена без участия антител; базовая воспалительная реакция, обеспечивающая локализацию проникшего в организм патогенна; макрофаги; цитокины.

Специфические:

Т-зависимые эффекторные механизмы защиты, носители маркера CD8+; антителозависимые киллерные клетки; цитотоксические антитела классов IgG и А (секретины).

Механизмы иммунитета, обусловленные антителами

Гуморальные антитела при участии компонентов комплемента реализуют бактерицидный эффект, способствуют фагоцитозу (опсонизации). Активны против внеклеточных патогенов, реаги

руют с активными группировками экзотоксинов, обезвреживая их. Образование антител может продолжаться до нескольких лет.

Механизмы иммунитета, обусловленные клетками

Антителообразоваие

Обусловливается В-системой иммунитета. В-лимфоциты распознают тимусзависимые антигены с помощью макрофагов, представляющих фагоцитированные и переработанные антигены. Далее Т-хелперы получают от фагоцитов два сигнала - специфический и неспецифический (инструкцию для синтеза определенных антител), взаимодействуют с В-клеткой, которая вступает в дифференцировку с конечным образованием плазматических клеток, продуцирующих специфические антитела.

Первичный иммунный ответ

Возникает при первичном контакте Т-, В-клеток с антигеном, сопровождается пролиферацией иммунокомпетентных лимфоцитов, вызывает образование иммунных глобулинов М, формирует иммунную память и другие феномены. Реакция развивается в течение 5-10 дней и более после стимула.

Вторичный иммунный ответ

Формируется при повторном контакте с антигеном, обусловлен дерепрессией клеток иммунной памяти, не требует кооперации с макрофагами, характеризуется продукцией IgG в ранние сроки после «раздражения» (до 3 дней).

Иммунная неотвечаемость (толерантность)

Специфическая иммунная реакция, обратная иммунному ответу. Выражается в неспособности развивать специфические иммунные механизмы на повторно введенный чужеродный стимул. Иммунная толерантность характеризуется полным отсутствием формирования иммунных реакций и долговременна.

Иммунный паралич

Состояние, индуцируемое в организме при введении больших доз антигенов. Характеризуется снижением силы иммунного ответа, устраняется после элиминации факторов из организма. Обусловлен

блокированием распознающих рецепторов лимфоцитов избытком антигена.

Трансплантационный иммунитет

Его сущность проявляется в отторжении пересаженных чужеродных органов (тканей), клеток при несовместимости антигенов системы HLA донора и реципиента. Обусловливается Т-киллерами, цитотоксическими иммунными глобулинами класса М и G, другими механизмами.

Реакция трансплантат против хозяина

Феномен, обратный трансплантационному иммунитету. В его основе лежат агрессивные иммунные реакции трансплантата против хозяина. РТПХ формируется при следующих условиях:

Когда наборы антигенов HLA донора и реципиента отличаются друг от друга;

Когда в пересаженном объекте находятся зрелые лимфоидные элементы;

Когда иммунная система реципиента ослаблена.

Иммунное усиление

Суть эффекта заключается в том, что если перед трансплантацией организм реципиента активно проиммунизировать или пассивно ввести ему аллотипические антитела, то в большинстве случаев происходит не замедление, а ускорение роста пересаженного органа. Иммунное усиление может быть активным и пассивным. Механизмами феномена являются афферентная блокада рецепторов трансплантата нетоксическими антителами, центральная блокада пролиферативных процессов в организме реципиента, эфферентная блокада - маскировка специфическими антителами трансплантационных антигенов, что приводит к недоступности их для цитотоксических клеток.

Противоопухолевый иммунитет (иммунный надзор) направлен против опухолевых клеток. Реализуется в основном клеточными механизмами.

1.4. МЕХАНИЗМЫ ИНДУКЦИИ И РЕГУЛЯЦИИ ИММУННЫХ РЕАКЦИЙ

Теория Бернета постулирует непрерывную высокочастотную мутацию лимфоидных клеток, продуцирующих практически любые виды антител. Роль антигена сводится к селекции и клонированию соот-

ветствующих лимфоцитов, синтезирующих специфические иммунные глобулины. С этого момента организм становится готовым запустить антителогенез против любого антигена.

Кроме указанного, существует ряд других возможных механизмов индукции специфических иммунных реакций.

1. Синтез антител после перенесенных инфекций и бактериносительство.

2. Продукция антител, индуцированная перекрестно-регулирующими антигенами представителей нормальной микрофлоры кишечника, других полостей и поверхностей с патогенной флорой.

3. Образование сети антиидиотипических антител, несущих «внутренний образ» антигена. Исходя из этой теории, антитела против какой-дибо антигеннной детерминанты способны индуцировать образование антиидиотипических антител, взаимодействующих как с антителом-индуктором, так и с антиген-связывающими рецепторами. При определенной конценрации такие антидиотипические антитела без ввведения извне причинного антигена, могут обеспечить специфический антительный иммунный ответ.

4. Высвобождение депонированных в организме антигенов при повышении проницаемости мембран клеток, их содержащих, в результате действия эндо- и экзотоксинов, кортикостероидов, низкомолекулярных нуклеиновых кислот, облучения и других факторов. Редепонированные таким образом антигены способны при определенных условиях запустить специфический иммунный ответ.

Существует ряд неспецифических механизмов регуляции иммунных реакций.

1. Диета. Установлено, что пищевой рацион без животных белков снижает образование иммунных глобулинов. Исключение из питания нуклеиновых кислот даже при сохранении достаточной калорийности вызывает торможение клеточного иммунитета. Такой же эффект обусловливается дефицитом витаминов. Недостаток цинка вызывает вторичную иммунологическую недостаточность по главным звеньям иммунитета. Продолжительное голодание способствует резкому понижению иммунологической реактивности и общей сопротивляемости к инфекциям.

2. Кровопускания. Этот способ лечения имеет многовековую историю, однако иммунологические эффекты воздействия установлены недавно, физиологические по дозе кровопускания обусловливают стимуляцию антителогенеза к широкому спектру антигенов. Более

значительные кровопускания вызывают образование фактора, тормозящего активность макромолекулярных антител, т.е. реализуют регуляцию этого механизма защиты. Таким образом, реализуется способ временноого снижения активности циркулирующих антител без блокирования процесса их образования.

Кроме перечисленных механизмов, существуют также внутренние регуляторы иммуногенеза.

3. Иммуноглобулины и продукты их деградации. Накопление в организме или IgM с одновременным поступлением антигена неспецифически стимулируют иммунный ответ на него, IgCl, напротив, наделены способностью тормозить образование специфических антител в таких условиях. Однако при образовании комплекса антигенантитело в избытке иммунного глобулина наблюдается эффект стимуляции иммунного ответа, особенно вторичного, в тот период, когда содержание антител после первичной иммунизации резко снижено, но следовая их концентрация еще определяется. Следует отметить, что продукты катаболического разрушения этих белков также обладают высокой биологической активностью. F(ab)2 фрагменты гомологического IgO способны неспецифически усиливать иммуногенез. Продукты расщепления Fc-фрагмента иммуноглобулинов различных классов усиливают миграцию и жизнеспособность полиморфноядерных лейкоцитов, презентировавние антигена А-клетками, благоприятствуют активации Т-хелперов, повышают иммунную реакцию на тимусзависимые антигены.

4. Интерлейкины. К интерлейкинам (ИЛ) относятся факторы полипептидной природы, не относящиеся к иммуноглобулинам, синтезируемые лимфоидными и нелимфоидными клетками, обусловливающими прямое действие на функциональную активность иммунокомпентентных клеток. ИЛ не способны самостоятельно индуцировать специфический иммунный ответ. Они его регулируют. Так, ИЛ-1 в числе прочих эффектов, активизирует пролиферацию сенсибилизированных антигеном Т- и В-лимфоцитов, ИЛ-2 усиливает пролиферацию и функциональную активность В-клеток, как, впрочем и Т-лимфоцитов, их субпопуляций, НК-клеток, макрофагов, ИЛ-3 является ростовым фактором стволовых и ранних предшественников гемопоэтических клеток, ИЛ-4 повышает функцию Т-хелперов, реализует пролиферацию активированных В-клеток. Кроме того, ИЛ- 1,2,4 в той или иной степени регулируют функцию макрофагов. ИЛ-5 способствует пролиферации и дифференцировке стимулированных

Рис 1. Классификация имунитета

В-лимфоцитов, регулирует передачу хелперного сигнала с Т- на В- лимфоциты, способствует созреванию антителообразующих клеток, вызывает активацию эозинофилов. ИЛ-6 стимулирует пролиферацию тимоцитов, В-лимфоцитов, селезеночных клеток и дифференцировку Т-лимфоцитов в цитотоксические, активирует пролиферацию предшественников гранулоцитов и макрофагов. ИЛ-7 является ростовым фактором пре-В- и пре-Т-лимфоцитов, ИЛ-8 выполняет роль индуктора острой воспалительной реакции, стимулирует адгезивные свойства нейтрофилов. ИЛ-9 стимулирует пролиферацию и рост Т- лимфоцитов, модулирует синтез IgE, IgD В-лимфоцитами, активированными ИЛ-4. ИЛ-10 подавляет секрецию гамма-интерферона, синтез макрофагами фактора некроза опухоли, ИЛ-1, -3, -12; хемокинов. ИЛ-11 практически идентичен по биологическим потенциям с ИЛ-6, регулирует предшественников гемопоэза, стимулирует эритропорез, колониеобразование мегакариоцитов, индуцирует острофазовые белки. ИЛ-12 активизирует нормальные киллеры, дифференцировку Т-хелперов (Тх0 и Тх1) и Т-супрессоров в зрелые цитоксические Т- лимфоциты. ИЛ-13 подавляет функцию мононуклеарных фагоцитов. ИЛ-15 сходен по действию на Т-лимфоциты с ИЛ-12, активизирует нормальные киллерные клетки. Недавно выделен ИЛ-18, образуемый активированными макрофагами и стимулирующий синтез Т-лимфоцитами интерферонов (Инф), а макрофагами - ИЛ-1, -8 и ТНФ. Таким образом, Ил способны влиять на основные компоненты иммунологических реакций на всех этапах их развертывания. Следует, однако, заметить, что группа интерлейкинов входит в состав более широкой группы цитокинов - белковых молекул, образуемых и секретируемых клетками иммунной системы. В настоящее время они подразделяются на интерлейкины, колониестимулирующие факторы (КСФ), факторы некроза опухоли (ФНО), интерфероны (Инф), трансформирующие факторы роста (ТФР). Функции их чрезвычайно разнообразны. Например, воспалительные процессы регулируются противовоспалительными (ИЛ-1, -6, -12, ТНФ, Инф) и противовоспалительными цитокинами (ИЛ-4, -10, ТФР), специфические иммунологические реакции - ИЛ-1, -2, -4, -5, -6, -7, -9, -10, -12, -13, -14, -15, ТФР, Инф; миеломоноцитопоэз и лимфопоэз - Г-КСФ, М-КСФ, ГМ-КСФ, ИЛ-3, -5, -6, -7, -9, ТФР.

5. Интерферон. Как уже говорилось, к числу регуляторов иммуногенеза относятся интерфероны. Это белки с молекулярной массой от 16000 до 25000 дальтон, они продуцируются различными клетками,

реализуют не только противовирусный эффект, но и регулируют иммунологические реакции. Известны три типа интерферонов: α- лейкоцитарный интерферон образуется нулевыми клетками, фагоцитами, его индукторами являются клетки злокачественных опухолей, ксеногенные клетки, вирусы, митогены В-лимфоцитов; β-фибробластный интерферон вырабатывается фибробластами и эпителиальными клетками, индуцируется двуспиральной вирусной РНК и другими, в том числе естественными, нуклеиновыми кислотами, многими патогенными и сапрофитными микроорганизмами; γ-иммунный интерферон, его производителями служат Т-и В-лимфоциты, макрофаги, а индукторами - антигены и митогены Т-клеток; γ-интерферон высокоактивен, наделен специфичностью эффектов против определенных агентов.

Интерферон, индуцируемый иммунокомпетентными клетками, при определенных условиях проявляет иммуностимулирующие свойства. В частности, α-интерферон увеличивает продукцию иммуноглобулинов, усиливает ответ В-лимфоцитов на специфический хелперный фактор. Однако при увеличении концентрации интерферона или его синтезе до иммунизации отмечается подавление антителогенеза на тимусзависимые и тимуснезависимыые антигены. Действие интерферона на реакции клеточного иммунитета также носит модулирующий характер. В периоде до развертывания ГЗТ интерферон ее подавляет, в момент ее индукции - стимулирует. По-видимому, непосредственная регуляция иммунного ответа реализуется через усиление экспрессии мембранных белков лимфоцитами. Особенно это качество выражено у α-интерферона.

6. Система комплемента состоит примерно из 20 сывороточных белков крови, некоторые из них представлены в плазме в форме проферментов, которые могут активизироваться другими ранее активизированными компонентами системы или иными ферментами, например, плазмином. Имеются также и специфические ингибиторы ферментативной и неферментативной природы. Тот факт, что активаторами системы комплемента могут быть иммуноглобулины, иммунные комплексы и другие участники иммунных реакций, а также то, что клетки иммунной системы (лимфоциты, макрофаги) имеют рецепторы для компонентов системы, обосновывает ее регулирующую роль в иммуногенезе.

Существуют два пути активации системы комплемента - классический и альтернативный. Индукторами классического пути явля-

ются JgG1, G2, G3, JgM, входящие в состав иммунных комплексов, а также некоторые другие вещества. Альтернативный путь индуцируется различными агентами (агрегированными теплом IgA, M, G) и некоторыми другими соединениями. Этот процесс сливается с классическим в один общий каскад на стадии фиксации компонента С3. Данная разновидность активации требует присутствия Mg 2+ .

Видимо, функция комплемента in vivo состоит в предотвращении формирования больших иммунных комплексов. Поэтому в здоровом организме их возникновение достаточно затруднено. Запуск каскада активации комплемента формирующимися иммунными комплексами приводит к образованию его различных фрагментов, обуславливающих в организме процессы, нормальный ход которых нередко изменяется при нарушениях в системе комплемента. Так, у людей, дефицитных по каким-либо компонентам комплемента, часто возникает волчаночноподобный синдром или болезни иммунных комплексов.

В процессе активации комплемента образуются ряд факторов с иммуннотропным действием. Так, фрагменты С3а, С5а, С5В67 обладают хемотактическим эффектом, способствуя направленной аккумуляции клеток. Взаимодействие фрагмента с С3-рецепторами на В-лимфоцитах индуцирует активацию этих клеток митогенами и антигенами. С другой стороны, некоторые В-митогены и Т-независимые антигены индуцируют альтернативный путь активации комплемента.

7. Миелопептиды. Миелопептиды в процессе нормального метаболизма синтезируются клетками костного мозга различного вида животных и человека, не имеют аллогенного и ксеногенного ограничения. Представляют собой комплекс пептидов, не способных индуцировать иммунный ответ, но обладающих иммунорегуляторными свойствами. Они способны стимулировать антителообразование на пике иммунного ответа, в том числе при дефиците количества антителообразующих клеток или использовании слабоиммунногенных антигенов. Мишенями для модуляторов являются Т- и В-лимфоциты, а также макрофаги. Они переводят клетки иммунологической памяти в антителообразующие без деления, инактивируют Т-супрессоры, положительно влияют на дифференцировку предшественников цитолитических лимфоцитов и пролиферацию и дифференцировку столовых клеток, увеличивают содержание общих Т-лимфоцитов, Т-хелперов, интенсифицируют РБТЛ Т-клеток на ФГА и В-клеток на PWM. Кроме иммуннорегуляторных потенций, миелопептиды обла-

дают опиатноподобной активностью, вызывают налоксонзависимый аналгетический эффект, связываются с опиатными рецепторами мембраны лимфоцитов и нейронов, участвуя, таким образом, в нейроиммунном взаимодействии.

МП-2 обладает противоопухолевой активностью, отменяя ингибиторное действие лейкозных клеток на функциональную активность Т- лимфоцитов; он модифицирует экспрессию на них CD3- и CD4-анти- генов, нарушенную растворимыми продуктами опухолевых клеток.

8. Пептиды тимуса. Особенностью модуляторов тимического происхождения является то, что они синтезируются вилочковой железой постоянно, а не в ответ на антигенный стимул. К настоящему времени из тимуса получен ряд ииммунологически активных факторов: Т-активин, тималин, тимопоэтины, тимоптин и др. Молекулярная масса модуляторов составляет в среднем от 1200 до 6000 дальтон. Некоторые исследователи называют их тимусными гормонами. Все эти препараты близки по своему действию на иммунную систему. При сниженных показателях иммунного статуса тимусные модуляторы способны повышать качество Т-лимфоцитов и их функциональную активность, способствуют трансформации незрелых Т-клеток в зрелые, стимулируют распознавание тимусзависимых антигенов, хелперную и киллерную активность. Одновремкнно они активизируют продукцию антител и могут способствовать отмене иммунологической толерантности к некоторым антигенам, повышают выработку α- и γ-интерферонов, интенсифицируют фагоцитоз нейтрофилов, и макрофагов, активизируют факторы неспецифической антиинфекционной резистентности и процессы регенерации тканей.

9. Эндокринная система. Уже давно установлено, что важнейшими регуляторами иммунологического гомеостаза являются эндогенные гормоны. В спектре действия этих соединений находятся неспецифическая стимуляция и ингибиция специфических иммунных реакций, запущенных конкретными антигенами. Сами гормоны индукторами иммунного ответа быть не могут. Следует сразу отметить, что гормоны действуют в тесной связи друг с другом, когда одни вещества инициирууют секрецию других. Существует также четкая зависимость дозы-эффекта. Низкие концентрации, как правило, активируют, а высокие супрессируют иммунологические механизмы.

Кортизол относится к глюкортикоидам, регулирует углеводный обмен и одновременно супрессирует клеточные и гуморальные иммунные реакции. Отмечается подавление антителообразования

при первичном и вторичном иммунном ответах. В принципе за счет лизиса лимфоидных клеток обусловленных кортизолом, возможен выход антител и развитие таким образом анамнестической антительной реакции.

Минералокортикоиды (дезоксикортикостерон и альдостерон) играют важную роль в электролитном обмене. Они задерживают в организме натрий и увеличивают выход калия. Оба гормона усиливают воспалительную реакцию, продукцию иммунных глобулинов.

Установлено, что почти все гормоны аденогипофиза (СТГ, АКТГ, гонадотропные) влияют на иммунокомопетентные клетки. Например, АКТГ стимулирует секрецию коры надпочечников и таким образом воспроизводит эффекты кортизона, т.е. подавляет иммунологические реакции.

Соматотропный гормон, напротив, стимулирует воспаление, пролиферацию плазматических клеток, интенсифицирует клеточные механизмы.

Тиреотропный гормон восстанавливает подавленную различными факторами пролиферацию клеток. Околощитовидные железы, регулирующие содержание Са 2+ в плазме, изменяют митотическую активность клеток костного мозга и тимуса. Гормон нейрогипофиза - вазопрессин, стимулирует дифференцировку Т-лимфоцитов. Пролактин ингибирует РБТЛ на ФГА и увеличивает дифференцировку Т-лимфоцитов. Эстрогены (эстрадиол и эстрон) усиливают функцию фагоцитов, образование γ-глобулинов. Эстрогены, способны отменить иммуносупрессорный эффект кортикостероидов. Подобные эффекты установлены у фоллитропина, пролактина, лютропина. Однако в больших концентрациях указанные гормоны подавляли иммунологические реакции. Наконец, андрогены оказались наделенными в основном иммуносупрессорнными свойствами, ориентированными главным образом против гуморального звена иммунитета.

10. Метаболические процессы в организме активно влияют на состояние иммунной системы. Накопление в организме продуктов перекисного окисления липидов, бета-липопротеидов, холестерина, биогенных аминов, снижение пула циркулирующих низкомолекулярных нуклеиновых кислот, супрессия антиоксидантной системы обусловливают также угнетение иммунологической реактивности.

При этом продукты ПОЛ отрицательно зависят от АОС, содержания Т-клеток (CD3+), их регуляторных субпопуляций (CD4+, CD8+), положительно - от концентрации ЦИК, биогенных аминов, острофа-

зовых белков и т.д. Антиоксидантная система находится с биогенными аминами в обратной зависимости.

В целом, развитие патологии сопровождается активацией процессов перекисного окисления липидов, что приводит к увеличению уровня холестерина, β-липопротеидов, сопровождаясь снижением активности антиоксидантной защиты, накоплением биогенных аминов. Указанные изменения происходят на фоне формирования у больных диснуклеотидоза, нарушения белково-синтетических процессов, реализуемых по схеме ДНК-РНК-белок. Это приводит, с одной стороны, к угнетению выраженности иммунных, особенно клеточных реакций, дисбалансу регуляторных субпопуляций, с другой - к провокации развития аллергии, с третьей - к функциональным и деструктивным изменениям клеток различных систем организма, с четвертой - к расстройствам, тесно связанным с иммунной нейроэндокринной регуляции гомеостаза.

Таким образом, если специфичность иммунных реакций определяется характеристикой причинного антигена, то их выраженность зависит от множества причин. Она может быть недостаточной или слишком сильной, кратковременной или избыточно пролонгированной. Эти обстоятельства диктуют необходимость коррекции выраженности иммунологических реакций. В естественных условиях функционирование лимфоидных клеток с одной стороны подвержено стимулирующему действию тимусных факторов, а с другой - тормозному влиянию эндогенных кортикостероидов. Нерациональное вмешательство в деятельность иммунной системы с целью стимуляции или супрессии ее звеньев может расстроить этот баланс и привести к иммунопатологии.

Иммунология - наука о системе, обеспечивающей защиту организма от интервенции генетически чужеродных биологических структур, способных нарушить гомеостаз.

Иммунная система является одной из систем жизнеобеспечения, без которой организм не сможет существовать.

Основные функции иммунной системы:
распознавание;
уничтожение;
выведение из организма чужеродных веществ, образующихся в нем и поступающих извне.

Эти функции иммунная система выполняет всю жизнь человека.

Иммунная система человека может характеризоваться наличием врожденных дефектов (так называемые первичные иммунодефициты) или приобретенных в течение жизни под влиянием различных факторов, например, вредного воздействия окружающей среды, стрессовых ситуаций и т. д. Функциональные нарушения иммунной системы могут носить транзиторный характер либо приобретать хроническое течение в виде синдромов иммунологической недостаточности.

Болезни иммунной системы:

Болезни иммунной системы - это нозологические формы с конкретным развитием, четко очерченным патогенезом и клиникой, они объединены понятием иммунодефициты.
Изучение болезней иммунной системы началось в середине прошлого столетия после того, как американский врач Брутон выявил у ребенка причину мучающего его гнойного заболевания. Брутон установил, что истоки болезни кроются в имеющемся у ребенка дефекте иммунной системы - агаммаглобулинемии, названного впоследствии синдромом Брутона.

В настоящее время выделены основные разделы иммунологии, изучающие:
функции иммунной системы в норме и патологии;
функции иммунной системы при различных заболеваниях человека;
иммунодефицитные состояния;
болезни иммунной системы;

А также разделы, разрабатывающие:
методы коррекции иммунной системы;
иммунотропные препараты.

Иммунитет подразделяют на 2 вида: естественный (врожденный) и приобретенный, который является специфичным. Естественный иммунитет является неспецифическим по отношению к патогенным агентам. Он представляет собой совокупность защитных факторов, направленных на элиминацию аллергенов.
Эти факторы передаются по наследству и являются универсальными, видовыми.

Естественный иммунитет составляют иммунные и неиммунные факторы. К первым относятся барьеры, содержащие различные бактерицидные вещества: кожа, слизистые оболочки, секреты потовых, сальных, слюнных желез, железы желудка, выделяющие соляную кислоту и протеолитические ферменты, а также нормальная микрофлора кишечника. К неиммунным естественным факторам относятся гуморальные факторы (система комплемента, лизоцим, трансферрин и др.) и клеточные факторы (фагоцитарная реакция, работа N К-клеток).

Выделяют 5 групп заболеваний, характеризующихся возникновением патологии иммунной системы:
болезни, связанные с недостаточностью иммунной системы (иммунодефициты первичные, вторичные, транзиторные);
заболевания, связанные с избыточным реагированием иммунной системы;
инфекции иммунной системы;
опухоли иммунной системы.

Иммунная система человека представлена совокупностью органов и тканей, функцией которых является контроль за антигенным постоянством внутренней среды организма.
Клетки иммунной системы представлены Т- и В-лимфоцитами, моноцитами, макрофагами, нейтрофилами, эозинофилами, тучными и эпителиальными клетками, фибробластами. Важная роль по обеспечению функции иммунной системы принадлежит иммуноглобулинам, цитокинам, антигенам, рецепторам.

Иммунная система характеризуется многокомпонентностью, но функционирует как единое целое. Она поддерживает клеточное и гуморальное состояния организма.

Для иммунной системы характерны:
мультивариантная регуляция;
открытая система функционирования;
многокомпонентность.

Защита организма посредством иммунной системы происходит за счет специфических и неспецифических элементов защиты с участием биологически активных макромолекул, иммунокомпетентных клеток, органов иммунной системы.

Биологически активными микромолекулами являются:
медиаторы иммунных реакций (интерлейкины);
ростовые факторы (интерфероны опухольнекротизирующих факторов, фактор роста фибробластов, факторы гранулоцитарный, колоннестимулирующий и макрофагальный колоннестимулирующий);
гормоны (пиелопептиды, миелопептиды).

К иммунокомпетентным клеткам относятся:
Т- и В-лимфоциты;
цитотоксические клетки;
предшественники иммунокомпетентных клеток.

Периферическую систему составляют:
селезенка;
лимфатические узлы;
лимфоидные скопления желудочно-кишечного тракта;
кожа;
червеобразный отросток.

Центральные органы иммунитета:

Центральные органы обеспечивают дифференцировку иммунокомпетентных клеток.
В области периферических органов происходят иммунологические процессы. Центральные органы иммунитета с возрастом изменяются, а удаление какого-либо органа препятствует возникновению иммунного ответа. Периферические лимфоидные органы сохраняются на протяжении жизни человека и функционируют под воздействием антигенов.

Костный мозг:

Костный мозг человека закладывается на 12-13-й недели внутриутробного развития. Костный мозг является источником стволовых клеток, из которых впоследствии развиваются клетки лимфоидной ткани (Т- и В-лимфоциты), а также моноциты и макрофаги. В костном мозге находятся миелоидный и лимфоцитарные ростки. Костный мозг человека содержит 1,5% ретикулярных клеток, 6-7% лимфоцитов, 0,4% плазматических клеток, 60-65% миелоид-ных клеток, 1-3% моноцитов, 26% эритробластов. Стволовые клетки сначала недеференцированны, после 20 недель внутриутробного развития их количество возрастает. »

После рождения ребенка костный мозг является единственным местом их образования, производными этих клеток постепенно осуществляется колонизация периферических лимфоидных органов.

В костном мозге образуются многие иммунокомпетентные клетки, кроме этого он является одним из главных источников образования циркулирующих иммуноглобулинов. Динамика образования иммунокомпетентных клеток происходит следующим образом: в желчном мешке эмбриона человека на 2-3-й неделе развития появляется полипотентная стволовая клетка. Между 4-5-й неделями беременности стволовые клетки мигрируют в эмбриональную печень, которая является самым большим кроветворным органом. При этом происходит миграция клеток-предшественников, которые созревают в окружающих их тканях.

Одни клетки-предшественники лимфоидных клеток мигрируют в вилочковую железу, которая возникает на 6-8-й неделе беременности из третьего и четвертого жаберных карманов. Под влиянием эпителиальных клеток кортикального слоя вилочковой железы созревают лимфоциты, которые мигрируют в мозговой слой.

После рождения ребенок сразу встречается с микрофлорой окружающей его среды, перед которой новорожденные и недоношенные дети практически беззащитны. Одним из критических периодов в системе иммунорегуляции является период новорожденности, когда происходит встреча ребенка с антигенами внешнего мира. Вторым критическим периодом является возраст 2-4 месяцев, когда завершается процесс разрушения и выведения антител, прошедших через плаценту, а собственная система В-лимфоцитов остается незрелой.

Часть антител поступает с грудным молоком матери. В этот период происходит увеличение числа клеток, синтезирующих антитела к чужеродным белкам, и главным является наследование особенностей иммунного статуса матери. Вскармливание донорским грудным молоком и искусственное вскармливание делают этот важный процесс невозможным. В период новорожденности сывороточное содержание JgG равно взрослым нормам (10-12 г/л), а уровень JgM и JgA в 40 раз ниже, численность В- и Т-лимфоцитов существенно выше, чем у взрослых, но часть их характеризуется функциональной незрелостью.

Специфическая защита в первые месяцы жизни человека обеспечивается иммуноглобулинами, полученными от матери. Иммуноглобулины М и А поступают с молозивом через пищеварительный тракт ребенка, но в его организме образуются в недостаточном количестве. Нарастание антител происходит в возрасте 14-16 лет.

Способность защиты путем иммунных реакций формируется во внутриутробном периоде развития и становится выраженной к концу первого года жизни. Т-лимфоциты превращаются в сенсибилизированные активные лимфоциты, а В-лимфоциты в плазматические клетки, создающие специфические иммуноглобулины.

Способность организма отвечать иммунной реакцией на чужеродные антигены активно приобретается после перенесенных инфекций или вакцинаций и целиком зависит от работы иммунокомпетентных клеток (Т- и В-лимфоцитов), которые образуются в вилочковой железе и костном мозге и с помощью рецепторов распознают чужеродные антигены.

Красный костный мозг:

Красный костный мозг располагается внутри костей. Он может находиться как в активном, так и неактивном состоянии. У детей младшего возраста все кости содержат активный костный мозг, у детей старших возрастов и взрослых активный костный мозг располагается в плоских костях (черепе, ребрах, грудине, малом тазу).

У взрослых красный костный мозг при определенных условиях может переходить в активное состояние с образованием дополнительного числа клеток крови. В красном костном мозге происходит постоянное воспроизводство клеток: красных кровяных телец (эритроцитов) и лейкоцитов, поскольку отмирающие клетки заменяются новыми. Каждый тип клеток имеет разную скорость образования.

Красный костный мозг рассматривается как отдельный орган, который участвует в образовании красных и белых кровяных телец и обеспечивает нормальное функционирование иммунной системы.

Вилочковая железа (зобная железа, тимус):

Другим важным органом иммунной системы является вилочковая железа (зобная железа, тимус), обеспечивающая становление и функционирование системы иммунитета. Она образуется на первом месяце внутриутробного развития. К рождению ребенка вилочковая железа состоит из двух долей, которые соединены перешейком. В долях располагаются корковое и мозговое вещества. Корковое вещество состоит из тимоцитов, в мозговом веществе располагаются эпителиальные элементы, среди которых имеются тельца Гассаля.

Масса вилочковой железы с возрастом увеличивается (к 3 годам), в возрасте 12-15 лет она достигает массы 30 г, после чего происходит ее инволюция с замещением железистой ткани железы жировой и соединительной.
Вилочковая железа - железа внутренней секреции. Она участвует в лимфопоэзе и иммунологических защитных реакциях организма, являясь центральным органом клеточного иммунитета.

В вилочковой железе происходит образование биологически активных веществ и гормонов, таких как:
тимозин - гормон, индуцирующий экспрессию Т-клеточных рецепторов, восстанавливает иммунологическую компетентность;
фактор со свойствами холинэстеразы, который блокирует передачу импульсов на мышечное волокно с возникновением миотопического синдрома. Снижение выработки данного фактора может привести к холинергическому кризу;
тимоноэтин-2 - увеличивает содержание АМФ в лимфоцитах, усиливает экспрессию Т-клеточных антигенов на цитомембранах клеток костного мозга;
убивикин принимает участие в экспрессии на Т-и В-лимфоцитах, синтез антител и других лимфоцитостимулирующих факторах;
тимический гормон, который является антагонистом АКТГ;
тимический гипокальциемический фактор.

Патология вилочковой железы приводит к возникновению ряда синдромов и заболеваний: аплазии, гипоплазии, гиперплазии, различных опухолей. Встречаются также люди с врожденным отсутствием тимуса.
Эти состояния сопровождаются признаками Т-клеточной иммунологической недостаточности, гипокальциемическими судорогами и другими симптомами.

Селезенка:

Селезенка является фильтрующим аппаратом, обеспечивающим детоксикацию, удаление старых эритроцитов и других клеток, в ней происходит дифференцировка старых и поврежденных эритроцитов, лимфоцитов; образуются антитела.

В селезенке образуется тафтсин, основная функция которого заключается в повышении миграции, фагоцитарной активности макрофагов и нейтрофилов. Он увеличивает цитотоксическое действие Т-лимфоцитов, стимулирует синтез антител. По строению тафтсин напоминает фрагмент иммуноглобулинов, в связи с этим введение иммуноглобулинов компенсирует дефицит тафтсина.

Лимфатическая система:

Лимфатическая система обладает неспецифической барьерной функцией. Она является местом развития иммунного ответа - как клеточного, так и гуморального. У человека насчитывается около тысячи лимфатических узлов, которые обеспечивают регионарную защиту организма от попадания в него инфекционных и неинфекционных начал. В нормальных условиях лимфоузлы не пальпируются. При различных заболеваниях, опухолях, а также при наличии хронических очагов инфекции, они увеличиваются в размерах и легко пальпируются. При клеточном варианте иммунной недостаточности может возникнуть гипоплазия лимфатической системы, включая гемоплазию тимуса, небных миндалин, лимфатических узлов.

Все группы лимфатических узлов увеличиваются в случае поликлональной активации В-лимфоцитов с увеличением продукции иммуноглобулинов, в том числе иммуноглобулинов М. Для хронических инфекций с недостаточной функцией Т-лимфоцитов-хелперов, от которых зависит переключение синтеза антител с JgM класса на JgG, характерен переход в злокачественные варианты лимфопролиферативных состояний.
У детей в возрасте от 1 года до 10-12 лет часто встречается реакция в виде микрополиаденита.

Небные миндалины располагаются в полости рта и обеспечивают защиту верхних дыхательных путей от инфекции, снабжают иммунокомпетентными клетками лимфатическую систему, принимают участие в формировании микробной флоры полости /га. Небные миндалины функционируют в тесной связи с/вилочковой железой, тимэктомия приводит к гипертрофии миндалин, тонзилэктомия - к атрофии тимуса. Гиперплазия миндалин может привести к клеточным вариантам иммунной недостаточности. С возрастной инволюцией тимуса происходит инволюция и атрофия миндалин. Часто увеличение вилочковой железы сочетается с гипертрофией миндалин и клеточной иммунологической недостаточностью.

Пейеровы бляшки располагаются в кишечнике, они принимают участие в созревании Т- и В-лимфоцитов и формировании иммунного ответа. В случае атрофии пейеровых бляшек происходит нарушение в процессе созревания Т-лимфоцитов. Хотя кровь не относится к лимфатической системе, лабораторные исследования крови дают сведения о наличии лимфоцитов, образующихся в лимфоидной ткани, состоящей из ретикулярных и лимфоидных клеток.

Иммунная система человека в области профессиональных знаний персонального тренера играет важную роль, так как нередко в своей тренерской практике ему приходится сталкиваться с тем, что чрезмерные нагрузки повышают воздействие стресса на организм, а агрессивные условия внешней среды способствуют ослаблению иммунитета и возникновению болезней. Персональный тренер должен знать и уметь объяснить не только что такое иммунная система, но также и то, что зачастую является возбудителем болезни и какими средствами организм с ней борется.

Целью иммунной системы является полное избавление организма человека от чужеродных агентов, которыми зачастую выступают болезнетворные микроорганизмы, инородные возбудители, ядовитые вещества, а иногда и мутировавшие клетки самого организма. В иммунной системе существует большое количество вариантов идентификации и обезвреживания чужеродных тел. Этот процесс называется – иммунный ответ. Все его реакции можно разделить на врожденные и приобретенные. Характерным отличием между ними является то, что приобретенный иммунитет обладает высокой специфичностью по отношению к конкретным типам антигенов, что позволяет ему быстрее и эффективнее обезвреживать их при повторном столкновении. Антигены – это молекулы, которые воспринимаются как чужеродные агенты, влекущие за собой специфические ответные реакции организма. К примеру, если человек перенес ветрянку, корь или дифтерию, у него к этим заболеваниям часто развивается пожизненный иммунитет.

Развитие иммунной системы

Иммунная система состоит из большого количества разновидностей белков, клеток, органов и тканей, процесс взаимодействия между которыми необычайно сложен и протекает достаточно интенсивно. Оперативная иммунная реакция позволяет достаточно быстро идентифицировать те или иные чужеродные вещества или клетки. Процесс адаптации к работе с возбудителями способствует развитию иммунологической памяти, которая в последующем помогает еще более качественно обеспечивать защиту организма при следующей встрече с инородными возбудителями. Подобный вид приобретенного иммунитета положен в основу методик вакцинации.

Строение иммунной системы человека: 1- Печень; 2- Воротная вена; 3- Поясничный лимфатический ствол; 4- Слепая кишка; 5- Червеобразный отросток; 6- Паховые лимфатические узлы; 7- Шейный лимфатический ствол; 8- Левый венозный угол; 9- Вилочковая железа; 10- Внутригрудной лимфатический проток; 11- Цистерна млечного сока; 12- Селезенка; 13- Кишечный лимфатический ствол; 14- Поясничный лимфатический ствол; 15- Паховые лимфатические узлы.

Иммунная система человека представлена совокупностью органов и клеток, которые выполняют иммунологические функции. В первую очередь, реализацией иммунного ответа занимаются лейкоциты. Клетки иммунной системы в большинстве своем являются производными кроветворных тканей. У взрослого человека развитие этих клеток берет свое начало в костном мозге и только Т-лимфоциты дифференцируются внутри вилочковой железы. Взрослые клетки оседают внутри лимфоидных органов и на границе с окружающей средой, рядом с поверхностью кожи или не слизистых оболочках. Транспорт клеток иммунной системы в ходе активации иммунитета обеспечивает лимфатическая система. Она реализует свою функцию путем введения в системную циркуляцию различных молекул, жидкостей и инфекционных агентов, упакованных в экзосомы и везикулы.

Этапы иммунной защиты

Иммунная система защищает организм от инфекций в несколько этапов, при этом, каждый следующий этап повышает специфичность защиты. Самая простая форма защиты представляет собой физические барьеры, задача которых как раз предотвращать попадание бактерий и вирусов в организм. Если возбудитель инфекции все же проникает через эти барьеры, дальнейшую реакцию на него осуществляет врожденная иммунная система. В том случае, если возбудитель успешно преодолевает барьер врожденной иммунной системы, в работу включается третий барьер защиты – приобретенная иммунная система. Эта часть иммунной системы приспосабливает свою реакцию в ходе инфекционного процесса, чтобы повысить степень распознавания инородных биологических материалов. Такой ответ сохраняется после ликвидации возбудителя в виде иммунологической памяти. Она дает возможность механизмам приобретенного иммунитета развивать более быструю и более сильную ответную реакцию при каждом последующем столкновении с этим возбудителем.

Схема движения крови, межтканевой жидкости и лимфы в организме: 1- Правое предсердие; 2- Правый желудочек; 3- Левое предсердие; 4- Левый желудочек; 5- Аорта и артерии; 6- Кровеносный капилляр; 7- Тканевая жидкость; 8- Лимфатический капилляр; 9- Лимфатические сосуды; 10- Лимфатические узлы; 11- Вены большого круга кровообращения, куда впадает лимфа; 12- Легочная артерия; 13- Легочная вена. I- Кровеносная система; II- Лимфатическая система.

Как врожденный, так и приобретенный иммунитет зависят от способности иммунной системы отличать свои молекулы от чужих. В иммунологии под своими молекулами подразумевают те компоненты организма, которые иммунная система может отличить от чужеродных. И наоборот, под чужими подразумевают те молекулы, которые иммунной системой распознаются как чужеродные. Один из множества классов чужеродных молекул носит название антигенов и определяется как вещества, которые способны связываться со специфическими иммунными рецепторами и вызывать иммунный ответ.

Барьеры иммунной системы

Поскольку организм человека находится в постоянном взаимодействии с окружающей его средой, природа позаботилась о том, чтобы функционирование механизма защиты происходило в том числе, через дыхательную, пищеварительную и мочеполовую системы. Эти системы можно разделить на постоянно действующие и включающиеся симптоматически (в ответ на вторжение). Примером постоянно действующей системы защиты являются небольшие волоски на стенках трахеи, которые еще называют ресничками. Они совершают интенсивные движения, направленные вверх, за счет которых из дыхательных путей удаляются частицы пыли, пыльца растений и иные чужеродные объекты. Аналогичные по своей цели действия (выведение микроорганизмов) осуществляются за счет промывного действия слез и мочи. Слизь, которая выделяется в дыхательной и пищеварительной системах служит для связывания и обездвиживания инородных тел, объектов и микроорганизмов. Если постоянно действующих механизмов защиты оказывается недостаточно, в работу включаются «аварийные» механизмы очистки организма от возбудителей, такие, как кашель, чихание, рвота и диарея.

Строение лимфатического узла: 1- Капсула; 2- Синус; 3- Клапан для предотвращения обратного тока; 4- Лимфатический узелок; 5- Корковое вещество; 6- Ворота лимфатического узла. I- Приносящие лимфатические сосуды; II- Выносящие лимфатические сосуды.

В мочеполовом и желудочно – кишечном трактах существуют биологические барьеры, представленные дружественными микроорганизмами – комменсалами. Неболезнетворная микрофлора, которая приспособилась к обитанию в этих условиях конкурирует с патогенными бактериями за пищу и пространство нередко изменяя условия обитания, а именно кислотность или содержание железа. Это сильно понижает вероятность достижения болезнетворными микробами необходимых для развития патологии количеств. Существуют достаточно убедительные сведения о том, что введение пробиотической флоры, к примеру, чистых культур лактобацилл, которые содержатся в том же йогурте и иных кисломолочных продуктах, способствует восстановлению адекватного баланса микробных популяций при кишечных инфекциях.

Врожденный иммунитет

Если микроорганизм успешно проникает через все барьеры, он сталкивается с клетками и механизмами системы врожденного иммунитета. Врожденная иммунная защита по природе своей неспецифична, другими словами ее звенья идентифицируют и реагируют на инородные тела не зависимо от их особенностей. Эта система не обеспечивает долгосрочной резистентности к конкретным инфекциям. Система врожденного иммунитета является инструментом основной защиты организма как у человека, так и у большинства живых многоклеточных организмов.

Воспаление – это одна из первичных реакций иммунной системы на инфекцию. Симптомы воспаления обычно выражаются в проявлении покраснений и отеков, что является свидетельством увеличения притока крови к пораженным тканям. В развитии воспалительных реакций большую роль играют эйкозаноиды и цитокины, которые высвобождаются поврежденными или инфицированными клетками. К первым относятся простагланиды, которые провоцируют повышение температуры и расширение кровеносных сосудов, а также лейкотриены, которые привлекают некоторые виды белых кровяных телец. К самым распространенным цитокинам относят интерлейкины, которые отвечают за взаимодействие между лейкоцитами, хемокины, запускающие хемотаксис, а также интерфероны, которые обладают противовирусными свойствами, а именно способностью угнетать синтез белка в клетках микроорганизмов. Кроме того, свою роль в процессе реакции на инородный возбудитель играют также выделяемые факторы роста и цитотоксические факторы. Эти цитокины и прочие биоорганические соединения приводят клетки иммунной системы к очагу инфекции и способствуют заживлению поврежденных тканей путем ликвидации возбудителей.

Приобретенный иммунитет

Система приобретенного иммунитета развилась в ходе эволюции простейших позвоночных организмов. Она гарантирует более интенсивный иммунный ответ, а также иммунологическую память, благодаря которой каждый инородный микроорганизм «запоминается» по уникальным именно для него антигенам. Система приобретенного иммунитета антигенспецифична и требует распознавания специфических чужих антигенов в процессе, который называется презентация антигена. Такая специфичность антигена дает возможность осуществлять реакции, которые характерны именно для конкретных микроорганизмов или инфицированных ими клеток. Способность к реализации таких реакций поддерживается в организме «клетками памяти». Если человеческий организм заражается инородным микроорганизмом более одного раза, эти специфические клетки памяти используются для интенсивной ликвидации такого рода последствий.

Клетки иммунной системы, функции которых заключаются в осуществлении механизмов работы системы приобретенного иммунитета, относятся к лимфоцитам, которые в свою очередь являются подтипом лейкоцитов. Подавляющее количество лимфоцитов отвечает за специфический приобретенный иммунитет, так как способны идентифицировать возбудителей инфекции как внутри, так и за пределами клеток – в тканях или в крови. Основными типами лимфоцитов являются В-клетки и Т-клетки, которые происходят из плюрипотентных гемопоэтических стволовых клеток. У взрослого человека они формируются в костном мозге, а Т-лимфоциты дополнительно проходят отдельные процедуры дифференцирования в тимусе. В-клетки отвечают за гуморальное звено приобретенного иммунитета, другими словами производят антитела, в то время, как Т-клетки являются основой клеточного звена специфического иммунного ответа.

Заключение

Иммунная система человека в первую очередь предназначена для защиты организма от инфекционного воздействия инородных тел, объектов и веществ. Она защищает организм от возникновения и развития заболеваний, определяет и уничтожает опухолевые клетки, распознает и обезвреживает на ранних этапах различные вирусы и не только. Иммунная система имеет в своем распоряжении большое количество инструментов для быстрого обнаружения и не менее быстрой ликвидации вредоносных возбудителей инфекций. Также не стоит забывать, что существует такой метод выработки иммунитета к ряду инфекционных заболеваний, как вакцинация. В целом же, иммунная система – это страж, который любой ценой охраняет и бережет ваше здоровье.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top