Органоиды клетки. Цитоплазма и ее структурные компоненты

Органоиды клетки. Цитоплазма и ее структурные компоненты

Помимо органелл или органоидов клетка содержит непостоянные клеточные включения. Обычно содержатся в цитоплазме, но могут встречаться в митохондриях, в ядре и других органоидах.

Виды и формы

Включения - необязательные компоненты растительной или животной клетки, накапливающиеся в процессе жизнедеятельности и метаболизма. Включения не стоит путать с органеллами. В отличие от органелл включения то возникают, то исчезают в структуре клетки. Некоторые из них небольшие, едва заметные, другие превышают в размерах органеллы. Они могут иметь разную форму и различный химический состав.

По форме выделяют:

  • гранулы;
  • кристаллы;
  • зёрна;
  • капли;
  • глыбы.

Рис. 1. Формы включений.

По функциональному назначению включения подразделяются на следующие группы:

  • трофические или накопительные - запасы питательных веществ (вкрапления липидов, полисахаридов, реже - белков);
  • секреты - химические соединения в жидком виде, накапливающиеся в железистых клетках;
  • пигменты - окрашенные вещества, выполняющие определённые функции (например, гемоглобин переносит кислород, меланин - окрашивает кожу);
  • экскреты - продукты метаболического распада.

Рис. 2. Пигменты в клетке.

Все включения являются продуктами внутриклеточного обмена веществ. Часть так и остаётся в клетке «про запас», часть расходуется, часть со временем выводится из клетки.

Строение и функции

Главными включениями клетки являются жиры, белки, углеводы. Их краткое описание дано в таблице “Строение и функции клеточного включения”.

ТОП-4 статьи которые читают вместе с этой

Включения

Строение

Функции

Примеры

Мелкие капли. Находятся в цитоплазме. У млекопитающих жировые капли расположены в специальных жировых клетках. В растениях большая часть жировых капель находится в семенах

Являются основным запасом энергии, расщепление 1 г жиров высвобождает 39,1 кДж энергии

Клетки соединительной ткани

Полисахариды

Гранулы разнообразных форм и размеров. Обычно в животной клетке запасаются в форме гликогена. В растениях скапливаются зёрна крахмала

При необходимости восполняют недостаток глюкозы, являются энергетическим запасом

Клетки поперечнополосатых мышечных волокон, печени

Гранулы в форме пластинок, шариков, палочек. Встречаются реже, чем липиды и сахара, т.к. большая часть белков расходуется в процессе метаболизма

Являются строительным материалом

Яйцеклетка, клетки печени, простейшие

В растительной клетке роль включений играют вакуоли - мембранные органеллы, накапливающие питательные вещества. Вакуоли содержат водный раствор с органическими (соли) и неорганическими (углеводы, белки, кислоты и т.д.) веществами. Белки в небольшом количестве могут находиться в ядре. Липиды в виде капель накапливаются в цитоплазме.

Органоиды клетки, они же органеллы, представляют собой специализированные структуры собственно клетки, отвечающие за различные важные и жизненно необходимые функции. Почему же все-таки «органоиды»? Просто тут эти компоненты клетки сопоставляются с органами многоклеточного организма.

Какие органоиды входят в состав клетки

Также порой под органоидами понимается исключительно лишь постоянные структуры клетки, которые находятся в ее . По этой же причине ядро клетки и ее ядрышко не называют органоидами, равно как и не являются органоидами , реснички и жгутики. А вот к органоидам, входящим в состав клетки относятся: , комплекс , эндоплазматическая сеть, рибосомы, микротрубочки, микрофиламенты, лизосомы. По сути это и есть основные органоиды клетки.

Если речь идет о животных клетках, то в число их органоидов также входят центриоли и микрофибриллы. А вот в число органоидов растительной клетки еще входят только свойственные растениям пластиды. В целом состав органоидов в клетках может существенно отличатся в зависимости от вида самой клетки.

Рисунок строения клетки, включая ее органоиды.

Двумембраные органоиды клетки

Также в биологии существует такое явление как двумембраные органоиды клетки, к ним относятся митохондрии и пластиды. Ниже мы опишем свойственные им функции, впрочем, как всех других основных органоидов.

Функции органоидов клетки

А теперь коротко опишем основные функции органоидов животной клетки. Итак:

  • Плазматическая мембрана – тонкая пленка вокруг клетки состоящая из липидов и белков. Очень важный органоид, который обеспечивает транспортировку в клетку воды, минеральных и органических веществ, удаляет вредные продукты жизнедеятельности и защищает клетку.
  • Цитоплазма – внутренняя полужидкая среда клетки. Обеспечивает связь между ядром и органоидами.
  • Эндоплазматическая сеть – она же сеть каналов в цитоплазме. Принимает активное участие в синтезе белков, углеводов и липидов, занимается транспортировкой полезных веществ.
  • Митохондрии – органоиды, в которых окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. По сути митохондрии это органоид клетки, синтезирующий энергию.
  • Пластиды (хлоропласты, лейкопласты, хромопласты) – как мы упоминали выше, встречаются исключительно у растительных клеток, в целом их наличие является главной особенностью растительного организма. Играют очень важную функцию, например, хлоропласты, содержащие зеленый пигмент хлорофилл, у растения отвечают за явление .
  • Комплекс Гольджи — система полостей, отграниченных от цитоплазмы мембраной. Осуществляют синтез жиров и углеводов на мембране.
  • Лизосомы - тельца, отделенные от цитоплазмы мембраной. Имеющиеся в них особые ферменты ускоряют реакцию расщепления сложных молекул. Также лизосома является органоидом, обеспечивающим сборку белка в клетках.
  • - полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ; они регулируют содержание воды в клетке.

В целом все органоиды являются важными, ведь они регулируют жизнедеятельность клетки.

Основные органоиды клетки, видео

И в завершение тематическое видео про органоиды клетки.

Немембранные органоиды:

МИТОХОНДРИИ

(митос – нить; хондр - зерно)

Открыты в конце прошлого столетия. С помощью электронного микроскопа выяснена их структура.

Покрыта двумя мембранами, между которыми находится межмембранное пространство. Наружная мембрана пористая. На внутренней мембране находятся кристы, на которых расположены АТФ-сомы (особые структуры – частицы с ферментами) где происходит синтез АТФ. Внутри находится матрикс, где обнаруживаются нити ДНК, гранулы рибосом, и-РНК, т-РНК и электронноплотные частицы, где располагаются катионы Ca и Mg.

В матриксе находятся ферменты, расщепляющие продукты гликолиза (анаэробные окисления) до СО 2 и Н. Ионы водорода поступают в АТФ-сомы и соединяются с кислородом, образуя воду. Освобожденная при этом энергия используется в реакции фосфорилирования с образованием АТФ. АТФ способна распадаться до АДФ и фосфорного остатка, а также энергия, которая используется для осуществления синтетических процессов.

Таким образом, митохондрии связаны с выработкой энергии путем синтеза АТФ, поэтому они считаются энергетическими станциями клеток. Наличие ДНК и рибосом свидетельствует об автономном синтезе некоторых белков. Продолжительность жизни митохондрий в нейронах от 6 до 30 дней. Новообразование митохондрий происходит за счет почкования и образования перетяжек с последующим разделением на две. Количество митохондрий - от 1000 до 3000, а в яйцеклетках до 300.000 (убыль их пополняется за счет деления и почкования).

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ

Представляет собой систему уплощенных цистерн, трубочек и везикул, создающих в совокупности мембранную сеть цитоплазмы клеток. Если к наружной поверхности прикреплены рибосомы, то сеть гранулярная (шероховатая), без рибосом – агранулярная. Основная функция эндоплазматической сети – накопление, изоляция и транспорт образуемых веществ. В гранулярной сети происходит синтез белков, в агранулярной – синтез и расщепление гликогена, синтез стероидных гормонов (липидов), обезвреживание токсинов, концерогенных веществ и др. В мышечных волокнах и клетках гладкой мышечной ткани эндоплазматическая сеть является депо Са. Образуемые в сети вещества поступают в комплекс Гольджи.

КОМПЛЕКС ГОЛЬДЖИ

Был открыт в 1898 году. Ученые пришли к выводу, что этот органоид избирательно концентрирует вещества, синтезируемые в клетке. Комплекс Гольджи состоит из уплощенных цистерн или мешочков; транспортных пузырьков, приносящих из эндоплазматической сети белковый секрет; вакуолей, конденсирующих секрет, которые отделяются от мешочков и цистерн. Секрет в вакуолях уплотняется, и они превращаются в секреторные гранулы, которые затем выводятся из клетки.


Формируется комплекс Гольджи снизу на формирующей поверхности из фрагментов (транспортных пузырьков) эндоплазматической сети, находящейся под ним. Фрагменты отделяются, соединяются и формируют мешочки или цистерны. В цистернах комплекса Гольджи происходит также синтез гликопротеидов, т.е. модификации белков, путем соединения полисахаридов с белками и формирование лизосом. Участвует в формировании мембран, начатое в эндоплазматической сети.

ЛИЗОСОМЫ

Были открыты в 1955 году. Имеют вид пузырьков, ограниченных мембраной. Обнаружили их по наличию гидролитических ферментов (кислой фосфатазы). Основная их функция – расщепление попавших извне веществ, а также органелл и включений в ходе обновления или при снижении функциональной активности (а также и всей клетки в условиях инволюции органа – например, инволюции матки после родов). Таким образом, лизосомы – это пищеварительная система клетки.

Различают 4 формы лизосом:

1. Первичные - запасающая гранула.

2. Вторичные (фаголизосомы), в которых происходит активация ферментов и лизис веществ.

3. Аутофагосомы - гидролиз внутриклеточных структур.

4. Остаточные тельца, содержимое которых выводится из клетки путем экзоцитоза.

Переваренные вещества поступают (диффундируют) в гиалоплазму и включаются в обменные процессы.

ПЕРОКСИСОМЫ

Это сферические структуры диаметром 0,3-1,5 мкм. Их матрикс может быть аморфным, зернистым и кристаллическим. Они происходят из эндоплазматической сети и напоминают лизосомы, только менее электронноплотны. В них содержится фермент каталаза, разрушающий перекиси, образующиеся при расщеплении липидов, которые токсичны для клетки, нарушая функции мембран.

Немембранные органоиды:

РИБОСОМЫ

Это структуры, которые связаны с синтезом белка. Они образуются в ядрышке и состоят из рибосомного белка, поступающего из цитоплазмы, и рибосомной РНК, синтезируемой в ядрышке. В структуре рибосом различают большую и малую субъединицы, связанные ионами Мg. Рибосомы либо свободно располагаются в цитоплазме либо в виде небольших скоплений (полисом), либо связаны с эндоплазматической сетью.

Свободные рибосомы и полисомы встречаются в молодых клетках и синтезируют белок для роста самой клетки, а рибосомы на эндоплазматической сети синтезируют белок «на экспорт». Для синтеза белка необходимо: 1) аминокислоты (их 20); 2) Инф-РНК (образуется в ядре, на ней существуют тринуклеотиды, которые формируют код; 3) транспортная РНК и 4) ряд ферментов.

ЦИТОСКЕЛЕТ

Долгое время ученые не знали, что поддерживает порядок в клетке и не позволяет сбиться в кучу ее содержимому, что заставляет цитоплазму перемещаться, менять форму, пока не был изобретен электронный микроскоп. Стало ясно, что пространство между ядром и внутренней поверхностью плазмолеммы имеет упорядоченную структуру. Во-первых, оно перегорожено и разбито на отсеки с помощью внутренних мембран и во-вторых, внутриклеточное пространство заполнено различными филаментами – нитевидными белковыми волокнами, составляющими скелет. По диаметру эти волокна разделили на микротрубочки , микрофибриллы и промежуточные филаменты . Оказалось, что микротрубочки – это полые цилиндры, состоящие из белка тубулина; микрофибриллы – длинные фибриллярные структуры, состоящие из белков актина и миозина; а промежуточные – из разных белков (в эпителии – кератин и др.) Микротрубочки и микрофибриллы обеспечивают двигательные процессы в клетке и участвуют в опорной функции. Промежуточные филаменты выполняют только опорную функцию.

В последнее время ученые обнаружили 4-ый компонент цитоскелета – тонкие филаменты, которые обеспечивают связь основных компонентов цитоскелета. Они пронизывают всю цитоплазму, формируя решетки и, возможно, участвуют в передаче сигналов от поверхности клетки к ядру.

Микротрубочки принимают участие в образовании центриолей , представленных в виде двух цилиндров, перпендикулярных друг другу. Цилиндры состоят из 9 триплетов микротрубочек (9 x 3)+0. С центриолями связаны сателлиты, являющиеся центрами сборки веретена деления. Вокруг центриолей радиально расположены тонкие фибриллы, образующие центросферу. Все вместе называются клеточным центром.

При подготовке к делению происходит удвоение центриолей. Две центриоли расходятся, и около каждой формируется по одной новой дочерней. Пары расходятся по полюсам. При этом старая сеть микротрубочек исчезает и сменяется митотическим веретеном, которое также состоит из микротрубочек, но из одинарных неудвоенных (9 x1)+0. Всем этим занимается клеточный центр.

Микротрубочки принимают участие в формировании ресничек и жгутиков . Формула ресничек и аксонемы хвоста сперматозоидов (9 x 2)+2, а базального тельца у основания ресничек (9 x 3)+0. В ресничках и жгутиках кроме тубулина находится денеин. Если нет его или двух центральных трубочек, то реснички и жгутики не двигаются. С этим может быть связано мужское бесплодие и хронический бронхит.

Промежуточные филаменты чаще всего располагаются в тех местах ткани, которые испытывают механическую нагрузку. Благодаря своей прочности они продолжают служить и после гибели клетки (волосы).

Органоиды и включения

Немембранные органоиды:

МИТОХОНДРИИ

(митос – нить; хондр - зерно)

Открыты в конце прошлого столетия. С помощью электронного микроскопа выяснена их структура.

Покрыта двумя мембранами, между которыми находится межмембранное пространство. Наружная мембрана пористая. На внутренней мембране находятся кристы, на которых расположены АТФ-сомы (особые структуры – частицы с ферментами) где происходит синтез АТФ. Внутри находится матрикс, где обнаруживаются нити ДНК, гранулы рибосом, и-РНК, т-РНК и электронноплотные частицы, где располагаются катионы Ca и Mg.

В матриксе находятся ферменты, расщепляющие продукты гликолиза (анаэробные окисления) до СО 2 и Н. Ионы водорода поступают в АТФ-сомы и соединяются с кислородом, образуя воду. Освобожденная при этом энергия используется в реакции фосфорилирования с образованием АТФ. АТФ способна распадаться до АДФ и фосфорного остатка, а также энергия, которая используется для осуществления синтетических процессов.

Таким образом, митохондрии связаны с выработкой энергии путем синтеза АТФ, поэтому они считаются энергетическими станциями клеток. Наличие ДНК и рибосом свидетельствует об автономном синтезе некоторых белков. Продолжительность жизни митохондрий в нейронах от 6 до 30 дней. Новообразование митохондрий происходит за счет почкования и образования перетяжек с последующим разделением на две. Количество митохондрий - от 1000 до 3000, а в яйцеклетках до 300.000 (убыль их пополняется за счет деления и почкования).

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ

Представляет собой систему уплощенных цистерн, трубочек и везикул, создающих в совокупности мембранную сеть цитоплазмы клеток. Если к наружной поверхности прикреплены рибосомы, то сеть гранулярная (шероховатая), без рибосом – агранулярная. Основная функция эндоплазматической сети – накопление, изоляция и транспорт образуемых веществ. В гранулярной сети происходит синтез белков, в агранулярной – синтез и расщепление гликогена, синтез стероидных гормонов (липидов), обезвреживание токсинов, концерогенных веществ и др. В мышечных волокнах и клетках гладкой мышечной ткани эндоплазматическая сеть является депо Са. Образуемые в сети вещества поступают в комплекс Гольджи.

КОМПЛЕКС ГОЛЬДЖИ

Был открыт в 1898 году. Ученые пришли к выводу, что этот органоид избирательно концентрирует вещества, синтезируемые в клетке. Комплекс Гольджи состоит из уплощенных цистерн или мешочков; транспортных пузырьков, приносящих из эндоплазматической сети белковый секрет; вакуолей, конденсирующих секрет, которые отделяются от мешочков и цистерн. Секрет в вакуолях уплотняется, и они превращаются в секреторные гранулы, которые затем выводятся из клетки.

Формируется комплекс Гольджи снизу на формирующей поверхности из фрагментов (транспортных пузырьков) эндоплазматической сети, находящейся под ним. Фрагменты отделяются, соединяются и формируют мешочки или цистерны. В цистернах комплекса Гольджи происходит также синтез гликопротеидов, т.е. модификации белков, путем соединения полисахаридов с белками и формирование лизосом. Участвует в формировании мембран, начатое в эндоплазматической сети.

ЛИЗОСОМЫ

Были открыты в 1955 году. Имеют вид пузырьков, ограниченных мембраной. Обнаружили их по наличию гидролитических ферментов (кислой фосфатазы). Основная их функция – расщепление попавших извне веществ, а также органелл и включений в ходе обновления или при снижении функциональной активности (а также и всей клетки в условиях инволюции органа – например, инволюции матки после родов). Таким образом, лизосомы – это пищеварительная система клетки.

Различают 4 формы лизосом:

1. Первичные - запасающая гранула.

2. Вторичные (фаголизосомы), в которых происходит активация ферментов и лизис веществ.

3. Аутофагосомы - гидролиз внутриклеточных структур.

4. Остаточные тельца, содержимое которых выводится из клетки путем экзоцитоза.

Переваренные вещества поступают (диффундируют) в гиалоплазму и включаются в обменные процессы.

ПЕРОКСИСОМЫ

Это сферические структуры диаметром 0,3-1,5 мкм. Их матрикс может быть аморфным, зернистым и кристаллическим. Они происходят из эндоплазматической сети и напоминают лизосомы, только менее электронноплотны. В них содержится фермент каталаза, разрушающий перекиси, образующиеся при расщеплении липидов, которые токсичны для клетки, нарушая функции мембран.

Немембранные органоиды:

РИБОСОМЫ

Это структуры, которые связаны с синтезом белка. Они образуются в ядрышке и состоят из рибосомного белка, поступающего из цитоплазмы, и рибосомной РНК, синтезируемой в ядрышке. В структуре рибосом различают большую и малую субъединицы, связанные ионами Мg. Рибосомы либо свободно располагаются в цитоплазме либо в виде небольших скоплений (полисом), либо связаны с эндоплазматической сетью.

Свободные рибосомы и полисомы встречаются в молодых клетках и синтезируют белок для роста самой клетки, а рибосомы на эндоплазматической сети синтезируют белок «на экспорт». Для синтеза белка необходимо: 1) аминокислоты (их 20); 2) Инф-РНК (образуется в ядре, на ней существуют тринуклеотиды, которые формируют код; 3) транспортная РНК и 4) ряд ферментов.

ЦИТОСКЕЛЕТ

Долгое время ученые не знали, что поддерживает порядок в клетке и не позволяет сбиться в кучу ее содержимому, что заставляет цитоплазму перемещаться, менять форму, пока не был изобретен электронный микроскоп. Стало ясно, что пространство между ядром и внутренней поверхностью плазмолеммы имеет упорядоченную структуру. Во-первых, оно перегорожено и разбито на отсеки с помощью внутренних мембран и во-вторых, внутриклеточное пространство заполнено различными филаментами – нитевидными белковыми волокнами, составляющими скелет. По диаметру эти волокна разделили на микротрубочки , микрофибриллы и промежуточные филаменты . Оказалось, что микротрубочки – это полые цилиндры, состоящие из белка тубулина; микрофибриллы – длинные фибриллярные структуры, состоящие из белков актина и миозина; а промежуточные – из разных белков (в эпителии – кератин и др.) Микротрубочки и микрофибриллы обеспечивают двигательные процессы в клетке и участвуют в опорной функции. Промежуточные филаменты выполняют только опорную функцию.

В последнее время ученые обнаружили 4-ый компонент цитоскелета – тонкие филаменты, которые обеспечивают связь основных компонентов цитоскелета. Они пронизывают всю цитоплазму, формируя решетки и, возможно, участвуют в передаче сигналов от поверхности клетки к ядру.



Микротрубочки принимают участие в образовании центриолей , представленных в виде двух цилиндров, перпендикулярных друг другу. Цилиндры состоят из 9 триплетов микротрубочек (9 x 3)+0. С центриолями связаны сателлиты, являющиеся центрами сборки веретена деления. Вокруг центриолей радиально расположены тонкие фибриллы, образующие центросферу. Все вместе называются клеточным центром.

При подготовке к делению происходит удвоение центриолей. Две центриоли расходятся, и около каждой формируется по одной новой дочерней. Пары расходятся по полюсам. При этом старая сеть микротрубочек исчезает и сменяется митотическим веретеном, которое также состоит из микротрубочек, но из одинарных неудвоенных (9 x1)+0. Всем этим занимается клеточный центр.

Микротрубочки принимают участие в формировании ресничек и жгутиков . Формула ресничек и аксонемы хвоста сперматозоидов (9 x 2)+2, а базального тельца у основания ресничек (9 x 3)+0. В ресничках и жгутиках кроме тубулина находится денеин. Если нет его или двух центральных трубочек, то реснички и жгутики не двигаются. С этим может быть связано мужское бесплодие и хронический бронхит.

Промежуточные филаменты чаще всего располагаются в тех местах ткани, которые испытывают механическую нагрузку. Благодаря своей прочности они продолжают служить и после гибели клетки (волосы).

ВКЛЮЧЕНИЯ

Непостоянные структуры цитоплазмы. Они могут быть липидами, углеводами, белками, витаминами и использоваться клетками как источники энергии и питательных веществ. Могут выделяться из клетки и использоваться организмом (секреторные включения). Включения представляют собой капельки жира, гликогена, ферменты, пигментные включения.

ЯДРО

Является обязательным компонентом полноценной клетки. Оно обеспечивает двефункции :

1. Хранение и передачу генетической информации.

2. Реализацию информации с обеспечением синтеза белка.

Наследственная информация хранится в виде неизменных структур ДНК. В ядре происходит воспроизведение или редупликация молекул ДНK (удвоение), что дает возможность двум дочерним клеткам при митозе получить одинаковые объемы генетической информации.

На молекулах ДНК происходит транскрипция разных РНК-информационных, транспортных и рибосомных.

В ядре происходит образование субъедениц рибосом путем соединения рибосомных РНК с рибосомными белками, синтезируемыми в цитоплазме и перенесенными в ядро. Клетки без ядра не способны синтезировать белок (например, эритроциты). Нарушение любой функции ядра приводит к гибели клетки.

Форма ядер в большинстве округлая, но есть палочковидная и сегментированная. В ядре различают ядерную оболочку, кариоплазму (ядерный матрикс), хроматин и ядрышко. Ядерная оболочка – кариолемма состоит из двух липопротеидных мембран, между которыми находится перинуклеарное пространство.

В оболочке имеются ядерные поры (поровый комплекс), диаметром 80-90 нм. В области поры мембраны сливаются. Внутри поры имеется три ряда гранул (белковых глобул) по 8 штук. В центре тоже есть гранула и с каждой из 24 гранул она соединена тонкими нитями (фибриллами), образуя сеточку. Через нее проходят микромолекулы из ядра и в ядро. Число пор может варьировать в зависимости от активности ядра.

На внешней ядерной мембране, обращенной к цитоплазме клетки, размещены полирибосомы, и она может переходить в мембраны эндоплазматической сети.

Внутренняя мембрана имеет связь с плотной пластинкой, которая представляет густую сеть белковых фибрилл, соединяющихся с фибриллами кариоплазмы. Пластинка и фибриллярная система выполняют опорную функцию. Плотная пластинка при помощи специальных белков связана с участками хромосом и обеспечивает порядок их расположения в период интерфазы.

Таким образом, ядерная оболочка является барьером, отделяющим содержимое ядра от цитоплазмы, ограничивая свободный доступ в ядро крупных агрегатов и регулируя транспорт микромолекул между ядром и цитоплазмой, а также фиксирует хромосомы в ядре.

Кариоплазма - бесструктурное вещество, содержит различные белки (нуклеопротеиды, гликопротеиды, ферменты и соединения, участвующие в процессе синтеза нуклеиновых кислот, белков и других веществ). Под большим увеличением видны рибонуклепротеидные гранулы. Выявлены продукты белкового обмена, гликолитические ферменты и другие.

Хроматин – плотное, хорошо окрашивающееся вещество. Он представлен совокупностью хромосом. Хромосомы постоянно присутствуют, но видны лишь во время митоза, так как сильно спирализуются и утолщаются. В интерфазном ядре они деспирализуются и не видны. Сохранившиеся конденсированные участки называются гетерохроматином, а деконденсированные – эухроматином, в котором идет активная работа по синтезу веществ. Много эухроматин обычно в молодых клетках.

Хроматин состоит из ДНК (30-40 %), белков (60-70 %) и небольшого количества РНК (т.е. дезоксирибонуклеопротеид). Молекула ДНК представляет собой двойную спираль, с различными азотистыми основаниями Белки представлены гистонами и негистонами. Гистоны (основные) выполняют структурную функцию, обеспечивая укладку ДНК. Негистоны образуют матрикс в интерфазном ядре и регулируют синтез нуклеиновых кислот.

Ядрышко – тельце округлой формы внутри ядра. Это место образования рибосомных РНК и формирования рибосом. Ядрышковыми организаторами являются участки хромосомы (или ДНК), которые содержат гены, кодирующие синтез рибосомных РНК. Эти участки прилегают к поверхности ядрышка в виде конденсированного хроматина, где синтезируется предшественник РНК. В зоне ядрышка предшественник одевается белком, образуя субъеденицы рибосомы. Выходя в цитоплазму, они заканчивают свое формирование и участвуют в процессе синтеза белка.

В составе ядрышка различают: ядрышковый хроматин, фибриллярные (филаменты РНК) и гранулярные (гранулы РНК-формирующиеся рибосомы) структуры, состоящие из нуклеопротеидов. Фибриллярные и гранулярные компоненты образуют ядрышковую нить (нуклеолонему).

Вместе с мембранными и немембранными органеллами в цитоплазме находятся клеточные включения, которые являются непостоянными элементами клетки. Они появляются и исчезают на протяжении ее жизненного цикла.

Что относится к клеточным включениям, какова их роль в клетке?

По сути включения - это продукты метаболизма, способные накапливаться в виде гранул, зерен или капель с разной химической структурой. Редко могут встречаться в ядре.

Формируются они в основном в пластинчатом комплексе и в эндоплазматическом ретикулуме. Часть - результат неполного переваривания (гемосидерин).

Процесс расщепления и удаления зависит от происхождения. Секреторные включения выводятся через протоки, углеводные и липидные - расщепляются под действием ферментов, меланин разрушается клетками Лангерганса.

Классификация клеточных включений:

  • Трофические (крахмал, гликоген, липиды);
  • секреторные (включения поджелудочной железы, эндокринных органов);
  • экскреторные (гранулы мочевой кислоты);
  • пигментные (меланин, билирубин);
  • случайные (медикаменты, кремний);
  • минеральные (соли кальция).

Строение и функции

Жировые включения часто накапливаются в цитоплазме, как небольшие капли. Они характерны для одноклеточных, к примеру, инфузорий. У высших животных липидные капли находятся в жировой ткани. Чрезмерное накопление жировых включений приводит к патологическим изменениям в органах, к примеру, вызывает жировую дистрофию печени.

Полисахаридные имеют гранулярное строение различной формы и размеров. Наибольшие их скопления располагаются в клетках поперечнополосатой мускулатуры и печеночной ткани.


Включения белка встречаются не часто, главным образом являются питательным веществом в яйцеклетках (при микроскопическом исследовании можно увидеть разного рода пластинки, палочки).

Пигмент липофусцин - это включения желтого или коричневого цвета, которые скапливаются в клетках в процессе жизнедеятельности. Пигмент гемоглобин входит в состав эритроцитов крови. Родопсин — делает палочки сетчатки глаза чувствительными к свету.

Строение и функции клеточных включений
Группа Характеристика
Трофические Сюда относят белки, жиры и углеводы. В клетках животных, особенно в печени и мышечных волокнах, находится гликоген. При нагрузках и потреблении большого количества энергии он используется в первую очередь. У растений накапливается крахмал, как основной источник питания.
Экскреторные Это продукты метаболизма клетки, которые не были из нее удалены. Сюда также относят чужеродных агентов, проникших во внутриклеточное пространство. Такие включения поглощаются и перерабатываются лизосомами.
Секреторные Их синтез идет в специальных клетках, а после они выводятся наружу через протоки или с током лимфы и крови. К секреторной группе относятся гормоны.
Пигментные Иногда представлены продуктами обмена: гранулы липофусцина или скопления гемосидерина. Находятся в меланоцитах, клетках имеющих окрас. Выполняют защитную функцию, предотвращая действие солнечных лучей. У простейших видов меланоциты находятся во многих органах, что придает животным различную окраску. У человека основная масса пигментных клеток находится в эпидермисе, часть в радужке глаза.
Случайные Встречаются в клетках, способных к фагоцитозу. Захваченные бактерии, которые плохо перевариваются, остаются в цитоплазме в виде гранул.
Минеральные Сюда относятся соли Ca, которые откладываются при снижении активной деятельности органа. Нарушение метаболизма иона приводит также к накоплению солей в матриксе митохондрий.

Биологическое и медицинское значение клеточных включений

Избыточное скопление включений может привести к развитию серьезных патологий, которые принято называть болезнями накопления. Формирование заболевания связано со снижением активности лизосомальных ферментов и чрезмерным поступлением каких-либо веществ (жировое перерождение печени, гликогенозмышечной ткани).

Например, развитие наследственной болезни Помпе обусловлено дефицитом фермента кислая мальтаза , как следствие в клетках накаливается гликоген, что ведет к дистрофии нервной и мышечной ткани.

Скапливаться в цитоплазме могут свойственные для клетки вещества, а также чужеродные, которые в норме не встречаются (амилоидоз почек). Во время старения организма во всех клетках накапливается липофусцин, который служит маркером функциональной неполноценности клеток.

Чем отличаются органоиды от клеточных включений?

Органоиды - это постоянные структурные элементы клетки, необходимые для стабильной работы и жизнедеятельности.

Включения - это компоненты клетки, которые могут появляться и исчезать на протяжении ее жизни.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top