Переход к логарифму. Определение логарифма, основное логарифмическое тождество

Переход к логарифму. Определение логарифма, основное логарифмическое тождество

Определение логарифма

Логарифмом числа b по основанию а называется показатель степени, в которую нужно возвести а, чтобы получить b .

Числом е в математике принято обозначать предел, к которому стремиться выражение

Число е является иррациональным числом - числом, несоизмеримым с единицей, оно не может быть точно выраженным ни целым ни дробным рациональным числом.

Буква е - первая буква латинского слова exponere - выставлять напоказ, отсюда в математике название экспоненциальная - показательная функция.

Число е широко применяется в математике, и во всех науках, так или иначе применяющих для своих нужд математические расчеты.

Логарифмы. Свойства логарифмов

Определение: Логарифмом положительного числа b по основанию называется показатель степени с, в которую надо возвести число а, чтобы получить число b.

Основное логарифмическое тождество:

7) Формула перехода к новому основанию:

lna = log e a, e ≈ 2,718…

Задачи и тесты по теме «Логарифмы. Свойства логарифмов»

  • Логарифмы — Важные темы для повторения ЕГЭ по математике

Для успешного выполнения заданий по данной теме Вы должны знать определение логарифма, свойства логарифмов, основное логарифмическое тождество, определения десятичного и натурального логарифмов. Основные типы задач по данной теме — это задачи на вычисление и преобразование логарифмических выражений. Рассмотрим их решение на следующих примерах.

Решение: Используя свойства логарифмов, получим

Решение: используя свойства степени, получим

1) (2 2) log 2 5 =(2 log 2 5) 2 =5 2 =25

Свойства логарифмов, формулировки и доказательства.

Логарифмы обладают рядом характерных свойств. В этой статье мы разберем основные свойства логарифмов . Здесь мы дадим их формулировки, запишем свойства логарифмов в виде формул, покажем примеры их применения, а также приведем доказательства свойств логарифмов.

Навигация по странице.

Основные свойства логарифмов, формулы

Для удобства запоминания и использования представим основные свойства логарифмов в виде списка формул. В следующем пункте дадим их формулировки, доказательства, примеры использования и необходимые пояснения.

  • Свойство логарифма единицы: log a 1=0 для любого a>0 , a≠1 .
  • Логарифм числа, равного основанию: log a a=1 при a>0 , a≠1 .
  • Свойство логарифма степени основания: log a a p =p , где a>0 , a≠1 и p – любое действительное число.
  • Логарифм произведения двух положительных чисел: log a (x·y)=log a x+log a y , a>0 , a≠1 , x>0 , y>0 ,
    и свойство логарифма произведения n положительных чисел: log a (x 1 ·x 2 ·…·x n)= log a x 1 +log a x 2 +…+log a x n , a>0 , a≠1 , x 1 >0, x 2 >0, …, x n >0 .
  • Свойство логарифма частного: , где a>0 , a≠1 , x>0 , y>0 .
  • Логарифм степени числа: log a b p =p·log a |b| , где a>0 , a≠1 , b и p такие числа, что степень b p имеет смысл и b p >0 .
  • Следствие: , где a>0 , a≠1 , n – натуральное число, большее единицы, b>0 .
  • Следствие 1: , a>0 , a≠1 , b>0 , b≠1 .
  • Следствие 2: , a>0 , a≠1 , b>0 , p и q – действительные числа, q≠0 , в частности при b=a имеем .
  • Формулировки и доказательства свойств

    Переходим к формулированию и доказательству записанных свойств логарифмов. Все свойства логарифмов доказываются на основе определения логарифма и вытекающего из него основного логарифмического тождества, а также свойств степени.

    Начнем со свойства логарифма единицы . Его формулировка такова: логарифм единицы равен нулю, то есть, log a 1=0 для любого a>0 , a≠1 . Доказательство не вызывает сложностей: так как a 0 =1 для любого a , удовлетворяющего указанным выше условиям a>0 и a≠1 , то доказываемое равенство log a 1=0 сразу следует из определения логарифма.

    Приведем примеры применения рассмотренного свойства: log 3 1=0 , lg1=0 и .

    Переходим к следующему свойству: логарифм числа, равного основанию, равен единице , то есть, log a a=1 при a>0 , a≠1 . Действительно, так как a 1 =a для любого a , то по определению логарифма log a a=1 .

    Примерами использования этого свойства логарифмов являются равенства log 5 5=1 , log 5,6 5,6 и lne=1 .

    Логарифм степени числа, равного основанию логарифма, равен показателю степени . Этому свойству логарифма отвечает формула вида log a a p =p , где a>0 , a≠1 и p – любое действительное число. Это свойство напрямую следует из определения логарифма. Заметим, что оно позволяет сразу указать значение логарифма, если есть возможность представить число под знаком логарифма в виде степени основания, подробнее об этом мы поговорим в статье вычисление логарифмов.

    К примеру, log 2 2 7 =7 , lg10 -4 =-4 и .

    Логарифм произведения двух положительных чисел x и y равен произведению логарифмов этих чисел: log a (x·y)=log a x+log a y , a>0 , a≠1 . Докажем свойство логарифма произведения. В силу свойств степени a log a x+log a y =a log a x ·a log a y , а так как по основному логарифмическому тождеству a log a x =x и a log a y =y , то a log a x ·a log a y =x·y . Таким образом, a log a x+log a y =x·y , откуда по определению логарифма вытекает доказываемое равенство.

    Покажем примеры использования свойства логарифма произведения: log 5 (2·3)=log 5 2+log 5 3 и .

    Свойство логарифма произведения можно обобщить на произведение конечного числа n положительных чисел x 1 , x 2 , …, x n как log a (x 1 ·x 2 ·…·x n)= log a x 1 +log a x 2 +…+log a x n . Данное равенство без проблем доказывается методом математической индукции.

    Например, натуральных логарифм произведения можно заменить суммой трех натуральных логарифмов чисел 4 , e , и .

    Логарифм частного двух положительных чисел x и y равен разности логарифмов этих чисел. Свойству логарифма частного соответствует формула вида , где a>0 , a≠1 , x и y – некоторые положительные числа. Справедливость этой формулы доказывается как и формула логарифма произведения: так как , то по определению логарифма .

    Приведем пример использования этого свойства логарифма: .

    Переходим к свойству логарифма степени . Логарифм степени равен произведению показателя степени на логарифм модуля основания этой степени. Запишем это свойство логарифма степени в виде формулы: log a b p =p·log a |b| , где a>0 , a≠1 , b и p такие числа, что степень b p имеет смысл и b p >0 .

    Сначала докажем это свойство для положительных b . Основное логарифмическое тождество позволяет нам представить число b как a log a b , тогда b p =(a log a b) p , а полученное выражение в силу свойство степени равно a p·log a b . Так мы приходим к равенству b p =a p·log a b , из которого по определению логарифма заключаем, что log a b p =p·log a b .

    Осталось доказать это свойство для отрицательных b . Здесь замечаем, что выражение log a b p при отрицательных b имеет смысл лишь при четных показателях степени p (так как значение степени b p должно быть больше нуля, в противном случае логарифм не будет иметь смысла), а в этом случае b p =|b| p . Тогда b p =|b| p =(a log a |b|) p =a p·log a |b| , откуда log a b p =p·log a |b| .

    Например, и ln(-3) 4 =4·ln|-3|=4·ln3 .

    Из предыдущего свойства вытекает свойство логарифма из корня : логарифм корня n -ой степени равен произведению дроби 1/n на логарифм подкоренного выражения, то есть, , где a>0 , a≠1 , n – натуральное число, большее единицы, b>0 .

    Доказательство базируется на равенстве (смотрите определение степени с дробным показателем), которое справедливо для любых положительных b , и свойстве логарифма степени: .

    Вот пример использования этого свойства: .

    Теперь докажем формулу перехода к новому основанию логарифма вида . Для этого достаточно доказать справедливость равенства log c b=log a b·log c a . Основное логарифмическое тождество позволяет нам число b представить как a log a b , тогда log c b=log c a log a b . Осталось воспользоваться свойством логарифма степени: log c a log a b =log a b·log c a . Так доказано равенство log c b=log a b·log c a , а значит, доказана и формула перехода к новому основанию логарифма .

    Покажем пару примеров применения этого свойства логарифмов: и .

    Формула перехода к новому основанию позволяет переходить к работе с логарифмами, имеющими «удобное» основание. Например, с ее помощью можно перейти к натуральным или десятичным логарифмам, чтобы можно было вычислить значение логарифма по таблице логарифмов. Формула перехода к новому основанию логарифма также позволяет в некоторых случаях находить значение данного логарифма, когда известны значения некоторых логарифмов с другими основаниями.

    Часто используется частный случай формулы перехода к новому основанию логарифма при c=b вида . Отсюда видно, что log a b и log b a – взаимно обратные числа. К примеру, .

    Также часто используется формула , которая удобна при нахождении значений логарифмов. Для подтверждения своих слов покажем, как с ее помощью вычисляется значение логарифма вида . Имеем . Для доказательства формулы достаточно воспользоваться формулой перехода к новому основанию логарифма a: .

    Осталось доказать свойства сравнения логарифмов.

    Воспользуемся методом от противного. Предположим, что при a 1 >1 , a 2 >1 и a 1 2 и при 0 1 справедливо log a 1 b≤log a 2 b . По свойствам логарифмов эти неравенства можно переписать как и соответственно, а из них следует, что log b a 1 ≤log b a 2 и log b a 1 ≥log b a 2 соответственно. Тогда по свойствам степеней с одинаковыми основаниями должны выполняться равенства b log b a 1 ≥b log b a 2 и b log b a 1 ≥b log b a 2 , то есть, a 1 ≥a 2 . Так мы пришли к противоречию условию a 1 2 . На этом доказательство завершено.

    Основные свойства логарифмов

    • Материалы к уроку
    • Скачать все формулы
    • Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы - это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами .

      Эти правила обязательно надо знать - без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного - все можно выучить за один день. Итак, приступим.

      Сложение и вычитание логарифмов

      Рассмотрим два логарифма с одинаковыми основаниями: log a x и log a y . Тогда их можно складывать и вычитать, причем:

      Итак, сумма логарифмов равна логарифму произведения, а разность - логарифму частного. Обратите внимание: ключевой момент здесь - одинаковые основания . Если основания разные, эти правила не работают!

      Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок «Что такое логарифм»). Взгляните на примеры - и убедитесь:

      Задача. Найдите значение выражения: log 6 4 + log 6 9.

      Поскольку основания у логарифмов одинаковые, используем формулу суммы:
      log 6 4 + log 6 9 = log 6 (4 · 9) = log 6 36 = 2.

      Задача. Найдите значение выражения: log 2 48 − log 2 3.

      Основания одинаковые, используем формулу разности:
      log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

      Задача. Найдите значение выражения: log 3 135 − log 3 5.

      Снова основания одинаковые, поэтому имеем:
      log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

      Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные - подобные выражения на полном серьезе (иногда - практически без изменений) предлагаются на ЕГЭ.

      Вынесение показателя степени из логарифма

      Теперь немного усложним задачу. Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

    • log a x n = n · log a x ;
    • Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить - в некоторых случаях это значительно сократит объем вычислений.

      Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм. Именно это чаще всего и требуется.

      Задача. Найдите значение выражения: log 7 49 6 .

      Избавимся от степени в аргументе по первой формуле:
      log 7 49 6 = 6 · log 7 49 = 6 · 2 = 12

      Задача. Найдите значение выражения:

      [Подпись к рисунку]

      Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 2 4 ; 49 = 7 2 . Имеем:

      [Подпись к рисунку]

      Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем. Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели - получили «трехэтажную» дробь.

      Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log 2 7. Поскольку log 2 7 ≠ 0, можем сократить дробь - в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

      Переход к новому основанию

      Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

      На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

      Пусть дан логарифм log a x . Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

      [Подпись к рисунку]

      В частности, если положить c = x , получим:

      [Подпись к рисунку]

      Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

      Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

      Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

      Задача. Найдите значение выражения: log 5 16 · log 2 25.

      Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

      А теперь «перевернем» второй логарифм:

      [Подпись к рисунку]

      Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

      Задача. Найдите значение выражения: log 9 100 · lg 3.

      Основание и аргумент первого логарифма - точные степени. Запишем это и избавимся от показателей:

      [Подпись к рисунку]

      Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

      [Подпись к рисунку]

      Основное логарифмическое тождество

      Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:

    1. n = log a a n
    2. В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

      Вторая формула - это фактически перефразированное определение. Она так и называется: основное логарифмическое тождество.

      В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a ? Правильно: получится это самое число a . Внимательно прочитайте этот абзац еще раз - многие на нем «зависают».

      Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

      [Подпись к рисунку]

      Заметим, что log 25 64 = log 5 8 - просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

      [Подпись к рисунку]

      Если кто-то не в курсе, это была настоящая задача из ЕГЭ 🙂

      Логарифмическая единица и логарифмический ноль

      В заключение приведу два тождества, которые сложно назвать свойствами - скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

      1. log a a = 1 - это логарифмическая единица. Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.
      2. log a 1 = 0 - это логарифмический ноль. Основание a может быть каким угодно, но если в аргументе стоит единица - логарифм равен нулю! Потому что a 0 = 1 - это прямое следствие из определения.

      Вот и все свойства. Обязательно потренируйтесь применять их на практике! Скачайте шпаргалку в начале урока, распечатайте ее - и решайте задачи.

      Логарифм. Свойства логарифма (сложение и вычитание).

      Свойства логарифма вытекают из его определения. И так логарифм числа b по основанию а определяется как показатель степени, в которую надо возвести число a , чтобы получить число b (логарифм существует только у положительных чисел).

      Из данной формулировки следует, что вычисление x=log a b , равнозначно решению уравнения a x =b. Например, log 2 8 = 3 потому, что 8 = 2 3 . Формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с . Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа.

      С логарифмами, как и с любыми числами, можно выполнять операции сложения, вычитания и всячески трансформировать. Но ввиду того, что логарифмы — это не совсем ординарные числа, здесь применимы свои особенные правила, которые называются основными свойствами .

      Сложение и вычитание логарифмов.

      Возьмем два логарифма с одинаковыми основаниями: log a x и log a y . Тогда сними возможно выполнять операции сложения и вычитания:

      Как видим, сумма логарифмов равняется логарифму произведения, а разность логарифмов — логарифму частного. Причем это верно если числа а , х и у положительны и а ≠ 1.

      Важно обращать внимание, что основным аспектом в данных формулах выступают одни и те же основания. Если основания отличаются друг от друга, эти правила не применимы!

      Правила сложения и вычитания логарифмов с одинаковыми основаниями читаются не только с лева на право, но и на оборот. В результате мы имеем теоремы логарифма произведения и логарифма частного.

      Логарифм произведения двух положительных чисел равен сумме их логарифмов; перефразируя данную теорему получим следующее, если числа а , x и у положительны и а ≠ 1 , то:

      Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя. Говоря по другому, если числа а , х и у положительны и а ≠ 1 , то:

      Применим вышеизложенные теоремы для решения примеров :

      Если числа x и у отрицательны, то формула логарифма произведения становится бессмысленной. Так, запрещено писать:

      так как выражения log 2 (-8) и log 2 (-4) вообще не определены (логарифмическая функция у = log 2 х определена лишь для положительных значений аргументах ).

      Теорема произведения применима не только для двух, но и для неограниченного числа сомножителей. Это означает, что для всякого натурального k и любых положительных чисел x 1 , x 2 , . . . ,x n существует тождество:

      Из теоремы логарифма частного можно получить еще одно свойство логарифма. Общеизвестно, что log a 1= 0, следовательно,

      А значит имеет место равенство:

      Логарифмы двух взаимно обратных чисел по одному и тому же основанию будут различны друг от друга исключительно знаком. Так:

      Логарифм. Свойства логарифмов

      Логарифм. Свойства логарифмов

      Рассмотрим равенство . Пусть нам известны значения и и мы хотим найти значение .

      То есть мы ищем показатель степени, в которую нужно взвести чтобы получить .

      Пусть переменная может принимать любое действительное значение, тогда на переменные и накладываются такие ограничения: o» title=»a>o»/> , 1″ title=»a1″/>, 0″ title=»b>0″/>

      Если нам известны значения и , и перед нами стоит задача найти неизвестное , то для этой цели вводится математическое действие, которое называется логарифмирование .

      Чтобы найти значение , мы берем логарифм числа по основанию :

      Логарифмом числа по основанию называется показатель степени, в которую надо возвести , чтобы получить .

      То есть основное логарифмическое тождество :

      o» title=»a>o»/> , 1″ title=»a1″/>, 0″ title=»b>0″/>

      является по сути математической записью определения логарифма .

      Математическая операция логарифмирование является обратной по отношению к операции возведения в степень, поэтому свойства логарифмов тесно связаны со свойствами степени.

      Перечислим основные свойства логарифмов :

      (o» title=»a>o»/> , 1″ title=»a1″/>, 0″ title=»b>0″/>, 0,

      d>0″/>, 1″ title=»d1″/>

      4.

      5.

      Следующая группа свойств позволяет представить показатель степени выражения, стоящего под знаком логарифма, или стоящего в основании логарифма в виде коэффициента перед знаком логарифма:

      6.

      7.

      8.

      9.

      Следующая группа формул позволяет перейти от логарифма с данным основанием к логарифму с произвольным основанием, и называется формулами перехода к новому основанию :

      10.

      12. (следствие из свойства 11)

      Следующие три свойства не очень известны, однако они часто используются при решении логарифмических уравнений, или при упрощении выражений, содержащих логарифмы:

      13.

      14.

      15.

      Частные случаи:

      десятичный логарифм

      натуральный логарифм

      При упрощении выражений, содержащих логарифмы применяется общий подход:

      1. Представляем десятичные дроби в виде обыкновенных.

      2. Смешанные числа представляем в виде неправильных дробей.

      3. Числа, стоящие в основании логарифма и под знаком логарифма раскладываем на простые множители.

      4. Стараемся привести все логарифмы к одному основанию.

      5. Применяем свойства логарифмов.

      Давайте рассмотрим примеры упрощения выражений, содержащих логарифмы.

      Пример 1.

      Вычислить:

      Упростим все показатели степеней: наша задача привести их к логарифмам, в основании которых стоит то же число, что и в основании степtни.

      ==(по свойству 7)=(по свойству 6) =

      Подставим показатели, которые у нас получились в исходное выражение. Получим:

      Ответ: 5,25

      Пример 2. Вычислить:

      Приведем все логарифмы к основанию 6 (при этом логарифмы из знаменателя дроби «перекочуют» в числитель):

      Разложим числа, стоящие под знаком логарифма на простые множители:

      Применим свойства 4 и 6:

      Введем замену

      Получим:

      Ответ: 1

      Логарифм . Основное логарифмическое тождество.

      Свойства логарифмов. Десятичный логарифм. Натуральный логарифм.

      Логарифмом положительного числа N по основанию (b > 0, b 1) называется показатель степени x , в которую нужно возвести b , чтобы получить N .

      Эта запись равнозначна следующей: b x = N .

      П р и м е р ы: log 3 81 = 4 , так как 3 4 = 81 ;

      log 1/3 27 = 3 , так как (1/3) — 3 = 3 3 = 27 .

      Вышеприведенное определение логарифма можно записать в виде тождества:

      Основные свойства логарифмов.

      2) log 1 = 0 , так как b 0 = 1 .

      3) Логарифм произведения равен сумме логарифмов сомножителей:

      4) Логарифм частного равен разности логарифмов делимого и делителя:

      5) Логарифм степени равен произведению показателя степени на логарифм её основания:

      Следствием этого свойства является следующее: логарифм корня равен логарифму подкоренного числа, делённому на степень корня:

      6) Если в основании логарифма находится степень, то величину, обратную показателю степени, можно вынести за знак лога рифма:

      Два последних свойства можно объединить в одно:

      7) Формула модуля перехода (т. e . перехода от одного основания логарифма к другому основанию):

      В частном случае при N = a имеем:

      Десятичным логарифмом называется логарифм по основанию 10. Он обозначается lg , т.е. log 10 N = lg N . Логарифмы чисел 10, 100, 1000, . p авны соответственно 1, 2, 3, …, т.е. имеют столько положительных

      единиц, сколько нулей стоит в логарифмируемом числе после единицы. Логарифмы чисел 0.1, 0.01, 0.001, . p авны соответственно –1, –2, –3, …, т.е. имеют столько отрицательных единиц, сколько нулей стоит в логарифмируемом числе перед единицей (считая и нуль целых). Логарифмы остальных чисел имеют дробную часть, называемую мантиссой . Целая часть логарифма называется характеристикой . Для практического при менения десятичные логарифмы наиболее удобны.

      Натуральным логарифмом называется логарифм по основанию е . Он обозначается ln , т.е. log e N = ln N . Число е является иррациональным, его приближённое значение 2.718281828. Оно является пределом, к которому стремится число (1 + 1 / n ) n при неограниченном возрастании n (см. первый замечательный предел на странице «Пределы числовых последовательностей»).
      Как это ни покажется странным, натуральные логарифмы оказались очень удобными при проведении различного рода операций, связанных с анализом функций. Вычисление логарифмов по основанию е осуществляется гораздо быстрее, чем по любому другому основанию.

    • Как получить свидетельство о государственной регистрации права собственности на квартиру? В соответствии с Конституцией РФ на государство возложена функция гаранта права частной собственности. Свои полномочия в этой сфере государство […]
    • Уголки и центры в группах Уголки - раздел, где размещены интересные идеи и варианты оформления информативных, развивающих и игровых уголков в детском саду, изготовленных руками педагогов и воспитателей. В группе ДОУ в зависимости от […]
    • Что нужно сегодня для усыновления ребенка в России? Усыновление в России, кроме ответственного личного решения, предполагает ряд процедур государственной проверки кандидатов. Жесткий отбор на подготовительном этапе способствует более […]
    • Штраф за несдачу отчетности СЗВ-М и РСВ-1 в ПФР По завершению каждого отчетного и расчетного периодов страхователь в обязательном порядке должен предоставить в Пенсионный фонд необходимый расчет по форме РСВ-1. Если по каким-либо причинам […]
    • Когда и как получить накопительную часть пенсии в Сбербанке? Сбербанк является банком-партнером государственного пенсионного фонда. На основании этого граждане, оформившие накопительную пенсию, могли переводить в него накопительную часть […]
    • Как получить субсидии на оплату коммунальных услуг (квартплату)? Субсидии на оплату коммунальных услуг предоставляются определенным категориям граждан в соответствии с жилищным законодательством РФ. Чтобы узнать подробности о процедуре […]
    • Сведения бесплатно по ИНН или ОГРН из реестра налоговой по всей России - онлайн На Едином портале Налоговых услуг могут быть получены сведения о государственной регистрации юридических лиц, индивидуальных предпринимателей, […]
    • Выгребная яма: санитарные и строительные нормы и правила Для обустройства канализации на дачном или городском участке нужно следовать не только строительным, но и законодательным стандартам. Выгребная яма: нормы и правила её обустройства […]

    Одним из элементов алгебры примитивного уровня является логарифм. Название произошло из греческого языка от слова “число” или “степень” и означает степень, в которую необходимо возвести число, находящееся в основании, для нахождения итогового числа.

    Виды логарифмов

    • log a b – логарифм числа b по основанию a (a > 0, a ≠ 1, b > 0);
    • lg b – десятичный логарифм (логарифм по основанию 10, a = 10);
    • ln b – натуральный логарифм (логарифм по основанию e , a = e ).

    Как решать логарифмы?

    Логари́фм числа b по основанию a является показателем степени, которая требует, чтобы в число b возвели основание а. Полученный результат произносится так: “логарифм b по основанию а”. Решение логарифмических задач состоит в том, что вам необходимо определить данную степень по числам по указанным числам. Существуют некоторые основные правила, чтобы определить или решить логарифм, а также преобразовать саму запись. Используя их, производится решение логарифмических уравнений, находятся производные, решаются интегралы и осуществляются многие другие операции. В основном, решением самого логарифма является его упрощенная запись. Ниже приведены основные формулы и свойства:

    Для любых a ; a > 0; a ≠ 1 и для любых x ; y > 0.

    • a log a b = b – основное логарифмическое тождество
    • log a 1 = 0
    • log a a = 1
    • log a (x · y ) = log a x + log a y
    • log a x/ y = log a x – log a y
    • log a 1/x = -log a x
    • log a x p = p log a x
    • log a k x = 1/k · log a x , при k ≠ 0
    • log a x = log a c x c
    • log a x = log b x/ log b a – формула перехода к новому основанию
    • log a x = 1/log x a


    Как решать логарифмы – пошаговая инструкция решения

    • Для начала запишите необходимое уравнение.

    Обратите внимание: если в логарифме по основанию стоит 10 , то запись укорачивается, получается десятичный логарифм. Если стоит натуральное число е, то записываем, сокращая до натурального логарифма. Имеется ввиду, что результат всех логарифмов – степень, в которую возводится число основания до получения числа b.


    Непосредственно, решение и заключается в вычислении этой степени. До того как решить выражение с логарифмом, его необходимо упростить по правилу, то есть, пользуясь формулами. Основные тождества вы сможете найти, вернувшись немного назад в статье.

    Складывая и вычитая логарифмы с двумя различными числами, но с одинаковыми основаниями, заменяйте одним логарифмом с произведением или делением чисел b и с соответственно. В таком случае можно применить формулу перехода к другому основания (см. выше).

    Если вы используете выражения для упрощения логарифма, то необходимо учитывать некоторые ограничения. А то есть: основание логарифма а – только положительное число, но не равное единице. Число b, как и а, должно быть больше нуля.

    Есть случаи, когда упростив выражение, вы не сможете вычислить логарифм в числовом виде. Бывает, что такое выражение не имеет смысла, ведь многие степени – числа иррациональные. При таком условии оставьте степень числа в виде записи логарифма.




    Продолжаем изучать логарифмы. В этой статье мы поговорим про вычисление логарифмов , этот процесс называют логарифмированием . Сначала мы разберемся с вычислением логарифмов по определению. Дальше рассмотрим, как находятся значения логарифмов с использованием их свойств. После этого остановимся на вычислении логарифмов через изначально заданные значения других логарифмов. Наконец, научимся использовать таблицы логарифмов. Вся теория снабжена примерами с подробными решениями.

    Навигация по странице.

    Вычисление логарифмов по определению

    В простейших случаях возможно достаточно быстро и легко выполнить нахождение логарифма по определению . Давайте подробно рассмотрим, как происходит этот процесс.

    Его суть состоит в представлении числа b в виде a c , откуда по определению логарифма число c является значением логарифма. То есть, нахождению логарифма по определению отвечает следующая цепочка равенств: log a b=log a a c =c .

    Итак, вычисление логарифма по определению сводится к нахождению такого числа c , что a c =b , а само число c есть искомое значение логарифма.

    Учитывая информацию предыдущих абзацев, когда число под знаком логарифма задано некоторой степенью основания логарифма, то можно сразу указать, чему равен логарифм – он равен показателю степени. Покажем решения примеров.

    Пример.

    Найдите log 2 2 −3 , а также вычислите натуральный логарифм числа e 5,3 .

    Решение.

    Определение логарифма позволяет нам сразу сказать, что log 2 2 −3 =−3 . Действительно, число под знаком логарифма равно основанию 2 в −3 степени.

    Аналогично находим второй логарифм: lne 5,3 =5,3 .

    Ответ:

    log 2 2 −3 =−3 и lne 5,3 =5,3 .

    Если же число b под знаком логарифма не задано как степень основания логарифма, то нужно внимательно посмотреть, нельзя ли прийти к представлению числа b в виде a c . Часто такое представление бывает достаточно очевидно, особенно когда число под знаком логарифма равно основанию в степени 1 , или 2 , или 3 , ...

    Пример.

    Вычислите логарифмы log 5 25 , и .

    Решение.

    Несложно заметить, что 25=5 2 , это позволяет вычислять первый логарифм: log 5 25=log 5 5 2 =2 .

    Переходим к вычислению второго логарифма . Число можно представить в виде степени числа 7 : (при необходимости смотрите ). Следовательно, .

    Перепишем третий логарифм в следующем виде . Теперь можно увидеть, что , откуда заключаем, что . Следовательно, по определению логарифма .

    Коротко решение можно было записать так: .

    Ответ:

    log 5 25=2 , и .

    Когда под знаком логарифма находится достаточно большое натуральное число, то его не помешает разложить на простые множители. Это часто помогает представить такое число в виде некоторой степени основания логарифма, а значит, вычислить этот логарифм по определению.

    Пример.

    Найдите значение логарифма .

    Решение.

    Некоторые свойства логарифмов позволяют сразу указать значение логарифмов. К таким свойствам относятся свойство логарифма единицы и свойство логарифма числа, равного основанию: log 1 1=log a a 0 =0 и log a a=log a a 1 =1 . То есть, когда под знаком логарифма находится число 1 или число a , равное основанию логарифма, то в этих случаях логарифмы равны 0 и 1 соответственно.

    Пример.

    Чему равны логарифмы и lg10 ?

    Решение.

    Так как , то из определения логарифма следует .

    Во втором примере число 10 под знаком логарифма совпадает с его основанием, поэтому десятичный логарифм десяти равен единице, то есть, lg10=lg10 1 =1 .

    Ответ:

    И lg10=1 .

    Отметим, что вычисление логарифмов по определению (которое мы разобрали в предыдущем пункте) подразумевает использование равенства log a a p =p , которое является одним из свойств логарифмов.

    На практике, когда число под знаком логарифма и основание логарифма легко представляются в виде степени некоторого числа, очень удобно использовать формулу , которая соответствует одному из свойств логарифмов. Рассмотрим пример нахождения логарифма, иллюстрирующий использование этой формулы.

    Пример.

    Вычислите логарифм .

    Решение.

    Ответ:

    .

    Не упомянутые выше свойства логарифмов также используются при вычислении, но об этом поговорим в следующих пунктах.

    Нахождение логарифмов через другие известные логарифмы

    Информация этого пункта продолжает тему использования свойств логарифмов при их вычислении. Но здесь основное отличие состоит в том, что свойства логарифмов используются для того, чтобы выразить исходный логарифм через другой логарифм, значение которого известно. Приведем пример для пояснения. Допустим, мы знаем, что log 2 3≈1,584963 , тогда мы можем найти, например, log 2 6 , выполнив небольшое преобразование с помощью свойств логарифма: log 2 6=log 2 (2·3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

    В приведенном примере нам было достаточно использовать свойство логарифма произведения. Однако намного чаще приходится применять более широкий арсенал свойств логарифмов, чтобы вычислить исходный логарифм через заданные.

    Пример.

    Вычислите логарифм 27 по основанию 60 , если известно, что log 60 2=a и log 60 5=b .

    Решение.

    Итак, нам нужно найти log 60 27 . Несложно заметить, что 27=3 3 , и исходный логарифм в силу свойства логарифма степени можно переписать как 3·log 60 3 .

    Теперь посмотрим, как log 60 3 выразить через известные логарифмы. Свойство логарифма числа, равного основанию, позволяет записать равенство log 60 60=1 . С другой стороны log 60 60=log60(2 2 ·3·5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Таким образом, 2·log 60 2+log 60 3+log 60 5=1 . Следовательно, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b .

    Наконец, вычисляем исходный логарифм: log 60 27=3·log 60 3= 3·(1−2·a−b)=3−6·a−3·b .

    Ответ:

    log 60 27=3·(1−2·a−b)=3−6·a−3·b .

    Отдельно стоит сказать о значении формулы перехода к новому основанию логарифма вида . Она позволяет от логарифмов с любыми основаниями переходить к логарифмам с конкретным основанием, значения которых известны или есть возможность их отыскать. Обычно от исходного логарифма по формуле перехода переходят к логарифмам по одному из оснований 2 , e или 10 , так как по этим основаниям существуют таблицы логарифмов, позволяющие с определенной степенью точности вычислять их значения. В следующем пункте мы покажем, как это делается.

    Таблицы логарифмов, их использование

    Для приближенного вычисления значений логарифмов могут быть использованы таблицы логарифмов . Наиболее часто используется таблица логарифмов по основанию 2 , таблица натуральных логарифмов и таблица десятичных логарифмов. При работе в десятичной системе счисления удобно пользоваться таблицей логарифмов по основанию десять. С ее помощью и будем учиться находить значения логарифмов.










    Представленная таблица позволяет с точностью до одной десятитысячной находить значения десятичных логарифмов чисел от 1,000 до 9,999 (с тремя знаками после запятой). Принцип нахождения значения логарифма с помощью таблицы десятичных логарифмов разберем на конкретном примере – так понятнее. Найдем lg1,256 .

    В левом столбце таблицы десятичных логарифмов находим две первые цифры числа 1,256 , то есть, находим 1,2 (это число для наглядности обведено синей линией). Третью цифру числа 1,256 (цифру 5 ) находим в первой или последней строке слева от двойной линии (это число обведено красной линией). Четвертую цифру исходного числа 1,256 (цифру 6 ) находим в первой или последней строке справа от двойной линии (это число обведено зеленой линией). Теперь находим числа в ячейках таблицы логарифмов на пересечении отмеченной строки и отмеченных столбцов (эти числа выделены оранжевым цветом). Сумма отмеченных чисел дает искомое значение десятичного логарифма с точностью до четвертого знака после запятой, то есть, lg1,236≈0,0969+0,0021=0,0990 .

    А можно ли, используя приведенную таблицу, находить значения десятичных логарифмов чисел, имеющих больше трех цифр после запятой, а также выходящих за пределы от 1 до 9,999 ? Да, можно. Покажем, как это делается, на примере.

    Вычислим lg102,76332 . Сначала нужно записать число в стандартном виде : 102,76332=1,0276332·10 2 . После этого мантиссу следует округлить до третьего знака после запятой, имеем 1,0276332·10 2 ≈1,028·10 2 , при этом исходный десятичный логарифм приближенно равен логарифму полученного числа, то есть, принимаем lg102,76332≈lg1,028·10 2 . Теперь применяем свойства логарифма: lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2 . Наконец, находим значение логарифма lg1,028 по таблице десятичных логарифмов lg1,028≈0,0086+0,0034=0,012 . В итоге весь процесс вычисления логарифма выглядит так: lg102,76332=lg1,0276332·10 2 ≈lg1,028·10 2 = lg1,028+lg10 2 =lg1,028+2≈0,012+2=2,012 .

    В заключение стоит отметить, что используя таблицу десятичных логарифмов можно вычислить приближенное значение любого логарифма. Для этого достаточно с помощью формулы перехода перейти к десятичным логарифмам, найти их значения по таблице, и выполнить оставшиеся вычисления.

    Для примера вычислим log 2 3 . По формуле перехода к новому основанию логарифма имеем . Из таблицы десятичных логарифмов находим lg3≈0,4771 и lg2≈0,3010 . Таким образом, .

    Список литературы.

    • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
    • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

    \(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

    Объясним проще. Например, \(\log_{2}{8}\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_{2}{8}=3\).

    Примеры:

    \(\log_{5}{25}=2\)

    т.к. \(5^{2}=25\)

    \(\log_{3}{81}=4\)

    т.к. \(3^{4}=81\)

    \(\log_{2}\)\(\frac{1}{32}\) \(=-5\)

    т.к. \(2^{-5}=\)\(\frac{1}{32}\)

    Аргумент и основание логарифма

    Любой логарифм имеет следующую «анатомию»:

    Аргумент логарифма обычно пишется на его уровне, а основание - подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».

    Как вычислить логарифм?

    Чтобы вычислить логарифм - нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

    Например , вычислите логарифм: а) \(\log_{4}{16}\) б) \(\log_{3}\)\(\frac{1}{3}\) в) \(\log_{\sqrt{5}}{1}\) г) \(\log_{\sqrt{7}}{\sqrt{7}}\) д) \(\log_{3}{\sqrt{3}}\)

    а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:

    \(\log_{4}{16}=2\)

    \(\log_{3}\)\(\frac{1}{3}\) \(=-1\)

    в) В какую степень надо возвести \(\sqrt{5}\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!

    \(\log_{\sqrt{5}}{1}=0\)

    г) В какую степень надо возвести \(\sqrt{7}\), чтобы получить \(\sqrt{7}\)? В первую – любое число в первой степени равно самому себе.

    \(\log_{\sqrt{7}}{\sqrt{7}}=1\)

    д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt{3}\)? Из мы знаем, что – это дробная степень, и значит квадратный корень - это степень \(\frac{1}{2}\) .

    \(\log_{3}{\sqrt{3}}=\)\(\frac{1}{2}\)

    Пример : Вычислить логарифм \(\log_{4\sqrt{2}}{8}\)

    Решение :

    \(\log_{4\sqrt{2}}{8}=x\)

    Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
    \(\log_{a}{c}=b\) \(\Leftrightarrow\) \(a^{b}=c\)

    \((4\sqrt{2})^{x}=8\)

    Что связывает \(4\sqrt{2}\) и \(8\)? Двойка, потому что и то, и другое число можно представить двойки:
    \(4=2^{2}\) \(\sqrt{2}=2^{\frac{1}{2}}\) \(8=2^{3}\)

    \({(2^{2}\cdot2^{\frac{1}{2}})}^{x}=2^{3}\)

    Слева воспользуемся свойствами степени: \(a^{m}\cdot a^{n}=a^{m+n}\) и \((a^{m})^{n}=a^{m\cdot n}\)

    \(2^{\frac{5}{2}x}=2^{3}\)

    Основания равны, переходим к равенству показателей

    \(\frac{5x}{2}\) \(=3\)


    Умножим обе части уравнения на \(\frac{2}{5}\)


    Получившийся корень и есть значение логарифма

    Ответ : \(\log_{4\sqrt{2}}{8}=1,2\)

    Зачем придумали логарифм?

    Чтобы это понять, давайте решим уравнение: \(3^{x}=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).

    А теперь решите уравнение: \(3^{x}=8\).Чему равен икс? Вот в том-то и дело.

    Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_{3}{8}\).

    Хочу подчеркнуть, что \(\log_{3}{8}\), как и любой логарифм - это просто число . Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714.....\)

    Пример : Решите уравнение \(4^{5x-4}=10\)

    Решение :

    \(4^{5x-4}=10\)

    \(4^{5x-4}\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

    Воспользуемся определением логарифма:
    \(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

    \(\log_{4}{10}=5x-4\)

    Зеркально перевернем уравнение, чтобы икс был слева

    \(5x-4=\log_{4}{10}\)

    Перед нами . Перенесем \(4\) вправо.

    И не пугайтесь логарифма, относитесь к нему как к обычному числу.

    \(5x=\log_{4}{10}+4\)

    Поделим уравнение на 5

    \(x=\)\(\frac{\log_{4}{10}+4}{5}\)


    Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

    Ответ : \(\frac{\log_{4}{10}+4}{5}\)

    Десятичный и натуральный логарифмы

    Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

    Натуральный логарифм: логарифм, у которого основание - число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln{a}\).

    То есть, \(\ln{a}\) это то же самое, что и \(\log_{e}{a}\)

    Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg{a}\).

    То есть, \(\lg{a}\) это то же самое, что и \(\log_{10}{a}\) , где \(a\) - некоторое число.

    Основное логарифмическое тождество

    У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

    \(a^{\log_{a}{c}}=c\)

    Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

    Вспомним краткую запись определения логарифма:

    если \(a^{b}=c\), то \(\log_{a}{c}=b\)

    То есть, \(b\) – это тоже самое, что \(\log_{a}{c}\). Тогда мы можем в формуле \(a^{b}=c\) написать \(\log_{a}{c}\) вместо \(b\). Получилось \(a^{\log_{a}{c}}=c\) – основное логарифмическое тождество.

    Остальные свойства логарифмов вы можете найти . С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

    Пример : Найдите значение выражения \(36^{\log_{6}{5}}\)

    Решение :

    Ответ : \(25\)

    Как число записать в виде логарифма?

    Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_{2}{4}\) равен двум. Тогда можно вместо двойки писать \(\log_{2}{4}\).

    Но \(\log_{3}{9}\) тоже равен \(2\), значит, также можно записать \(2=\log_{3}{9}\) . Аналогично и с \(\log_{5}{25}\), и с \(\log_{9}{81}\), и т.д. То есть, получается

    \(2=\log_{2}{4}=\log_{3}{9}=\log_{4}{16}=\log_{5}{25}=\log_{6}{36}=\log_{7}{49}...\)

    Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

    Точно также и с тройкой – ее можно записать как \(\log_{2}{8}\), или как \(\log_{3}{27}\), или как \(\log_{4}{64}\)… Здесь мы как аргумент пишем основание в кубе:

    \(3=\log_{2}{8}=\log_{3}{27}=\log_{4}{64}=\log_{5}{125}=\log_{6}{216}=\log_{7}{343}...\)

    И с четверкой:

    \(4=\log_{2}{16}=\log_{3}{81}=\log_{4}{256}=\log_{5}{625}=\log_{6}{1296}=\log_{7}{2401}...\)

    И с минус единицей:

    \(-1=\) \(\log_{2}\)\(\frac{1}{2}\) \(=\) \(\log_{3}\)\(\frac{1}{3}\) \(=\) \(\log_{4}\)\(\frac{1}{4}\) \(=\) \(\log_{5}\)\(\frac{1}{5}\) \(=\) \(\log_{6}\)\(\frac{1}{6}\) \(=\) \(\log_{7}\)\(\frac{1}{7}\) \(...\)

    И с одной третьей:

    \(\frac{1}{3}\) \(=\log_{2}{\sqrt{2}}=\log_{3}{\sqrt{3}}=\log_{4}{\sqrt{4}}=\log_{5}{\sqrt{5}}=\log_{6}{\sqrt{6}}=\log_{7}{\sqrt{7}}...\)

    Любое число \(a\) может быть представлено как логарифм с основанием \(b\): \(a=\log_{b}{b^{a}}\)

    Пример : Найдите значение выражения \(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)

    Решение :

    Ответ : \(1\)

    В соотношении

    может быть поставлена задача отыскания любого из трех чисел по двум другим, заданным. Если даны а и то N находят действием возведения в степень. Если даны N и то а находят извлечением корня степени х (или возведением в степень ). Теперь рассмотрим случай, когда по заданным а и N требуется найти х.

    Пусть число N положительно: число а положительно и не равно единице: .

    Определение. Логарифмом числа N по основанию а называется показатель степени, в которую нужно возвести а, чтобы получить число N; логарифм обозначается через

    Таким образом, в равенстве (26.1) показатель степени находят как логарифм N по основанию а. Записи

    имеют одинаковый смысл. Равенство (26.1) иногда называют основным тождеством теории логарифмов; в действительности оно выражает определение понятия логарифма. По данному определению основание логарифма а всегда положительно и отлично от единицы; логарифмируемое число N положительно. Отрицательные числа и нуль логарифмов не имеют. Можно доказать, что всякое число при данном основании имеет вполне определенный логарифм. Поэтому равенство влечет за собой . Заметим, что здесь существенно условие в противном случае вывод был бы не обоснован, так как равенство верно при любых значениях х и у.

    Пример 1. Найти

    Решение. Для получения числа следует возвести основание 2 в степень Поэтому.

    Можно проводить записи при решении таких примеров в следующей форме:

    Пример 2. Найти .

    Решение. Имеем

    В примерах 1 и 2 мы легко находили искомый логарифм, представляя логарифмируемое число как степень основания с рациональным показателем. В общем случае, например для и т. д., этого сделать не удастся, так как логарифм имеет иррациональное значение. Обратим внимание на один связанный с этим утверждением вопрос. В п. 12 мы дали понятие о возможности определения любой действительной степени данного положительного числа. Это было необходимо для введения логарифмов, которые, вообще говоря, могут быть иррациональными числами.

    Рассмотрим некоторые свойства логарифмов.

    Свойство 1. Если число и основание равны, то логарифм равен единице, и, обратно, если логарифм равен единице, то число и основание равны.

    Доказательство. Пусть По определению логарифма имеем а откуда

    Обратно, пусть Тогда по определению

    Свойство 2. Логарифм единицы по любому основанию равен нулю.

    Доказательство. По определению логарифма (нулевая степень любого положительного основания равна единице, см. (10.1)). Отсюда

    что и требовалось доказать.

    Верно и обратное утверждение: если , то N = 1. Действительно, имеем .

    Прежде чем сформулировать следующее свойство логарифмов, условимся говорить, что два числа а и b лежат по одну сторону от третьего числа с, если они оба либо больше с, либо меньше с. Если одно из этих чисел больше с, а другое меньше с, то будем говорить, что они лежат по разные стороны от с.

    Свойство 3. Если число и основание лежат по одну сторону от единицы, то логарифм положителен; если число и основание лежат по разные стороны от единицы, то логарифм отрицателен.

    Доказательство свойства 3 основано на том, что степень а больше единицы, если основание больше единицы и показатель положителен или основание меньше единицы и показатель отрицателен. Степень меньше единицы, если основание больше единицы и показатель отрицателен или основание меньше единицы и показатель положителен.

    Требуется рассмотреть четыре случая:

    Ограничимся разбором первого из них, остальные читатель рассмотрит самостоятельно.

    Пусть тогда в равенстве показатель степени не может быть ни отрицательным, ни равным нулю, следовательно, он положителен, т. е. что и требовалось доказать.

    Пример 3. Выяснить, какие из указанных ниже логарифмов положительны, какие отрицательны:

    Решение, а) так как число 15 и основание 12 расположены по одну сторону от единицы;

    б) , так как 1000 и 2 расположены по одну сторону от единицы; при этом несущественно, что основание больше логарифмируемого числа;

    в) , так как 3,1 и 0,8 лежат по разные стороны от единицы;

    г) ; почему?

    д) ; почему?

    Следующие свойства 4-6 часто называют правилами логарифмирования: они позволяют, зная логарифмы некоторых чисел, найти логарифмы их произведения, частного, степени каждого из них.

    Свойство 4 (правило логарифмирования произведения). Логарифм произведения нескольких положительных чисел по данному основанию равен сумме логарифмов этих чисел по тому же основанию.

    Доказательство. Пусть даны положительные числа .

    Для логарифма их произведения напишем определяющее логарифм равенство (26.1):

    Отсюда найдем

    Сравнив показатели степени первого и последнего выражений, получим требуемое равенство:

    Заметим, что условие существенно; логарифм произведения двух отрицательных чисел имеет смысл, но в этом случае получим

    В общем случае, если произведение нескольких сомножителей положительно, то его логарифм равен сумме логарифмов модулей этих сомножителей.

    Свойство 5 (правило логарифмирования частного). Логарифм частного положительных чисел равен разности логарифмов делимого и делителя, взятых по тому же основанию. Доказательство. Последовательно находим

    что и требовалось доказать.

    Свойство 6 (правило логарифмирования степени). Логарифм степени какого-либо положительного числа равен логарифму этого числа, умноженному на показатель степени.

    Доказательство. Запишем снова основное тождество (26.1) для числа :

    что и требовалось доказать.

    Следствие. Логарифм корня из положительного числа равен логарифму подкоренного числа, деленному на показатель корня:

    Доказать справедливость этого следствия можно, представив как и воспользовавшись свойством 6.

    Пример 4. Прологарифмировать по основанию а:

    а) (предполагается, что все величины b, с, d, е положительны);

    б) (преполагается, что ).

    Решение, а) Удобно перейти в данном выражении к дробным степеням:

    На основании равенств (26.5)-(26.7) теперь можно записать:

    Мы замечаем, что над логарифмами чисел производятся действия более простые, чем над самими числами: при умножении чисел их логарифмы складываются, при делении - вычитаются и т.д.

    Именно поэтому логарифмы получили применение в вычислительной практике (см. п. 29).

    Действие, обратное логарифмированию, называется потенцированием, а именно: потенцированием называется действие, с помощью которого по данному логарифму числа находится само это число. По существу потенцирование не является каким-либо особым действием: оно сводится к возведению основания в степень (равную логарифму числа). Термин «потенцирование» можно считать синонимом термина «возведенение в степень».

    При потенцировании надо пользоваться правилами, обратными по отношению к правилам логарифмирования: сумму логарифмов заменить логарифмом произведения, разность логарифмов - логарифмом частного и т. д. В частности, если перед знаком логарифма находится какой-либо множитель, то его при потенцировании нужно переносить в показатель степени под знак логарифма.

    Пример 5. Найти N, если известно, что

    Решение. В связи с только что высказанным правилом потенцирования множители 2/3 и 1/3, стоящие перед знаками логарифмов в правой части данного равенства, перенесем в показатели степени под знаками этих логарифмов; получим

    Теперь разность логарифмов заменим логарифмом частного:

    для получения последней дроби в этой цепочке равенств мы предыдущую дробь освободили от иррациональности в знаменателе (п. 25).

    Свойство 7. Если основание больше единицы, то большее число имеет больший логарифм (а меньшее - меньший), если основание меньше единицы, то большее число имеет меньший логарифм {а меньшее - больший).

    Это свойство формулируют также и как правило логарифмирования неравенств, обе части которых положительны:

    При логарифмировании неравенств по основанию, большему единицы, знак неравенства сохраняется, а при логарифмировании по основанию, меньшему единицы, знак неравенства меняется на противоположный (см. также п. 80).

    Доказательство основано на свойствах 5 и 3. Рассмотрим случай, когда Если , то и, логарифмируя, получим

    (а и N/М лежат по одну сторону от единицы). Отсюда

    Случай а следует , читатель разберет самостоятельно.




    Самое обсуждаемое
    Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
    Сонник и толкование снов Сонник и толкование снов
    К чему увидеть кошку во сне? К чему увидеть кошку во сне?


    top