Принципы качественного и количественного определения витамина с. Современные проблемы науки и образования

Принципы качественного и количественного определения витамина с. Современные проблемы науки и образования

Незаменимые вещества пищи, объединяемые под общим названием «витамины», относятся к различным классам химических соединений, что само по себе исключает возможность использования единого метода их количественного определения. Все известные для витаминов аналитические методы основаны либо на определении специфических биологических свойств этих веществ (биологические, микробиологические, ферментативные), либо на использовании их физико-химических характеристик (флуоресцентные, хроматографические и спектрофотометрические методы), либо на способности некоторых витаминов вступать в реакции с некоторыми реагентами с образованием окрашенных соединений (колориметрические методы).

Несмотря на достигнутые успехи в области аналитической и прикладной химии методы определения витаминов в пищевых продуктах еще трудоемки и длительны. Это обусловлено рядом объективных причин, основные из которых следующие.

1. Определение ряда витаминов часто осложняется тем, что многие из них находятся в природе в связанном состоянии в виде комплексов с белками или пептидами, а также в виде фосфорных эфиров. Для количественного определения необходимо разрушить эти комплексы и выделить витамины в свободном виде, доступном для физико-химического или микробиологического анализа. Это достигается обычно путем использования особых условий обработки (кислотным, щелочным или ферментативным гидролизом, автоклавированием).

2. Почти все витамины – соединения весьма неустойчивые, легко подвергающиеся окислению, изомеризации и полному разрушению под воздействием высокой температуры, кислорода воздуха, света и других факторов. Следует соблюдать меры предосторожности: максимально сокращать время на предварительную подготовку продукта, избегать сильного нагрева и воздействия света, использовать антиоксиданты и др.

3. В пищевых продуктах, как правило, приходится иметь дело с группой соединений, имеющих большое химическое сходство и одновременно различающихся по биологической активности. Например, витамин Е включает 8 токоферолов, сходных по химическим свойствам, но отличающихся по биологическому действию; группа каротинов и каротиноидных пигментов насчитывает до 80 соединений, из которых только 10 в той или иной степени обладают витаминными свойствами.

4. Витамины принадлежат к различным классам органических соединений. Поэтому для них не могут существовать общие групповые реакции и общие методы исследования.

5. Кроме того, анализ затрудняет присутствие в исследуемом образце сопутствующих веществ, количество которых может во много раз превышать содержание определяемого витамина (например, стерины и витамин D). Для устранения возможных погрешностей при определении витаминов в пищевых продуктах обычно проводят тщательную очистку экстрактов от сопутствующих соединений и концентрирование витамина. Для этого используют различные приемы: осаждение мешающих анализу веществ, методы адсорбционной, ионобменной или распределительной хроматографии, избирательную экстракцию определяемого компонента и др.

В последние годы для определения витаминов в пищевых продуктах с успехом стали использовать метод ВЭЖХ. Этот метод является наиболее перспективным, так как позволяет одновременно разделять, идентифицировать и количественно определять различные витамины и их биологически активные формы, что позволяет сократить время анализа.

Физико-химические методы исследования витаминов. Методы основаны на использовании физико-химических характеристик витаминов (их способности к флуоресценции, светопоглощению, окислительно-восстановительным реакциям и др). Благодаря развитию аналитической химии, приборостроения физико-химические методы почти полностью вытеснили длительные и дорогостоящие биологические методы.

Определение витамина С. Витаминб С (аскорбиновая кислота) может присутствовать в пищевых продуктах как в восстановленной, так и в окисленной форме. Дегидроаскорбиновая кислота (ДАК) может образовываться при обработке и хранении пищевых продуктов в результате окисления, что вызывает необходимость ее определения. При определении витамина С в пищевых продуктах используют различные методы: колориметрические, флуоресцентные, методы объемного анализа, основанные на окислительно-восстановительных свойствах АК, и ВЭЖХ.

Ответственный момент количественного определения АК – приготовление экстракта образца. Извлечение должно быть полным. Наилучшим экстрагентом является 6% раствор метафосфорной кислоты, обладающей способностью осаждать белки. Используются также уксусная, щавелевая и соляная кислоты, а также их смеси.

1. Для суммарного и раздельного определения окисленной и восстановленной форм АК часто используют метод Роэ с применением 2,4-динитрофенилгидразинового реактива. АК (гулоновая кислота) под действием окислителей переходит в ДАК, а затем в 2,3-дикетогулоновую кислоту, которая образует с 2,4-динитрофенилгидразином соединения, имеющие оранжевую окраску. Сам 2,4-динитрофенилгидразин представляет собой основание, неспособное существовать в аци-форме. Однако соответствующие гидразоны под влиянием щелочей превращаются в интенсивно окрашенные аци-соли. При определении витамина С этим методом мешает присутствие восстановителей (глюкоза, фруктоза и др). Поэтому при большом содержании сахаров в исследуемом продукте используют хроматографию, что осложняет определение.

2. В последнее время для определения общего содержания витамина С (сумма АК и ДАК) получил признание весьма чувствительный и точный флуоресцентный метод. ДАК конденсируясь с о-фенилендиамином, образует флуоресцирующее соединение хиноксалин, обладающее максимальной флуоресценцией при длине волны возбуждающего света 350 нм.

Интенсивность флуоресценции хиноксалина в нейтральной среде при комнатной температуре прямо пропорциональна концентрации ДАК. Для количественного определения АК ее предварительно окисляют в ДАК. Недостатком метода является достаточно дорогое оборудование.

Методы, основанные на окислительно-восстановительных свойствах АК.

3. Из методов, основанных на окислительно-восстановительных свойствах АК, наибольшее применение нашел метод титрования раствором 2,6-дихлорфенолиндофенола, имеющим синюю окраску. Продукт взаимодействия АК с реактивом – бесцветный. Метод может быть использован при анализе всех видов продуктов. При анализе продуктов, не содержащих естественных пигментов, в картофеле, молоке используют визуальное титрование. В случае присутствия естественных красителей, используют потенциометрическое титрование или метод индофенол-ксилоловой экстракции. Последний метод основан на количественном обесцвечивании 2,6-дихлорфенолиндофенола аскорбиновой кислотой. Избыток краски экстрагируется ксилолом и измеряется оптическая плотность экстракта при 500 нм.

В реакцию вступает только АК. ДАК предварительно восстанавливают цистеином. Для отделения АК от восстановителей, присутствующих в пищевых продуктах, подвергшихся тепловой обработке, или длительно хранившиеся экстракты обрабатывают формальдегидом. Формальдегид в зависимости от рН среды избирательно взаимодействует с АК и посторонними примесями восстановителей (рН = 0). Указанным методом определяют сумму АК и ДАК.

2,6-дихлорфенолиндофенол может быть использован и для фотометрического определения АК. Раствор реактива имеет синюю окраску, а продукт взаимодействия с АК – бесцветен, т.е. в результате реакции уменьшается интенсивность синей окраски. Оптическую плотность измеряют при 605 нм (рН = 3,6).

4. Еще одним методом, основанным на восстановительных свойствах АК, является колориметрический метод, в котором используется способность АК восстанавливать Fe(3+) до Fe(2+) и способность последнего образовывать с 2,2’-дипиридилом соли, интенсивно окрашенные в красный цвет. Реакцию проводят при рН 3,6 и температуре 70ºС. Оптическую плотность раствора измерят при 510 нм.

5. Фотометрический метод, основанный на взаимодействии АК с реактивом Фолина. Реактив Фолина представляет собой смесь фосфорномолибденовой и фосфорновольфрамовой кислот, т.е. это – известный метод, основанный на образовании молибденовых синей, поглощающих при 640–700 нм.

6. Для определения витамина С во всех пищевых продуктах с успехом может быть использован высоко чувствительный и специфичный метод ВЭЖХ. Анализ достаточно прост, лишь при анализе продуктов, богатых белками, необходимо предварительно удалить их. Детектирование осуществляется по флуоресценции.

Кроме названных методов определения витамина С существует еще целый ряд способов, например, окисление хлоридом золота и образование гидроксамовых кислот, но эти методы не имеют практического значения.

Определение тиамина (В 1 ). В большинстве природных продуктов тиамин встречается в виде дифосфорного эфира – кокарбоксилазы. Последняя, являясь активной группой ряда ферментов углеводного обмена, находится в определенных связях с белком. Для количественного определения тиамина необходимо разрушить комплексы и выделить исследуемый витамин в свободном виде, доступном для физико-химического анализа. С этой целью проводят кислотный гидролиз или гидролиз под воздействием ферментов. Объекты, богатые белком, обрабатывают протеолитическими ферментами (пепсином) в среде соляной кислоты. Объекты, с высоким содержанием жира (свинина, сыры), для его удаления обрабатывают эфиром (тиамин практически нерастворим в эфире).

1. Для определения тиамина в пищевых продуктах используют, как правило, флуоресцентный метод, основанный на окислении тиамина в щелочной среде гексацианоферратом калия (3+) с образованием сильно флуоресцирующего в ультрафиолетовом свете соединения тиохрома. Интенсивность его флуоресценсции прямо пропорциональна содержанию тиамина (длина волны возбуждающего света 365 нм, испускаемого – 460–470 нм (синяя флуоресценция)). При использовании этого метода возникают трудности, связанные с тем, что в ряде объектов присутствуют флуоресцирующие соединения. Их удаляют очисткой на колонках с ионообменными смолами. При анализе мяса, молока, картофеля, пшеничного хлеба и некоторых овощей очистка не требуется.

2. Тиамин характеризуется собственным поглощением в УФ области (240 нм – в водном растворе, 235 нм – в этаноле), а значит он может быть определен методом прямой спектрофотометрии.

3. Для одновременного определения тиамина и рибофлавина используют ВЭЖХ.

Определение рибофлавина (В 2 ). В пищевых продуктах рибофлавин присутствует главным образом в виде фосфорных эфиров, связанных с белками, и, следовательно, не может быть определен без предварительного протеолитического расщепления. Свободный рибофлавин в значительном количестве содержится в молоке.

При определении рибофлавина наибольшее распространение получили микробиологический и физико-химический (флуоресцентный) методы анализа. Микробиологический метод специфичен, высоко чувствителен и точен; применим ко всем продуктам, но длителен и требует специальных условий.

Физико-химический метод разработан в двух вариантах, которые отличаются способом оценки флуоресцирующих веществ:

· вариант прямой флуоресценции (определение интенсивности флуоресценции рибофлавина) и

· люмифлавиновый вариант.

1. Свободный рибофлавин и его фосфорные эфиры обладают характерной желто-зеленой флуоресценцией при длине волны возбуждающего света 440–500 нм. На этом свойстве основан наиболее широко используемый флуоресцентный метод определения рибофлавина. Рибофлавин и его эфиры дают очень сходные спектры флуоресценции с максимумом при 530 нм. Положение максимума не зависит от рН. Интенсивность флуоресценции значительно зависит от рН и от растворителя (по-разному для рибофлавина и его эфиров), поэтому предварительно разрушают эфиры и анализируют свободный рибофлавин. Для этого используют гидролиз с соляной и трихлоруксусной кислотами, автоклавирование, обработку ферментными препаратами.

Интенсивность желто-зеленой флуоресценции рибофлавина в УФ-свете зависит не только от его концентрации, но и от значения рН раствора. Максимальная интенсивность достигается при рН=6-7. Однако измерение проводят при рН от 3 до 5, так как в этом интервале интенсивность флуоресценции определяется только концентрацией рибофлавина и не зависит от других факторов – значения рН, концентрации солей, железа, органических примесей и др.

Рибофлафин легко разрушается на свету, определение проводят в защищенном от света месте и при рН не выше 7. Следует отметить, что метод прямой флуоресценции не применим к продуктам с низким содержанием рибофлавина.

2. Люмифлавиновый вариант основан на использовании свойства рибофлавина при облучении в щелочной среде, переходить в люмифлавин, интенсивность флуоресценции которого измеряют после извлечения его хлороформом (голубая флуоресценция, 460–470 нм). Поскольку при определенных условиях в люмифлавин переходит 60–70% общего рибофлавина, при проведении анализа необходимо соблюдать постоянные условия облучения, одинаковые для испытуемого и стандартного раствора.

Определение витамина В 6 . Для определения витамина могут быть использованы следующие методы:

1. Прямая спектрофотометрия. Пиридоксина гидрохлорид характеризуется собственным поглощением при 292 нм (e = 4,4·10 3) при рН = 5.

2. Метод Кьельдаля. Определение осуществляется по аммиаку, образующемуся при окислении витамина.

3. Фотометрический метод, основанный на реакции с 2,6-дихлорхинонхлоримином (реактив Гиббса) при рН 8–10, в результате которой образуются индофенолы, имеющие синюю окраску. Индофенолы экстрагируют метил-этилкетоном и измеряют оптическую плотность экстракта при 660–690 нм (реакцию Гиббса дают фенолы со свободным пара-положением).

4. Флуоресцентный метод, основанный на том, что при облучении пиридоксина и пиридоксамина наблюдается синяя, а пиридоксаля – голубая флуоресценция.

Определение витамина В 9 . Определение фолатов в пищевых продуктах в тканях и жидкостях организма представляет значительные трудности, т.к. в этих объектах они обычно присутствуют в связанной форме (в виде полиглютаматов); кроме того, большинство форм чувствительно к воздействию кислорода воздуха, света и температуры. Для предохранения фолатов от гидролиза рекомендуется вести гидролиз в присутствии аскорбиновой кислоты.

В пищевых продуктах фолаты могут быть определены физическими, химическими и микробиологическими методами. Колориметрический метод основан на расщеплении птероилглутаминовой кислоты с образованием п-аминобензойной кислоты и родственных ей веществ и дальнейшем превращении их в окрашенные соединения. Однако из-за недостаточной специфичности этот метод применяется в основном для анализа фармацевтических препаратов.

Для разделения, очистки и идентификации фолатов разработаны также методы хроматографии на колонках, бумаге и в тонком слое адсорбента.

Определение витамина РР. В пищевых продуктах никотиновая кислота и ее амид находятся как в свободной, так и в связанной форме, входя в состав коферментов. Химические и микробиологические методы количественного определения ниацина предполагают наиболее полное выделение и превращение его связанных форм, входящих в состав сложного органического вещества клеток, в свободную никотиновую кислоту. Связанные формы ниацина освобождают воздействием растворов кислот или гидрооксида кальция при нагревании. Гидролиз с 1 М раствором серной кислоты в автоклаве в течение 30 минут при давлении 0,1 МПа приводит к полному освобождению связанных форм ниацина и превращению никотинамида в никотиновую кислоту. Установлено, что этот способ обработки дает менее окрашенные гидролизаты и может быть использован при анализе мясных и рыбных продуктов. Гидролиз с гидрооксидом кальция предпочтителен при определении ниацина в муке, крупах, хлебобулочных изделиях, сырах, пищевых концентратах, овощах, ягодах и фруктах. Ca(OH) 2 образует с сахарами и полисахаридами, пептидами и гликопептидами соединения, почти полностью нерастворимые в охлажденных растворах. В результате гидролизат, полученый при обработке Ca(OH) 2 , содержит меньше веществ, мешающих химическому определению, чем кислотный гидролизат.

1. В основе химического метода определения ниацина лежит реакция Кенига, протекающая в две стадии. Первая стадия – реакция взаимодействия пиридинового кольца никотиновой кислоты с бромцианом, вторая – образование окрашенного производного глутаконового альдегида в результате взаимодействия с ароматическими аминами. (Сразу после добавления к никотиновой кислоте бромистого циана появляется желтая окраска глутаконового альдегида. В результате взаимодействия его с ароматическими аминами, вводимыми в реакционную смесь, образуются дианилы, которые интенсивно окрашены в желтый, оранжевый или красный цвет, в зависимости от амина (бензидин – красный, сульфаниловая кислота – желтый). Реакцию Кенига применяют для фотометрического определения пиридина и его производных со свободным a-положением. Недостатком метода является его длительность, так как скорость реакций мала.

Получение CNBr возможно двумя способами:

1. CN – + Br 2 = CNBr + Br –

2. SCN – + Br 2 + 4H 2 O = CNBr + SO 4 2– + 8H + + Br –

Существует много модификаций проведения этой реакции в зависимости от температурного режима, рН, источника ароматических аминов. рН и амин существенно влияют на интенсивность и устойчивость развивающейся окраски. Наиболее устойчивую окраску дают продукты реакции никотиновой кислоты с бромродановым (бромциановым) реактивом и сульфаниловой кислотой или метолом (сульфатом пара-метиламинофенола).

2. Никотиновую кислоту и ее амид можно также определять спектрофотометрически благодаря их собственному поглощению в УФ-области. Никотиновая кислота характеризуется максимумом поглощения при 262 нм (Е = 4,4·10 3), а никотинамид при 215 нм, (Е = 9·10 3).

3. Для количественного определения ниацина широко используется микробиологический метод. Он простой, специфичный, но более длительный, чем химический. Микробиологический метод позволяет определять содержание ниацина в объектах, в которых химическим путем это сделать невозможно (продукты с высоким содержанием сахаров и низким уровнем ниацина).

Определение b -каротина . В ряде пищевых продуктов, особенно растительного происхождения, присутствуют так называемые каротиноиды. Каротиноиды (от лат. carota – морковь) – природные пигменты от желтого до красно-оранжевого цвета; полиненасыщенные соединения, содержащие циклогексановые кольца; в большинстве случаев содержат в молекуле 40 атомов углерода.) Некоторые из них (a, b-каротин, криптоксантин и др.) являются провитаминами (предшественниками) витамина А, так как в организме человека и животных могут превращаться в витамин А. Известно около десяти провитаминов А, но самым активным из них является b-каротин.

При анализе пищевых продуктов необходима предварительная обработка образца для извлечения, концентрирования каротина и очистки его от сопутствующих соединений. В этих целях широко используют экстракцию (петролейный эфир, гексан, ацетон и их смеси), омыление и хроматографию. При определении b-каротина следует избегать нагревания. Но в некоторых случаях горячее омыление необходимо, например, когда отношение жира к b-каротину больше, чем 1000:1 (молочные продукты, животные жиры, маргарин, яйца, печень). Омыление проводят в присутствии антиоксиданта. Избыток щелочи ведет к разрушению b-каротина. Для отделения b-каротина от сопутствующих пигментов широко применяют адсорбционную хроматографию на колонках с оксидом алюминия, магния.

1. Большинство применяемых в настоящее время физико-химических методов определения b-каротина в пищевых продуктах основано на измерении интенсивности светопоглощения его растворов. Как соединения с сопряженными двойными связями, каротиноиды имеют характерные спектры поглощения в УФ и видимой области. Положение полосы поглощения зависит от числа сопряженных двойных связей в молекуле каротиноида и от применяемого растворителя. Максимальное поглощение b-каротина наблюдается в бензоле при 464–465 нм, в гексане и петролейном эфире при 450-451 нм.

2. В последнее время для определения b-каротина и других каротиноидов чаще используется метод ВЭЖХ. Метод позволяет сократить время анализа, а значит и вероятность их разрушения под действием света и кислорода воздуха. Метод ВЭЖХ каротиноидов является классическим примером демонстрации возможностей метода разделять и количественно определять пространственные изомеры a- и b-каротина в овощах.

Для определения b-каротина могут быть использованы и химические методы, например, основанные на реакции с хлоридом сурьмы (3+) в хлороформе (синий, 590 нм), аналогично витамину А, и с реактивом Фолина (синий, 640–700 нм). Однако из-за неспецифичности этих реакций они не нашли широкого применения.

Определение витамина А. Важнейшими представителями витамина являются, как уже говорилось, ретинол (А 1 -спирт), рентиналь (А 1 -альдегид), ретиноевая кислота (А 2).

При количественном определении витамина А в пищевых продуктах используют различные методы: колориметрический, флуоресцентный, способ прямой спектроскопии и ВЭЖХ. Выбор метода определяется наличием той или иной аппаратуры, целью исследования, свойствами анализируемого материала, предполагаемым содержанием витамина А и характером сопутствующих примесей.

Выделение витамина осуществляют кипячением со спиртовым раствором КОН в среде азота; и последующей экстракцией петролейным эфиром.

1. Для количественного определения веществ, обладающих А-витаминной активностью, может быть использован метод прямой спектрофотометрии, основанный на способности этих соединений к избирательному светопоглощению на разных длинах волн в УФ области спектра. Поглощение пропорционально концентрации вещества при измерении на тех длинах волн, где наблюдается свойственный данному соединению максимум абсорбции в используемом растворителе. Метод – наиболее простой, быстрый, достаточно специфичный. Дает надежные результаты при определении витамина А в объектах, не содержащих примесей, обладающих поглощением в той же области спектра. При наличии таких примесей метод может быть использован в сочетании со стадией хроматографического разделения.

2. Перспективным является флуоресцентный метод, основанный на способности ретинола флуоресцировать под действием УФ лучей (длина волны возбуждающего света 330–360 нм). Максимум флуоресценции наблюдается в области 480 нм. Определению витамина А этим методом мешают каротиноиды и витамин D. Для устранения мешающего влияния используют хроматографию на оксиде алюминия. Недостаток флуоресцентного метода – дорогостоящая аппаратура.

3. Ранее наиболее распространенным являлся колориметрический метод определения витамина А по реакции с хлоридом сурьмы. Используют раствор хлорида сурьмы в хлороформе (реактив Карр-Прайса). Механизм реакции точно не установлен и предполагают, что в реакцию вступает примесь SbCL 5 в SbCl 3 . Образующееся в реакции соединение окрашено в синий цвет. Измерение оптической плотности проводят при длине волны 620 нм в течение 3–5 секунд. Существенным недостатком метода является неустойчивость развивающейся окраски, а также высокая гидролизуемость SbCl 3 . Предполагается, что реакция протекает следующим образом:

Эта реакция для витамина А не специфична, аналогичное окрашивание дают каратиноиды, но хроматографическое разделение этих соединений позволяет устранить их мешающее влияние.

Определению витамина А перечисленными методами, как правило, предшествует подготовительная стадия, включающая щелочной гидролиз жироподобных веществ и экстракцию неомыляемого остатка органическим растворителем. Часто приходится проводить хроматографическое разделение экстракта.

4. В последнее время вместо колоночной хроматографии находит все более широкое применение ВЭЖХ, которая позволяет разделить жирорастворимые витамины (A, D, E, K), обычно присутствующие одновременно в пищевых продуктах, и количественно их определить с большой точностью. ВЭЖХ облегчает определение различных форм витаминов (витамин А-спирт, его изомеры, эфиры ретинола), что особо необходимо при контроле за внесением витаминов в пищевые продукты.

Определение витамина Е . К группе веществ, объединяемых общим названием «витамин Е» относятся производные токола и триенола, обладающие биологической активностью a-токоферолла. Кроме a-токоферолла, известно еще семь родственных ему соединений, обладающих биологической активностью. Все они могут встречаться в продуктах. Следовательно, главная трудность при анализе витамина Е состоит в том, что во многих случаях приходится рассматривать группу соединений, имеющих большое химическое сходство, но одновременно различающихся по биологической активности, оценить которую можно только биологическим методом. Это трудно и дорого, поэтому физико-химические методы почти полностью вытеснили биологические.

Основные стадии определения витамина Е: подготовка образца, щелочной гидролиз (омыление), экстракция неомыляемого остатка органическим растворителем, отделение витамина Е от мешающих анализу веществ и разделение токоферолов с помощью различных видов хроматографии, количественное определение. Токоферолы очень чувствительны к окислению в щелочной среде, поэтому омыление и эктсракцию проводят в атмосфере азота и в присутствии антиоксиданта (аскорбиновой кислоты). При омылении могут разрушаться ненасыщенные формы (токотриенолы). Поэтому при необходимости определения всех форм витамина Е, содержащихся в продукте, омыление заменяют другими видами обработки, например, кристаллизацией при низких температурах.

1. Большинство физико-химических методов определения витамина Е основано на использовании окислительно-восстановительных свойств токоферолов. Для определения суммы токоферолов в пищевых продуктах наиболее часто используют реакцию восстановления трехвалентного железа в двухвалентное токоферолами с образованием окрашенного комплекса Fe(2+) с органическими реагентами. Наиболее часто используют 2,2’-дипиридил, с которым Fe(2+) дает комплекс, окрашенный в красный цвет (λ max = 500 нм). Реакция не специфична. В нее также вступают каротины, стиролы, витамин А и др. Кроме того, интенсивность окраски существенно зависит от времени, температуры, освещения. Поэтому для повышения точности анализа токофероллы предварительно отделяют от соединений, мешающих определению, методом колоночной, газожидкостной хроматографии, ВЭЖХ. При определении Е-витаминной ценности продуктов, в которых a-токоферол составляет более 80% общего содержания токоферолов (мясо, молочные продукты, рыба и др.), часто ограничиваются определением суммы токоферолов. Когда в значительных количествах присутствуют другие токоферолы (растительные масла, зерно, хлебобулочные изделия, орехи), для их разделения используют колоночную хроматографию.

2. Для определения суммы токоферолов может быть использован также флуоресцентный метод. Гексановые экстракты имеют максимум флуоресценции в области 325 нм при длине волны возбуждающего света 292 нм.

3. Для определения индивидуальных токоферолов несомненный интерес представляет метод ВЭЖХ, обеспечивающий в одном процессе как разделение, так и количественный анализ. Метод также характеризуется высокой чувствительностью и точностью. Детектирование проводят по поглощению или по флуоресценции.

Определение витамина D. Количественное определение витамина в продуктах представляет собой чрезвычайно сложную задачу ввиду его низкого содержания, отсутствия чувствительных специфических реакций на витамин D и трудностей отделения его от сопутствующих веществ. До недавнего времени использовались биологические исследования на крысах или цыплятах. Биологические методы основаны на установлении минимального количества исследуемого продукта, излечивающего или предотвращающего рахит у крыс (цыплят), находящихся на рахитогенной диете. Степень рахита оценивается рентгенографически. Это достаточно специфичный и точный метод, позволяющий определять витамин D в концентрации 0,01–0,2 мкг%.

1. При исследовании продуктов с содержанием витамина D свыше 1 мкг% может быть использован фотометрический метод, основанный на реакции кальциферолов с хлоридом сурьмы (образуется продукт, окрашенный в розовый цвет). Метод позволяет определять как холекальциферол (D 3), так и эргокальциферол (D 2). Анализ состоит из следующих операций: омыление (щелочной гидролиз), осаждение стеринов, хроматография (колоночная или распределительная) и фотометрическая реакция с хлоридом сурьмы. Метод пригоден для определения содержания витамина D в рыбьем жире, яйцах, печени трески, икре, сливочном масле, продуктах, обогащенных витамином. Описанный метод трудоемок, длителен.

Витамин D 2 необходимо защищать от света и воздуха, иначе происходит изомеризация. D 3 – более устойчив.

2. Более быстрым, надежным и точным является все чаще применяемый метод ВЭЖХ, который успешно используется при анализе детских и диетических продуктов, обогащенных витаминов D.

3. Кальциферолы характеризуются собственным поглощением в УФ и могут быть определены методом прямой спектрофотометрии.

В последние годы в целях определения витамина D успешно применяются хроматографические методы разделения, особенно тонкослойная и газо-жидкостная хроматография. В экспериментальных исследованиях для изучения обмена витамина D в организме животных и человека широко используются радиохимические методы в сочетании с тонкослойной или колоночной хроматографией на силикагеле или оксиде алюминия.

Определение витамина К. Для определения витамина К применяют физические, химические, биологические методы, а также методы спектрографии, основанные на чувствительности витамина К к УФ-излучению.

Для определения 2-метил-1,4-нафтохинонов предложено много колориметрических методов, основанных на цветных реакциях, которые они дают с рядом реактивов: 2,4-динитрофенилгидразином, N,N-диэтилдитиокарбаматом натрия, солями тетразолия и др. Но все эти методы и ряд других физических и химических методов недостаточно специфичны и полученные с их помощью результаты имеют весьма относительную ценность для определения содержания витамина К в пищевых продуктах, органах и тканях человека и животных. Удовлетворительные результаты дают колориметрические и спектрофотометрические методы в сочетании с хроматографией, очисткой и разделением витаминов К на колонках, на бумаге или в тонком слое адсорбента.








МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Методы количественного ОФС.1.2.3.0017.15

определения витаминов Взамен ст. ГФ XI , вып.2

В данной статье изложены общие принципы определения витаминов в субстанциях и лекарственных формах с использованием методов высокоэффективной жидкостной хроматографии (ВЭЖХ), спектрофотометрии и титриметрии.

Приведенные типовые методики позволяют количественно определять следующие соединения: витамин А (ретинол, ретинола ацетат и ретинола пальмитат), витамин D (холекальциферол и эргокальциферол), витамин Е (a-токоферол и aтокоферола ацетат), витамин К 1 (фитоменадион), b-каротин, витамины В 1 (тиамина хлорид, тиамина бромид и тиамина мононитрат), В 2 (рибофлавин, рибофлавинмононуклеотид), В 3 (кислоту никотиновую, никотинамид), В 5 (кислоту пантотеновую и ее соли, пантенол), В 6 (пиридоксина гидрохлорид), В С (кислоту фолиевую), В 12 (цианокобаламин), витамин С (кислоту аскорбиновую или ее натриевую или кальциевую соли, аскорбилпальмитат), d биотин, рутин.

Биохимический показатель обеспеченности витамином – концентрация витамина или его метаболита (коферментной формы) в биологических жидкостях, величина экскреции с мочой, активность витаминзависимых ферментов и др.

Критерий адекватной обеспеченности витамином (нижняя граница нормы) – конкретная величина каждого показателя, относительно которой оценивают обеспеченность организма витамином.

Для количественного определения витаминов используют методы:

1. Физико-химические методы определения содержания витаминов как химических веществ (нг, мкг, мг).

2. Микробиологические методы – по скорости роста микроорганизмов в присутствии витамина судят об его количестве.

3. Биологические методы – определяют минимальное количество пищи или лекарственного препарата, способное предохранить животное (находящееся на диете, в которой отсутствует изучаемый витамин) от заболевания. Это количество пищи или витаминного препарата принимают за витаминную единицу.

Эффективность витаминизации оценивают, определяя показатели витаминной обеспеченности до и после приема витаминов.

Жирорастворимые витамины

К жирорастворимым витаминам относят витамины А, Д, Е, К.

Витамин А (ретинол, антиксерофтальмический)

1. Структура. Витамин А является полиизопреноидом , содержащим циклогексенильное кольцо . В группу витамина А входят ретинол, ретиналь и ретиноевая кислота . Только ретинол обладает полной функцией витамина А. Термин «ретиноиды» включает природные и синтетические формы ретинола. Растительный предшественник β-каротин обладает 1/6 активности витамина А.

2. Транспорт и метаболизм. Эфиры ретинола растворяются в жирах пищи, эмульгируются желчными кислотами и всасываются кишечным эпителием. Всосавшийся b-каротин расщепляется на две молекулы ретиналя . В клетках эпителия ретиналь восстанавливается в ретинол и небольшая часть ретиналя окисляется в ретиноевую кислоту. Большая часть ретинола эстерифицируется насыщенными жирными кислотами и в составе хиломикронов поступает через лимфу в кровь. После липолитической трансформации ремнанты хиломикронов захватываются печенью. В печени витамин А запасается в виде эфиров. Для транспорта к периферическим тканям эфиры ретинола гидролизуются и свободный ретинол связывается в сыворотке крови с плазменным ретинолсвязывающим протеином (ПРСП). Ретиноевая кислота транспортируется альбуминами . Внутри периферических клеток ретинол связывается с клеточным ретинолсвязывающим протеином (КРСП). Токсическое действие витамина А проявляется при появлении свободной формы витамина, т.е. после исчерпания мощности КРСП. Ретинол и ретиналь взаимопревращаются друг в друга с помощью НАДФ-зависимых дегидрогеназ или редуктаз. Ретиноевая кислота не может превращаться в ретинол или ретиналь, поэтому ретиноевая кислота может поддерживать рост и дифференцировку тканей, но не может заменить ретиналь в зрении или ретинол в функционировании репродуктивных органов.


Ретиналь

Ретиноевая кислота

3. Биологическая роль.

3.1. Ретинол действует подобно гормонам, проникающим в клетку, – связывается с ядерными белками и регулирует экспрессию определенных генов. Ретинол необходим для осуществления нормальной репродуктивной функции.

3.2. Ретиналь участвует в акте зрения . 11-цис-ретиналь связан с белком опсином и образует родопсин. На свету родопсин диссоциирует и цис-ретиналь переходит в транс-ретиналь. Реакция сопровождается конформационными изменениями мембран палочек и открытием кальциевых каналов. Быстрый вход ионов кальция инициирует нервный импульс, который передается в зрительный анализатор. Для повторного восприятия (т.е. в темноте) транс-ретиналь восстанавливается алкогольдегидрогеназой в транс-ретинол (здесь возможны потери витамина А). Транс-ретинол изомеризуется в цис-ретинол (здесь возможно восполнение убыли витамина А). Цис-ретинол окисляется в цис-ретиналь, который, соединяясь с опсином, образует родопсин. Система светоощущения готова к восприятию следующего кванта света.

3.3. Ретиноевая кислота участвует в синтезе гликопротеинов , усиливает рост и дифференцировку тканей .

3.4. Ретиноиды обладают антиопухолеввой активностью и ослабляют действие канцерогенов .

3.5. b-каротин антиоксидант и способен обезвреживать пероксидные свободные радикалы (ROO ·) в тканях с низким парциальным давлением кислорода.

4. Источники. Витамин А содержится только в продуктах животного происхождения (печень, почки, сливочное масло, рыбий жир). Из печени пресноводных рыб выделен витамин А 2 , который отличается наличием еще одной двойной связи в 3-4 положении и называется 3-дегидроретинол. Биологическая активность витамина А 2 для млекопитающих соответствует примерно 40% активности витамина А 1 . В растениях есть пигменты – a-, b- и g-каротины, которые могут превращаться в витамин А (морковь, томаты).

5. Суточная потребность . 1-2,5 мг витамина А (5000-7000 МЕ). 1 МЕ = 0,344 мкг ретинолацетата. Частично потребность в витамине А может покрываться за счет каротина (2-5 мг), причем 1 мг каротина = 0,67 мг ретинола.

6. Гиповитаминоз. Проявляется в виде нарушения зрения при слабом освещении -куриной слепоты – гемералопия . Это наиболее ранний признак недостаточности витамина А: человек нормально видит при дневном освещении и очень плохо различает предметы при скудном освещении (в сумерках). Авитаминоз характеризуется падением массы тела, остановкой роста, пролиферацией и ороговеванием эпителия, сухости кожи и слизистых, слущиванием эпителия, нарушением репродуктивной функции. Сухость роговицы глаза называется ксерофтальмия (отсюда название витамина – антиксерофтальмический). Повреждение эпителия мочевых путей, кишечника приводит к развитию воспалительных заболеваний. Важнейшей причиной недостаточности витамина А являются нарушения всасывания и транспорта липидов. При введении высоких доз витамина А развивается гипервитаминоз А.

Витамин D (кальциферол, антирахитический)

1. Структура. В растительных продуктах содержится эргостерол, который при действии ультрафиолетовых лучей превращается в витамин D 2 (эргокальциферол). В животных тканях распространен 7-дегидрохолестерол , который в коже при облучении ультрафиолетовыми лучами превращается в витамин D 3 (холекальциферол ) (рис. 27.1).

2. Метаболизм. Витамин D пищи всасывается в составе мицелл. В крови транспортируется в связи со специфическим транспортным глобулином. В гепатоцитах гидроксилируется в 25-гидроксихолекальциферол (25-ОН- D 3) . Это главная резервная в печени и транспортная в крови форма витамина D. Часть 25-ОН-D 3 участвует в энтеро-печеночной циркуляции (как желчные кислоты). При ее нарушении может возникать дефицит витамина D. В почках, плаценте и костях 25-ОН- D 3 может гидроксилироваться в положении 1 с образованием 1,25-дигидроксихолекальциферола или кальцитриола . Продукция кальцитриола регулируется собственной концентрацией, паратгормоном и сывороточными фосфатами.

3. Биологическая роль. Кальцитриол функционирует подобно проникающим гормонам. Кальцитриол – единственный регулятор перемещения кальция через мембрану энтероцитов против градиента концентрации. Кальцитриол стимулирует биосинтез в энтероцитах кальций-связывающего белка, что обеспечивает всасывание кальция и фосфатов в тонком кишечнике. Витамин D 3 усиливает реабсорбцию фосфатов в почечных канальцах, что способствует поддержанию нормального соотношения Са 2+ и НРО 4 3- в плазме и внеклеточных жидкостях. Это необходимо для кальцификации молодой растущей костной ткани.

Рис. 10.1. Схема образования витамина D и его активной формы кальцитриола.

Подписи: 7-Дегидрохолестерол; Ультрафиолетовые лучи; Провитамин D 3 ; Витамин D 3 (Холекальциферол); Кальцитриол (1,25-дигидроксихолекальциферол)

4. Источники : рыбий жир, печень рыб и животных, сливочное масло, яичный желток, молоко.

5. Суточная потребность. Потребность в витамине D зависит от возраста и состояния организма и составляет 12-25 мкг (500-1000 МЕ) в сутки (1 мкг=40 МЕ).

6. Гиповитаминоз. При недостатке витамина D у детей развивается заболевание рахит : нарушение минерализации костей, позднее развитие зубов, гипотония мышц. При недостатке витамина D у взрослых развивается остеопороз . Для профилактики D-гиповитаминоза используют ультрафиолетовое облучение кожи и пищи. При передозировке витамина D (в дозах, превышающих лечебные в 2-3 тысячи раз 1 500 000 МЕ) развивается гипервитаминоз : у детей остановка роста, рвота, исхудание, повышение артериального давления, возбуждение с переходом в ступор. В основе – гиперкальциемия и кальцификация внутренних оранов.

Витамин Е (токоферол, антистерильный)

1. Структура. К витамину Е относится группа соединений – производных токола, обладающих витаминной активностью. Известно 8 видов токоферолов – α, β, γ, δ и т.д. Наибольшей активностью обладает a-токоферол (5,7,8-триметилтокол).

2. Транспорт и метаболизм. Витамин Е не метаболизируется в организме. Нарушение всасывания липидов может приводить к дефициту токоферола, поскольку токоферол растворяется в жирах пищи, высвобождается и всасывается во время их переваривания. Токоферол всасывается в кишечнике и в составе хиломикронов через лимфу поступает в кровь. Токоферол попадает в ткани, в капиллярах которых хиломикроны подвергались действию липопротеинлипазы, а в печень витамин Е поступает в составе ремнантов хиломикронов. Токоферол транспортируется из печени к периферическим тканям в составе ЛПОНП. Депонируется витамин в жировой ткани, печени и мышцах .

3. Биологическая роль.

3.1. Витамин Е накапливается в мембранах клеток и действует как антиоксидант , прерывая цепи свободно-радикальных реакций. Антистерильный эффект связан с антиоксидантным действием витамина Е, когда он, препятствуя пероксидному повреждению мембран, обеспечивает нормальный контакт между клетками (предотвращает преждевременное отделение сперматогоний при созревании сперматозоидов или обеспечивает имплантацию оплодотворенной яйцеклетки в слизистую матки).

В отличие от других витаминов, витамин Е повторно не используется и после своего действия должен заменяться новыми молекулами токоферола.

Антиоксидантное действие токоферола эффективно при высокой концентрации кислорода , поэтому он находится в мембранах клеток с высоким парциальным давлением кислорода (мембраны эритроцитов, клеток респираторных органов). Потребность в витамине Е повышается при увеличении потребления ненасыщенных жирных кислот.

3.2. Витамин Е и селен (Se) действуют как синергисты. Se входит в состав глютатионпероксидазы, которая обеспечивает обезвреживание пероксидных радикалов. Se необходим для нормального функционирования поджелудочной железы. При нарушении ее функции нарушается переваривание и всасывание липидов и вторично витамина Е.

3.3. Витамин Е может участвовать в функционировании SH-содержащих ферментов , влиять на биосинтез КоQ, участвовать в механизмах переноса электронов по дыхательной цепи митохондрий

4. Источником витамина Е для человека являются растительные масла, а также зерновые продукты, ягоды шиповника, салат, капуста.

5. Суточная потребность. 20-30 мг.

6. Дефицит витамина Е. При дефиците витамина Е нарушается образование сперматозоидов у мужчин и развитие плода у женщин. Отмечаются дегенеративные изменения клеток репродуктивных органов, мышечная дистрофия, дегенеративные изменения клеток спинного мозга, жировое перерождение печени, дислипопротеинемии. У новорожденных может развиваться анемия, поэтому витамин Е необходимо добавлять к пище беременных и кормящих грудным молоком женщин. Анемия развивается из-за уменьшения продукции гемоглобина и сокращения продолжительности жизни эритроцитов. При нарушении переваривания и всасывания липидов развивается гиповитаминоз Е, ведущий к неврологическим заболеваниям.

Витамин К (филлохинон, антигеморрагический)

1. Структура. Три соединения обладают биологической активностью витамина К. Витамин К 1 (филлохинон) является производным 2-метил-1,4-нафтохинона, содержащий в положении 3 боковую цепь (фитол). Выделен из люцерны. Витамин К 2 (менахинон) выделен из гниющей рыбной муки. Синтезируется кишечной микрофлорой. Отличается от витамина К 1 строением боковой цепи, представленной фарнезилдигеранилом. Витамин К 3 (менадион, синтетический) не имеет боковой цепи в положении 3. На его основе А.Б.Палладин синтезировал водорастворимый препарат викасол (натриевая соль бисульфитного производного 2-метил-1,4-нафтохинона).

2. Транспорт и метаболизм. Для всасывания природных витаминов группы К (нафтахинонов) требуются желчные кислоты. В кровь они поступают в составе хиломикронов через лимфу. Викасол может всасываться без желчных кислот и прямо поступает в воротную вену и печень. Витамин К вначале аккумулируется в печени, но быстро расходуется.

3. Биологическая роль.

3.1. Витамин К стимулирует биосинтез в печени четырех белковых факторов свертывания крови (II-протромбин; VII-проконвертин; IX-фактор Кристмаса, или антигемофильный глобулин В; Х-фактор Стюарта-Прауэра).

3.2. Витамин К действует как кофактор карбоксилазы на этапе посттрансляционной модификации глутаминовых остатков протромбина . Протромбин содержит 10 таких остатков, которые карбоксилируются витамин К-зависимой карбоксилазой. Образуется γ-карбоксиглутамат, который затем хелатируется кальцием, что важно для свертывания крови.

3.3. Реакция карбоксилирования требует СО 2 и восстановленной (гидрохиноидной) формы витамина К. В эндоплазматическом ретикулуме есть цикл восстановления продукта карбоксилазной реакции витамина К (т.е. хиноидной формы в гидрохиноидную). Центральное место занимают две редуктазные реакции (в первой используются дитиоловый восстановитель, во второй – НАДФ-зависимая редуктаза).

3.4. Описано участие витамина К в окислительном фосфорилировании, его многостороннее анаболическое действие, функционирование в составе мембран.

5. Основной источник витамина К – микрофлора кишечника. Возможно поступление нафтохинонов с пищей (шпинат, тыква, капуста, ягоды рябины, печень животных).

6. Суточная потребность. Суточная потребность условно выражается 0,2-0,3 мг.

7. Дефицит витамина К . При нормальной микрофлоре кишечника у взрослых дефицита витамина К не бывает. Основная причина гиповитаминоза К – это стерилизация кишечника антибиотиками и сульфаниламидными препаратами. У новорожденных возможен дефицит витамина К, так как плацента его не пропускает, а кишечник стерилен. После родов содержание витамина К в плазме падает, но после еды восстанавливается. Если уровень протромбина низкий, возможно развитие геморрагического синдрома. Гиповитаминоз К бывает при мальабсорбции, дисфункции гепато-билиарной и панкреатической систем, при атрофии слизистой кишечника. Основные проявления гиповитаминоза К связаны с нарушением внутрисосудистого свертывания крови и кровоточивостью.

Водорастворимые витамины

К водорастворимым витаминам относят витамины группы В, С, Р, Н.

н С (аскорбиновая кислота, антискорбутный витамин)

1. Структура. Витамин С по структуре представляет собой g-лактон, имеющий 2 ассиметричных атома углерода. Биологически активной является L-форма аскорбиновой кислоты.

Аскорбиновая кислота Дегидроаскорбиновая кислота

Кислые свойства аскорбиновой кислоты обусловлены наличием 2-х енольных гидроксильных групп. L-аскорбиновая кислота обратимо подвергается окислению с образованием дегидроаскорбиновой кислоты под действием фермента аскорбатоксидазы . Восстановление дегидроаскорбиновой кислоты в аскорбиновую осуществляется с участием редуктазы и восстановленного глутатиона. Аскорбиновая и дегидроаскорбиновая кислоты являются биологически активными формами витамина . При гидратации в присутствии кислорода дегидроаскорбиновая кислота необратимо окисляется в 2,3-дикетогулоновую кислоту, которая не обладает биологической активностью и распадается до щавелевой и треоновой кислот. Скорость разрушения витамина возрастает с повышением температуры, в щелочной среде, под действием УФ-лучей, в присутствии солей тяжелых металлов (например, меди). Аскорбиновая кислота разрушается в процессе приготовления пищи и хранения продуктов.

2. Метаболизм. Аскорбиновая кислота всасывается путем простой диффузии на всем протяжении желудочно-кишечного тракта, но преимущественно в тонком кишечнике. В организме не накапливается.

3. Биологическая роль.

3.1. Окислительно-восстановительные реакции . Аскорбиновая кислота является сильным восстановителем с окислительно-восстановительным потенциалом +0,08 В и участвует в восстановлении молекулярного кислорода, нитратов и цитохромов а и с .

3.2.Витамин С участвует в гидроксилировании остатков пролина и лизина в процессе биосинтеза коллагена. ОН-группы гидроксипролина необходимы для стабилизации структуры коллагена, формируя водородные связи между цепями триплетной спирали зрелого коллагена. Гидроксилизин в коллагене служит для образования участков связывания с полисахаридами. Витамин С необходим для формирования костной ткани, поскольку основными компонентами костной ткани являются органический матрикс, коллаген, неорганический кальций и фосфаты.

3.3.Витамин С участвует в метаболизме тирозина . При синтезе катехоламинов норадреналина и адреналина из тирозина в надпочечниках и центральной нервной системе происходит окисление Cu + в Cu 2+ ; для обратного процесса восстановления меди необходима аскорбиновая кислота. Кроме того, аскорбиновая кислота требуется для окисления p-гидроксифенилпирувата в гомогентизиновую кислоту.

3.4.Витамин С необходим для гидроксилирования триптофана в гидрокситриптофан при биосинтезе серотонина .

3.5. Витамин С участвует в биосинтезе желчных кислот из холестерола.

3.6. Синтез кортикостероидных гормонов . В коре надпочечников содержится высокая концентрация витамина С, особенно в период стресса. Предполагают, что витамин С необходим для синтеза кортикостероидов.

3.7. Метаболизм железа и гемоглобина . Аскорбиновая кислота повышает всасывание железа из кишечника путем его восстановления в Fe 2+ . Витамин С участвует в образовании ферритина и высвобождении железа из связи его с транспортным белком крови трансферрином. Витамин С способствует восстановлению метгемоглобина в гемоглобин и участвует в деградации гемоглобина до желчных пигментов.

3.8. Метаболизм фолиевой кислоты . Активной формой фолиевой кислоты является тетрагидрофолиевая кислота (ТГФК). Витамин С необходим для образования ТГФК. Вместе с ТГФК аскорбиновая кислота участвует в созревании эритроцитов.

3.9. Витамин С является водорастворимым антиоксидантом и защищает клетки от повреждения свободными радикалами. Антиоксидантная функция аскорбиновой кислоты объясняется ее способностью легко отдавать два атома водорода, используемых в реакциях обезвреживания свободных радикалов.

4. Источники. В организме человека, обезьян, морских свинок и некоторых птиц витамин С не синтезируется. Источником витамина С служит растительная пища. Особенно им богаты перец, черная смородина, укроп, петрушка, капуста, щавель, цитрусовые, земляника.

5. Суточная потребность 70-120 мг.

6. Гиповитаминоз. Проявляется повышенным утомлением, снижением аппетита, сниженной устойчивостью к простудным заболеваниям, кровоточивостью десен. Авитаминоз приводит к заболеванию цингой (скорбутом). Главными симптомами цинги являются нарушение проницаемости капилляров, обусловленное недостаточностью гидроксилирования пролина и лизина в коллагене, расшатывание и выпадение зубов, отеки и боли в суставах, поражение костей, нарушение заживления ран. Смерть обычно наступает от кровоизлияния в полость перикарда. При гиповитамизозе С развивается железодефицитная анемия из-за нарушения всасывания железа и использования его запасов при синтезе гемоглобина.

Витамин В 1 (тиамин, антиневритный витамин)

1. Структура. Витамин В 1 был первым витамином, выделенным в кристаллическом виде К.Функом в 1912 г. Позже был осуществлен его химический синтез. Свое название – тиамин – получил из-за наличия в составе его молекулы атома серы и аминогруппы. Тиамин состоит из 2-х гетероциклических колец – аминопиримидинового и тиазолового. Последнее содержит каталитически активную функциональную группу – карбанион (относительно кислый углерод между серой и азотом).

Тиамин устойчив в кислой среде и выдерживает нагревание до высокой температуры. В щелочной среде витамин быстро разрушается.

2. Транспорт и метаболизм. В желудочно-кишечном тракте различные формы витамина гидролизуются с образованием свободного тиамина. Большая часть тиамина всасывается в тонком кишечнике с помощью специального механизма активного транспорта, остальное количество расщепляется тиаминазой кишечных бактерий. С током крови всосавшийся тиамин попадает вначале в печень, где фосфорилируется, а затем переносится в другие органы и ткани.

тиаминпирофосфаткиназа

АТФ + тиамин тиаминпирофосфат + АМФ

Витамин В 1 присутствует в различных органах и тканях как в форме свободного тиамина, так и его фосфорных эфиров: тиаминмонофосфата, тиаминдифосфата и тиаминтрифосфата. Основной коферментной формой (60-80% от общего внутриклеточного) является тиаминдифосфат, или тиаминпирофосфат (ТДФ, или ТПФ). Роль тиаминмонофосфата и тиаминтрифосфата пока неизвестна. Возможно они и аденилированная форма тиаминтрифосфата участвуют в реакциях приспособительного характера, путем переключения метаболических потоков углеводов.

После распада коферментов свободный тиамин выделяется с мочой и определяется в виде тиохрома.

3. Биологическая роль

3.1. ТПФ является коферментом 3-х полиферментных комплексов, которые катализируют окислительное декарбоксилирование кетокислот:

- Пируватдегидрогеназный комплекс участвует в окислительном декарбоксилировании пирувата, что является одной из ключевых реакций в обмене углеводов. В результате этой реакции образуется ацетил-КоА, который включается в цикл трикарбоновых кислот, где окисляется до углекислоты и воды. Благодаря этой реакции создаются условия для полного окисления углеводов и утилизации всей заключенной в них энергии. Кроме того, образующийся ацетил-КоА служит источником для синтеза многих биологических продуктов: жирных кислот, холестерола, стероидных гормонов, кетоновых тел и т.д.

2-Оксоглуторатдегидрогеназный комплекс входит в состав ЦТК и катализирует окислительное декарбоксилирование 2-оксоглутарата с образованием сукцинил-КоА.

- Дегидрогеназа кетокислот с разветвленным углеродным радикалом участвует в метаболизме валина, изолейцина и лейцина.

3.2. ТПФ является коферментом транскетолазы – фермента пентозофосфатного пути окисления углеводов, основными продуктами которого являются НАДФН и рибоза.

3.3. Витамин В 1 принимает участие в синтезе ацетилхолина, катализируя в пируватдегидрогеназной реакции образование ацетил-КоА.

4. Источники. Довольно много витамина содержится в пшеничном хлебе из муки грубого помола, в оболочке семян хлебных злаков, в сое, фасоли, горохе, дрожжах. Из продуктов животного происхождения наиболее богаты тиамином печень, нежирная свинина, почки, мозг, яичный желток.

5. Суточная потребность составляет 2-3 мг.

6. Гиповитаминоз. Проявляется слабостью, снижением аппетита, тошнотой, нарушением периферической чувствительности, онемением пальцев, ощущением ползанья «мурашек», болями по ходу нервов . При авитаминозе развивается заболевание бери-бери , что в переводе с индийского означает овца, так как походка больного человека напоминает поступь овцы. У больных бери-бери концентрации пирувата и 2-оксоглутарата в крови выше, чем в норме. Низкая активность транскетолазы в эритроцитах является лабораторным критерием бери-бери. Характерно поражение сердечно-сосудистой и нервной систем. Особая чувствительность нервной ткани к недостатку тиамина объясняется тем, что коферментная форма этого витамина необходима нервным клеткам для усвоения глюкозы.

Витамин В 2 (рибофлавин)

1. Структура. Витамин В 2 отличается от других витаминов желтым цветом (flavus – желтый). Рибофлавин впервые был выделен из кисломолочной сыворотки. Молекула рибофлавина состоит из гетероциклического изоаллоксазинового ядра, к которому в 9-м положении присоединен спирт рибитол (производное D-рибозы). Термином флавины обозначаются многие производные изоаллоксазина, обладающие В 2 -витаминной активностью.

Биосинтез флавинов осуществляется растительными и многими бактериальными клетками, а также плесневыми грибками и дрожжами. Благодаря микробному биосинтезу рибофлавина в желудочно-кишечном тракте жвачные животные не нуждаются в этом витамине. У других животных и человека синтезированных в кишечнике флавинов недостаточно для предупреждения гиповитаминозов. Витамин В 2 хорошо растворим в воде, устойчив в кислой среде, но легко разрушается в нейтральной и щелочной, а также под действием видимого и УФ-света. Витамин В 2 легко подвергается обратимому восстановлению, присоединяя водород по месту двойных связей (1 и 10), превращаясь из оранжево-желтого раствора в бесцветную лейкоформу.

2. Метаболизм. В пище витамин В 2 находится преимущественно в составе своих коферментных форм, связанных с белками – флавопротеинов. Под влиянием пищеварительных ферментов витамин высвобождается и всасывается путем простой диффузии в тонком кишечнике. В клетках слизистой кишечника, крови, печени и других тканях рибофлавин фосфорилируется до флавинмононуклеотида (ФМН) и флавинадениндинуклеотида (ФАД).

3. Биологическая роль . Основное значение витамина В 2 состоит в том, что он входит в состав флавиновых коферментов – ФМН и ФАД. Различают два типа реакций, катализируемых флавопротеинами:

3.1. Простые дыхательные системы – это прямое окисление субстрата с участием кислорода, перенос на него атомов водорода с образованием Н 2 О 2 и выделением энергии в виде тепла: оксидазы L- и D-аминокислот, ксантиноксидаза (разрушение пуриновых азотистых оснований), альдегиддегидрогеназа (деградация альдегидов).

3.2. Участие в сложных дыхательных системах

ФАД во втором комплексе цепи переноса электронов во внутренней мембране митохондрий (сукцинатдегидрогеназа и ацил-КоА-дегидрогеназа - дегидрирование метаболита ЦТК сукцината и ацил-КоА при окислении жирных кислот);

- НАДН-дегидрогеназа (перенос протонов и электронов от НАДН+Н + матрикса на ФМН первого комплекса цепи переноса электронов во внутренней мембране митохондрий);

- дигидролипоилдегидрогеназа (ФАД – кофактор фермента окислительного декарбоксилирования α-кетокислот пирувата и 2-оксоглутарата).

4. Источники. Основными источниками рибофлавина являются печень, почки, желток куриного яйца, творог. В кислом молоке витамина содержится больше, чем в свежем. В растительных продуктах витамина В 2 мало (исключение – миндальные орехи). Частично дефицит рибофлавина восполняется кишечной микрофлорой.

5. Суточная потребность 2-3 мг.

6. Гиповитаминоз. Недостаток витамина В 2 , как и других витаминов, проявляется слабостью, повышенной утомляемостью, склонностью к простудным заболеваниям. К специфическим проявлениям недостаточности рибофлавина относятся воспалительные процессы в слизистых оболочках. Слизистая губ и полости рта становится сухой, язык приобретает ярко-красный цвет, в углах рта появляются трещины. Отмечается повышенное шелушение эпителия кожи, особенно на лице.

Витамин РР (никотиновая кислота, никотинамид, ниацин; антипеллагрический витамин)

1. Структура. Витамин РР выделен К.Эвельгеймом в 1937 г. Его введение предохраняло от заболевания пеллагра или излечивало ее. РР означает противопеллагрический (preventive pellagra).

Никотиновая кислота является пиридин-3-карбоновой кислотой, никотинамид – ее амидом. Оба соединения в организме легко превращаются друг в друга и поэтому обладают одинаковой витаминной активностью.

Витамин РР плохо растворим в воде, но хорошо в водных растворах щелочей.

2. Метаболизм. Поступающий с пищей витамин РР быстро всасывается в желудке и кишечнике в основном путем простой диффузии. С током крови никотиновая кислота попадает в печень и другие органы, несколько медленнее проникает в них никотинамид. В тканях оба соединения преимущественно используются для синтеза коферментных форм НАД + и НАДФ + . Часть никотинамидных коферментов синтезируется в организме животных из триптофана . Однако этот путь, в который вовлекается до 2% метаболического пула триптофана, значительно уступает по эффективности первому (т.е. из прямого витаминного предшественника).

3. Биологическая роль. Значение витамина РР определяется ролью коферментов НАД + и НАДФ + .

3.1. НАД + входит в состав дегидрогеназ, катализирующих окисительно-востановительные превращения пирувата, изоцитрата, 2-оксоглутарата, малата и др. Эти реакции чаще локализованы в митохондриях и служат для освобождения энергии в сопряженных митохондриальных цепях переноса протонов и электронов.

3.2.НАДФ + входит в состав дегидрогеназ (редуктаз ), которые чаще локализованы в цитозоле или эндоплазматическом ретикулуме и служат для восстановительных синтезов (НАДФ-зависимые дегидрогеназы пентозофосфатного пути, синтеза жирных кислот и холестерола, митохондриальные монооксигеназные системы для синтеза желчных кислот, кортикостероидных гормонов) и обезвреживания ксенобиотиков (микросомальное окисление, оксигеназы со смешанной функцией).

3.3. НАД + и НАДФ + - аллостерические регуляторы ферментов энергетического обмена.

4. Источники. Продукты животного (печень, мясо) и растительного происхождения (рис, хлеб, картофель). Молоко и яйца содержат следы ниацина, но в них содержится триптофан, что может компенсировать недостаточное поступление никотинамида с пищей.

5. Суточная потребность составляет 15-25 мг.

6. Гиповитаминоз. Характерным признаком недостаточности витамина РР является симптомокомплекс «три Д»: дерматит, диарея и деменция . В основе заболевания лежит нарушение пролиферативной активности и энергетики клеток. Дерматит чаще всего отмечается на открытых участках кожи, которая под действием солнечных лучей краснеет, покрывается пигментными пятнами (на лице в виде крыльев бабочки) и шелушится. Язык становится ярко-красным и болезненным, утолщается, на нем появляются трещины. Расстройство пищеварения проявляется тошнотой, отсутствием аппетита, болями в животе. Нарушается функция периферических нервов и центральной нервной системы.

Симптомы гиповитаминоза развиваются:

1. У лиц с недостатком белка в диете. Объясняется это тем, что животные белки содержат оптимальное количество аминокислоты триптофана, витамина В 6 и некоторые другие компоненты, необходимые для синтеза ниацина.

2. При постоянном питании маисом, где ниацин находится в связанной форме.

3. При постоянном питании сорго, зерна которого содержат высокую концентрацию лейцина – ингибитора ключевого фермента превращения триптофана в НАД + .

4. При дефиците витамина В 6 и его коферментной формы пиридоксальфосфата, необходимого для синтеза из триптофана коферментных форм витамина РР.

Пантотеновая кислота

Пантотеновая кислота широко распространена в природе, название от panthos – повсюду. Витамин открыт Р.Вильямсом в 1933 г., спустя десятилетие от уже был синтезирован химическим путем.

1.Структура . Пантотеновая кислота состоит из пантоевой кислоты (α,γ,-дигидрокси-β,β-диметилмасляная кислота) и β-аланина.

Пантотеновая кислота представляет собой вязкую светло-желтую жидкость, хорошо растворимую в воде. Она малоустойчива и легко гидролизуется по месту пептидной связи под действием слабых кислот и щелочей.

2. Метаболизм. Пантотеновая кислота с током крови поступает в ткани после всасывания на всем протяжении тонкого кишечника и в толстой кишке (в зависимости от концентрации путем простой диффузии или активного транспорта). Пантотеновая кислота фосфорилируется с использованием АТФ до 4’-фосфопантотената . Присоединение цистеина и его декарбоксилирование приводит к образованию тиоэтаноламина, из которого образуется 4’-фосфопантотеин – простетическая группа кофермента А (HS-КоА) и ацилпереносящего белка (АПБ).

3. Биологическая роль. Тиоловая группа в НS-КоА и АПБ действует как переносчик ацильных радикалов .

HS-КоА участвует в важнейших метаболических процессах:

а) в обмене углеводов – окислительное декарбоксилирование пирувата в ацетил-КоА и 2-оксоглутарата в сукцинил-КоА;

б) в β-окислении жирных кислот на этапах активации до образования ацил-КоА и тиолитическом расщеплении с выделением ацетил-КоА и укороченного на 2 углеродных атома ацил-КоА;

в) в форме ацетил-КоА переносится остаток ацетила на холин с образованием медиатора ацетилхолина;

г) сукцинил-КоА участвует в синтезе порфиринов;

д) в биосинтезе жирных кислот – функцию переносчика метаболитов в пальмитатсинтазном комплексе выполняет 4-фосфопантетеин;

ж) ацетил-КоА используется для синтеза кетоновых тел, холестерола и стероидных гормонов.

Ацетил-КоА занимает центральное место в процессах взаимосвязи обменов углеводов, аминокислот и жирных кислот.

4. Источники. Пантотеновая кислота широко распространена в продуктах животного (печень, почки, яйца, мясо, молоко и др.) и растительного (картофель, капуста, фрукты и др.) происхождения. Синтезируется кишечной микрофлорой.

5. Суточная потребность . 10-15 мг

6. Гиповитаминоз. В связи с широким распространением витамина в продуктах питания авитаминоз не встречается. Симптомы гиповитаминоза не специфичны: дерматиты, невриты, язвы слизистых пищеварительного тракта, нарушения продукции стероидных гормонов и др.

Витамин В 6 (пиридоксин, пиридоксол, антидерматитный витамин)

1. Структура . Витамин В 6 включает три природных производных пиридина, обладающих одинаковой витаминной активностью: пиридоксина, пиридоксаля, пиридоксамина, отличающихся друг от друга наличием соответственно спиртовой, альдегидной или аминогруппы. Витамин В 6 открыт в 1934 г. А.Сент-Дьердьи. Пиридоксин хорошо растворяется в воде и этаноле, устойчив в кислой и щелочной среде, но легко разрушается под действием света при рН 7,0.

2 Метаболизм. Всосавшись в тонком кишечнике, все формы витамина с током крови разносятся к тканям и, проникая в клетки, фосфорилируются с участием АТФ. Коферментные функции выполняют два фосфорилированных производных пиридоксина: пиридоксальфосфат и пиридоксаминфосфат .

3. Биологическая роль. Витамин В 6 характеризуется широким спектром биологического действия. Он принимает участие в регуляции белкового, углеводного и липидного обменов, биосинтезе гема и биогенных аминов, гормонов щитовидной железы и других биологически активных соединений. Коферментные формы витамина В 6 входят в состав следующих ферментов:

- Аминотрансфераз аминокислот , катализирующих обратимый перенос NH 2 -группы от аминокислоты на α-кетокислоту (образование заменимых аминокислот, непрямое дезаминирование и восстановительное аминирование аминокислот).

- Декарбоксилаз аминокислот , отщепляющих карбоксильную группу аминокислот, что приводит к образованию биогенных аминов.

- Ферментов, осуществляющих неокислительное дезаминирование серина, треонина, триптофана, серусодержащих аминокислот.

- Мышечной фосфорилазы (распад гликогена).

4. Источники. Витамином В 6 богаты бобовые, зерновые культуры, мясные продукты, рыба, картофель. Он синтезируется кишечной микрофлорой, частично покрывая потребность организма в этом витамине.

5. Суточная потребность. 2-3 мг

6. Гиповитаминоз . Основными проявлениями недостаточности витамина В 6 являются гипохромная анемия и судороги. Отмечается развитие сухого себорейного дерматита, стоматита и глоссита. Чаще всего пиридоксиновая недостаточность наблюдается:

а) у маленьких детей при искусственном вскармливании стерилизованным молоком (разрушается витамин В 6), у беременных при токсикозах;

б) при групповой недостаточности витаминов группы В;

в) при подавлении микрофлоры кишечника антибиотиками;

г) у алкоголиков, поскольку ацетальдегид стимулирует дефосфорилирование пиридоксальфосфата.

Витамин Н (биотин)

Биотин – это первое вещество, которое было определено как необходимый ростовой фактор для микроорганизмов. Позже было показано токсическое действие сырого яичного белка на крыс. Употребление печени или дрожжей снимало этот эффект. Фактор, предотвращающий развитие токсикоза, был назван витамином Н или биотином (от греч. bios – жизнь).


Структура. Молекула биотина состоит из имидазольного и тиофенового колец и боковой цепи , представленной остатком валериановой кислоты . В пище биотин представлен биоцитином, который высвобождается путем протеолиза.

2.Метаболизм

2.1. Биотин не модифицируется в организме, но ковалентно связывается с ферментами, в которых выполняет функцию простетической группы.

2.2. Биотин связывается через свободную карбоксильную группу с остатком лизина апофермента. Комплекс биотин-фермент взаимодействует с СО 2 в присутствии АТФ (источник энергии) с образованием комплекса карбоксибиотин-фермент.

2.3. Биотинидаза катализирует удаление биотина от фермента во время метаболизма белков, что позволяет использовать биотин повторно.

3. Биологическая роль. Биотин действует как кофермент реакций карбоксилирования , в которых служит переносчиком СО 2 . В организме 4 фермента используют биотин как кофермент.

- Пируваткарбоксилаза. В результате карбоксилирования пирувата образуется оксалоацетат, который используется в глюконеогенезе и ЦТК.

- Ацетил-КоА-карбоксилаза катализирует карбоксилирование ацетил-КоА с образованием малонил-КоА. Реакция используется при биосинтезе высших жирных кислот.

- Пропионил-КоА-карбоксилаза превращает пропионил-КоА в D-метилмалонил-КоА, который превращается в сукцинат (вступает в ЦТК).

- β-метил-кротонил-КоА-карбоксилаза , участвующая в катаболизме лейцина и веществ, имеющих в составе изопреноидные структуры.

4. Источники. Биотин в достаточном количестве синтезируется микрофлорой кишечника. Пищевые источники: печень, сердце, яичный желток, отруби, бобы, соя, цветная капуста и др.

5. Суточная потребность. 150-200 мкг.

6. Дефицит. Причинами гиповитаминоза являются:

а)применение антибиотиков, которые подавляют рост кишечной микрофлоры;

б) поступление в организм большого количества авидина – гликопротеина присутствующего в белке куриных яиц, который нарушает всасывание биотина из-за образования нерастворимого комплекса;

в) длительное парэнтеральное питание;

г)наследственный дефект фермента, который присоединяет биотин к лизиновым остаткам апофермента.

Симптомы гиповитаминоза включают себорейный дерматит, тошноту, выпадение волос, боли в мышцах.

Фолиевая кислота (фолацин, витамин В 9 , витамин Вс)

Витамин обнаружили в 1930 г., когда было показано, что люди с определенным типом мегалобластической анемии могли быть излечены включением в пищу дрожжей или экстракта печени. В 1941 г. фолиевая кислота была выделена из зеленых листьев (лат. folium - лист, отсюда и название витамина). Витамином Вс это соединение назвали из-за его способности излечивать анемию у цыплят (от англ. chicken – цыпленок).

1. Структура. Фолиевая кислота состоит из птеридина, связанного с p-аминобензойной кислотой (ПАБК) и глутаминовой кислотой.

Фолиевая кислота плохо растворима в воде и органических растворителях, но хорошо в щелочных растворах. Разрушается под действием света, при обработке и консервировании овощей.

2. Метаболизм. Фолат в пище присутствует в форме полиглутамата. Внешние остатки глутамата удаляются в кишечнике до всасывания, главным образом, в тонком кишечнике. Коферментной формой фолиевой кислоты является 5,6,7,8-тетрагидрофолиевая кислота (ТГФК), которая образуется из фолиевой кислоты под действием фермента дигидрофолатредуктазы и с использованием НАДФН+Н + как донора атомов водорода.

3. Биологическая роль.

3.1. Фолиевая кислота является переносчиком одноуглеродных радикалов (групп): метильного (-СН 3), метиленового (=СН 2), метенильного (≡СН), формильного (-СНО), оксиметильного (-СН 2 ОН) и формиминового (-СН=NH). Одноуглеродные фрагменты связываются с ТГФК в положениях N 5 или N 10 . Присоединение формильного радикала в 5 положении приводит к образованию N 5 -формилТГФК, которая известна как фолиниковая кислота. МетиленТГФК образуется при взаимодействии ТГФК с глицином, серином или холином.

3.2. Фолат необходим для синтеза пуриновых нуклеотидов (2 и 8 атомы углерода) и синтеза тимина. N 5 ,N 10 -метиленТГФК вводит метильную группу при синтезе тимидилата, необходимого для синтеза ДНК и образования эритроцитов.

3.3. Участвует в метаболизме глицина, серина и этаноламина .

3.4. N-формилметионин является инициирующей аминокислотой в биосинтезе белка у прокариот.

3.5. В крови ТГФК присутствует как N 5 -метилТГФК. Витамин В 12 необходим для превращения N 5 -метилТГФК в ТГФК в реакции превращения гомоцистеина в метионин. Эта реакция необходима для освобождения свободной ТГФК и повторного использования в одноуглеродном метаболизме. При дефиците витамина В 12 блокируется превращение N 5 -метилТГФК в ТГФК («фолатная ловушка»).

4. Источники: кишечная микрофлора, свежие овощи – салат, капуста, морковь, помидоры, лук.

5. Суточная потребность : 50-200 мкг.

6. Дефицит. При дефиците ТГФК снижается синтез пуринов и тимина, что приводит к нарушению синтеза ДНК. Это проявляется развитием мегалобластической анемии , которая характеризуется появлением в крови незрелых ядросодержащих форм эритроцитов.

Витамин В 12 (кобаламин, антианемический витамин)

Злокачественная анемия (болезнь Аддисона-Бирмера) оставалась смертельным заболеванием до 1926 г., когда впервые для ее лечения применили сырую печень. Поиски содержащегося в печени антианемического фактора привели к успеху и в 1955 г. Дороти Ходжкин расшифровала структуру этого фактора и его пространственную конфигурацию с помощью метода рентгеноструктурного анализа.

1.Структура. Структура витамина В 12 отличается от строения всех других витаминов наличием в молекуле иона металла – кобальта. Кобальт связан координационными связями с атомами азота, входящими в состав четырех пиррольных колец, которые образуют планарную (плоскую структуру), называемую коррином. I, II, III пиррольные кольца связаны через метиленовые мостики, IV и I – непосредственно. Перпендикулярно плоскости коррина расположен нуклеотид, содержащий 5,6-диметилбензимидазол, α-D-рибозу и остаток фосфорной кислоты, который связан координационной связью с атомом кобальта (рис. 10.2). В пище кобаламин содержит атом кобальта в окисленной форме (III). Для образования активных коферментных форм атом кобальта восстанавливается до Со (I).

В витамине В 12 атомы углерода пиррольных колец замещены метильными, ацетамидными и пропионамидными радикалами. Пропионамидный радикал в IV кольце через изопропиловый спирт связан с фосфатным остатком нуклеотида.

Атом кобальта трехвалентен и ковалентно связан с группой CN - . Вся структура получила название цианокобаламина или кобаламина, поскольку считают, что цианид-ион является артефактом, зависящим от способа выделения.

Кобаламины растворимы в воде, термостабильны и устойчивы в присутствии растворов кислот при рН 4,0.

2. Транспорт и метаболизм

2.1. Витамин В 12 , содержащийся в пище, называют внешним фактором Кастла . Всасывается витамин в тонком кишечнике в комплексе с внутренним фактором Кастла (гликопротеин, секретируемый париетальными клетками желудка).

Витамин В 12 находится в пище в комплексе с белками. В желудке под действием соляной кислоты и пепсина витамин В 12 высвобождается из комплекса с белками и связывается с кобалофилином (R-протеин, гаптокоррин) – белком, секретируемым слюной. В двенадцатиперстной кишке комплекс распадается, кобалофилин гидролизуется панкреатическими протеазами, витамин В 12 связывается с внутренним фактором Кастла. Комплекс витамин В 12 -внутренний фактор Кастла всасывается в дистальной части подвздошной кишки через рецепторы (кубилины ), которые связывают комплекс, но не связывают свободный фактор или свободный витамин. Другой белок – мегалин – связан с кубилином и обеспечивает процесс эндоцитоза для всасывания комплекса

Рис. 10.2. Витамин В 12 .

2.2. Витамин транспортируется в крови в комплексе с белками, называемыми транскобаламинами и превращается в метилкобаламин и 5-дезоксиаденозилкобаламин в печени, клетках костного мозга и ретикулоцитах. Транскобаламин I участвует в хранении и резервировании водорастворимого витамина в печени и плазме крови (циркулирующий резерв). Транскобаламин II транспортирует витамин в крови. Комплекс транскобаламин II-витамин В 12 поступает в периферические клетки путем эндоцитоза. В лизосомах клеток транскобаламин II разрушается, витамин высвобождается в виде гидроксикобаламина, который либо превращается в цитозоле в метилкобаламин, либо в митохондриях – в 5-дезоксиаденозилкобаламин. В печени запасается около 4-5 мг витамина и этих запасов достаточно для обеспечения организма витамином в течение 4-6 лет.

3. Биологическая роль.

В организме человека витамин необходим для 2-х важнейших реакций:

3.1. 5-дезоксиаденозилкобаламин является коферментом метилмалонил-КоА-мутазы , который превращает метилмалонил-КоА в сукцинил-КоА. Метилмалонил-КоА образуется как промежуточный продукт катаболизма валина и карбоксилирования пропионил-КоА, синтезирующегося при катаболизме изолейцина, холестерола, жирных кислот с нечетным числом атомов углерода или прямо из пропионовой кислоты (продукт микробиологической ферментации в кишечнике). В результате этой реакции метилмалонил-КоА превращается в сукцинил-КоА.

3.2. Метилкобаламин является коферментом гомоцистеинметилтрансферазы – фермента, катализирующего метилирование гомоцистеина в метионин. Кобаламин забирает метильные группы от N 5 -метилтетрагидрофолиевой кислоты и превращает ее в тетрагидрофолат. Метаболическое значение этой реакции состоит в том, что сохраняются запасы метионина и тетрагидрофолата, что необходимо для синтеза пуриновых, пиримидиновых нуклеотидов и синтеза нуклеиновых кислот. При дефиците витамина В 12 фолат постоянно находится в форме N 5 -метил-ТГФК («фолатная» или метильная ловушка).

3.3. Витамин В 12 требуется для превращения D-рибонуклеотидов в дезокси-D-рибонуклеотиды. Эту реакцию у прокариот катализирует специфическая рибонуклеотидредуктаза.

4. Источники. Основным источником витамина являются микроорганизмы. В растительной пище витамин В 12 отсутствует. В небольших количествах витамин образуется бактериями на поверхности фруктов. Значительное количество витамина содержится в печени, дрожжах, молоке, яичном желтке.

5. Суточная потребность . 2-5 мкг.

6. Дефицит.

1. Энтеропеченочная циркуляция витамина В 12 обеспечивает организм достаточным количеством витамина, и дефицит может развиваться при отсутствии витамина в диете в течение нескольких лет. При заболеваниях желудка или подвздошной кишки дефицит витамина может развиваться быстрее.

2. Пернициозная анемия является следствием дефицита витамина В 12 и характеризуется нарушением синтеза ДНК, образования эритроцитов и появлением незрелых ядерных форм эритроцитов (мегалобластов).

3. Длительное вегетарианство может приводить к дефициту витамина В 12 .

Витаминоподобные вещества

Кроме витаминов, описанных выше, в пище присутствуют другие компоненты, которые являются незаменимыми факторами.

Холин

Best и Huntsman (1934) обнаружили, что дефицит холина у крыс вызывает жировое перерождение печени. Тем не менее, холин может адекватно синтезироваться в организме (из серина) и содержится во многих продуктах (молоко, яйца, печень, злаковые и др.).

1. Структура. По химическому строению холин – аминоэтиловый спирт, содержащий 3 метильные группы у атома азота.

2. Биологическая роль.

2.1. Является компонентом фосфолипидов (лецитины), которые являются компонентами мембран и участвуют в транспорте липидов.

2.2. Предотвращает накопление липидов в печени (липотропный фактор), что объясняется участием в синтезе фосфолипидов и липопротеинов, транспортирующих жиры из печени.

2.3. Участвует в метаболизме одноуглеродных радикалов из-за наличия в структуре трех метильных групп.

2.4. Предшественник для синтеза ацетилхолина, который участвует в передаче нервного импульса.

3. Пищевым источником являются мясо и злаковые растения. Суточная потребность составляет в среднем 0,5 г.

4. Недостаточность. Проявления недостаточности холина у человека не описаны. У животных отмечаются жировая инфильтрация печени, повреждение кровеносных сосудов.

Инозит

1. Структура. По химическому строению – шестиатомный циклический спирт циклогексана, хорошо растворимый в воде.

2. Биологическая роль.

2.1. Необходим для синтеза фосфатидилинозитола (компонент клеточных мембран).

2.2. Действует как липотропный фактор (вместе с холином) и предотвращает накопление жиров в печени.

2.3. Является посредником в действии некоторых гормонов (инозитол-1,4,5-трифосфат). Инозитолтрифосфат способствует высвобождению кальция из эндоплазматического ретикулума.

2.4. Высокая концентрация отмечена в сердечной мышце, хотя функция не известна.

3. . Инозитол находится во всех продуктах животного и растительного происхождения, особенно много его в печени, мозге, мясе, яичном желтке, а также в хлебе, картофеле, зеленом горохе, грибах. Суточная потребность приблизительно 1,0 -1,5 г.

4. Недостаточность инозитола у животных проявляется жировой дистрофией печени и падением содержания в ней фосфолипидов, облысением и анемией. У молодых особей наблюдается задержка роста

Липоевая кислота (витамин N)

1. Структура. В 1951 г. было выделено вещество, которое активно участвовало в обмене пирувата и ацетил-КоА – ключевых метаболитов клетки. Оно было названо липоевая кислота, так как хорошо растворялось в неполярных растворителях (lipid – жир). По химическому строению липоевая кислота является серосодержащей жирной кислотой (6,8-дитиооктановая кислота). Существует в окисленной и восстановленной формах.

2. Биологическая роль.

2.1. Участвует в реакциях окислительного декарбоксилирования вместе с другими витаминами (тиамин, ниацин, рибофлавин и пантотеновая кислота), в результате которых пируват превращается до ацетил-КоА и 2-оксоглутарат до сукцинил-КоА.

2.2. Является антиоксидантом и эффективна при защите организма от повреждающего действия радиации и токсинов.

3. Гипо- и гипервитаминозы липоевой кислоты у человека не описаны.

4. Суточная потребность. Источники . Наиболее богаты липоевой кислотой дрожжи, мясные продукты, молоко. Суточная потребность предположительно 1-2 мг.

Парааминобензойная кислота (ПАБК)

1. Структура. Является структурным компонентом фолиевой кислоты. Химическое строение ПАБК:

ПАКБ плохо растворяется в воде, хорошо – в спирте и эфире, химически устойчива.

2. Биологическая роль.

2.1. Витаминные свойства ПАБК связаны с тем, что она входит в состав молекулы фолиевой кислоты и, следовательно, принимает участие во всех реакциях метаболизма, где необходима фолиевая кислота.

2.2. Оказывает антигипоксическое, антиатерогенное действие, препятствует окислению адреналина, положительно влияет на функцию щитовидной железы.

3. Суточная потребность. Источники. ПАБК содержится практически во всех продуктах питания. Наиболее богаты ее печень, мясо, молоко, яйца, дрожжи. Суточная потребность не установлена.

Витамин Р (рутин, биофлавоноиды)

1. Структура. В 1936 г. А.Сент-Дьердьи из кожуры лимона выделил действующее начало, уменьшающее ломкость, проницаемость капилляров. Оно получило название витамин Р (от permeability – проницаемость).

Биофлавоноиды – разнообразная группа растительных полифенольных соединений, в основе структуры которых лежит дифенилпропановый углеродный скелет.

В растениях обнаружено свыше 4000 флавоноидов с идентифицированной химической структурой. Они делятся на 6 групп: флавонолы, флавоны, флавононы, катехины, антрагликозиды, антоцианы.

2. Биологическая роль.

2.1. Биофлавоноиды могут использоваться для синтеза биологически важных соединений в клетке (например, убихинона).

2.2. Рутин и кверцетин – полифенолы, обладающие Р-витаминной активностью, являются эффективными антиоксидантами . Флавоноиды (катехины) зеленого чая способны оказывать выраженное цитопротективное действие, в основе которого лежит их свойство обезвреживать свободные радикалы. В отличие от витамина Е, биофлавоноиды кроме прямого антирадикального действия могут также связывать ионы металлов с переменной валентностью, ингибируя, тем самым, процесс пероксидного окисления липидов мембран.

2.3. Достаточно изученным является капилляроукрепляющее действие витамина Р, обусловленное его способностью регулировать образование коллагена (синергизм с витамином С) и препятствовать деполимеризации основного вещества соединительной ткани гиалуронидазой.

3. Суточная потребность. Источники . Р-витаминные вещества содержатся в тех же растительных продуктах, что и витамин С. Наиболее богаты ими черноплодная рябина, черная смородина, яблоки, виноград, лимоны, чайный лист и плоды шиповника. Биофлавоноид цитрон придает кожуре лимона желтый цвет. Потребление флавоноидов в составе натуральных продуктов (фруктов, соков и виноградных вин), где они могут находиться в виде комплексов с металлами, может быть более эффективным, чем использование очищенных витаминных препаратов. Суточная потребность 25-50 мг.

4. Гиповитаминоз. Симптоматика недостаточности биофлавоноидов сводится к явлениям повышенной проницаемости и ломкости капилляров, петехиям (точечным ковоизлияниям), кровоточивости десен.

Витамин U

1. Структура. Витамин U был обнаружен в 1950 г. в сырых овощах. Поскольку сок сырых овощей, особенно капусты, обладал способностью предотвращать или задерживать развитие экспериментальных язв желудка, выделенный из него витамин назвали противоязвенным , или витамином U (от лат. ulcus – язва). По химическому строению он представляет собой S-метилметионин:

Витамин U хорошо растворим в воде. При варке пищи легко разрушается, особенно в нейтральной и щелочной среде.

2. Биологическая роль.

Подобно метионину витамин U является донором метильных групп в реакциях синтеза холина и креатина.

3. Недостаточность витамина у человека не описана. Цыплята, которым скармливался алкалоид цинкофен с целью моделирования язвы желудка, излечивались, если им в корм добавлялся свежий овощной сок.

4. Суточная потребность. Источники. Источниками витамина U являются свежая капуста, петрушка, морковь, лук, перец, зеленый чай, свежее молоко, печень.

Витамин F

В группу витамина F входят полиеновые жирные кислоты: линолевая, линоленовая, арахидоновая. При достаточном поступлении в организм линолевой и линоленовой кислот осуществляется синтез арахидоновой кислоты, являющейся предшественником эйкозаноидов (простагландинов, простациклинов, тромбоксанов и лейкотриенов). Одним из эффективных источников ω3 полиненасыщенных жирных кислот является льняное масло (α-линоленовая кислота – 52%). Для стабилизации ненасыщенных жирных кислот в масле присутствуют лигнаны, обладающие антиоксидантным и эстрогенным действиями.

Кофермент Q

В группу кофермента Q относят убихиноны. Убихинон Q 10 может синтезироваться на конечных стадиях синтеза холестерола. Поэтому при применении классических статинов (ингибиторов ГМГ-редуктазы) могут проявляться эффекты недостаточности кофермента Q. В настоящее время разработаны статины второго поколения, которые блокируют синтез холестерола ниже места ответвления синтеза кофермента Q.

Кофермент Q находится в мембранах, является переносчиком электронов в липидной фазе мембран (цепи переноса электронов). Недостаточность кофермента Q проявляется в виде гипоэнергетического состояния и сопряженных с этим разнообразных функциональных нарушений.

Кофермент Q входит в состав многих биологически активных добавок к пище с целью оптимизации пищевой поддержки метаболизма.


Похожая информация.


МОТИВАЦИОННАЯ ХАРАКТЕРИСТИКА ТЕМЫ

Рациональное питание человека требует сбалансированности не только по содержанию белков, жиров, углеводов, но и по содержанию микронутриентов. Результаты изучения фактического питания различных групп населения свидетельствуют о значительной распространенности полигиповитаминозов, недостаточности основных минеральных веществ и пищевых волокон. Устранение недостаточностей микронутриентов не может быть достигнуто простым увеличением потребления продуктов питания. Современные условия жизни и труда большинства населения приводят к уменьшению энергетических затрат, что обусловливает необходимость снижения количества потребляемой пищи и влечет за собой недостаточное потребление содержащихся в ней микронутриентов. Знания клинических проявлений недостаточностей микронутриентов, источников витаминов, минеральных веществ и пищевых волокон в питании, способах сохранения витаминной ценности продуктов, приемах профилактической витаминизации позволяют врачу оптимизировать статус питания пациентов.

ЦЕЛЬ ЗАНЯТИЯ: ознакомить с биологической ролью, нормированием и источниками в питании микронутриентов и пищевых волокон; научить определению химического состава рациона питания по содержанию витаминов, минеральных веществ, пищевых волокон расчетным методом (на примере анализа меню-раскладки суточного рациона питания студента-медика), витаминосберегающим способам хранения и кулинарной обработки продуктов, профилактической витаминизацией.

САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ НА ЗАНЯТИИ

1. Определение качественного состава суточного рациона питания студента по содержанию витаминов, минеральных веществ, пищевых волокон расчетным методом (по меню-раскладке, составленной к теме 3.2.) с использованием «Таблиц химического состава и энергетической ценности пищевых продуктов».

2. Решение ситуационных профессионально ориентированных задач двух типов, оформление решения в протоколе.

3. Лабораторная работа по определению содержания витамина С в овощах. 3.1. Определение содержания витамина С в сыром и вареном картофеле; расчет процента потери витамина С при кулинарной обработке.

3.2. Определение содержания витамина С в капусте; расчет процента потери витамина С при хранении.

4. Заслушивание и обсуждение рефератов, подготовленных студентами

по индивидуальному заданию преподавателя.

ЗАДАНИЕ ДЛЯ САМОПОДГОТОВКИ

1.Биологическая роль, нормирование, источники в питании водорастворимых витаминов.

2.Биологическая роль, нормирование, источники в питании жирорастворимых витаминов.

3. Виды витаминных недостаточностей.

4. Причины гиповитаминозов, их проявления.

5.Приемы сохранения и повышения витаминной ценности рационов питания, профилактика гиповитаминозов.

6.Биологическая роль, нормирование, источники в питании минеральных веществ.

7.Биологическая роль, нормирование, источники в питании пищевых волокон.

ПРОТОКОЛ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

"_____"___________20___г.

Таблица 46

Качественный состав суточного рациона питания студента

Наименования блюд меню, набор продуктов на порцию Масса, г Витамины Минеральные вещества Пище-вые волок- на, г
С мг В мг В мг А мкг D мкг Ca мг P мг К мг Fe мг J мкг
ЗАВТРАК:
2-ой ЗАВТРАК:
ОБЕД:
УЖИН:
ВСЕГО ЗА СУТКИ:

2. Решение ситуационной задачи (тип 1) №____

__________________________________________________________________

______________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________

__________________________________________________________________

Решение ситуационной задачи (тип2) №___

__________________________________________________________________

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________

__________________________________________________________________

3. Определение содержания витамина С в овощах:

вид продукта _____________, навеска продукта ____________г,

количество 0,0001н. раствора иодноватокислого калия, пошедшего на тит-

рование пробы _____мл;

Формула для расчета:

а) сырой картофель _______ м, вареный картофель _______ мг,

потеря витамина С при кулинарной обработке _________%

б) капуста ______ мг, среднее содержание в капусте _____ мг,

потеря витамина С при хранении _____ %.

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

Работу выполнил __________________

Подпись преподавателя _____________

СПРАВОЧНЫЙ МАТЕРИАЛ

Дефиниции темы

АВИТАМИНОЗ - полное истощение витаминных ресурсов организма.

АНТИВИТАМИНЫ - соединения, частью или полностью выключающие витамины из обменных реакций организма путем их разрушения, инактивации или препятствуя их ассимиляции. Антивитамины делятся на 2 группы:

а) структуроподобные соединения (конкурентные ингибиторы; вступают с витаминами или их производными в конкурирующие отношения в соответствующих биохимических реакциях обмена веществ), к ним относятся сульфаниламиды, дикумарин, мегафен, изониазид и др.

б) структуроразличные соединения (природные антивитамины; вещества,

которые путем изменения молекулы или комплексного соединения с метаболитами частично или полностью лишают витамин его действия), к ним относятся тиаминаза, аскорбиназа, авидин и др.

ВИТАМИНЫ - необходимые для нормальной жизнедеятельности низкомолекулярные органические соединения с высокой биологической активностью, которые не синтезируются (или синтезируются в недостаточном количестве) в организме и поступают в организм с пищей. Биологическая роль водорастворимых витаминов определяется их участием в построении различных коферментов, жирорастворимых витаминов - в контроле функционального состояния мембран клетки и субклеточных структур.

ВИТАМИНЫ-АНТАГОНИСТЫ: В 1 и В 2 ; А и Д; никотиновая кислота и холин; тиамин и холин (при длительном введении с лечебными целями одного витамина обнаруживаются симптомы недостаточности другого).

ВИТАМИНЫ-СИНЕРГИСТЫ: С и Р; Р, С, К; В 12 и фолиевая кислота; С, К, В 2 ; А и Е; Е и инозит (при комплексном применении в поливитаминных препаратах могут усиливать биологический эффект друг друга). ГИПОВИТАМИНОЗ - резкое снижение обеспеченности организма тем или иным витамином.

СКРЫТАЯ (ЛАТЕНТНАЯ) ФОРМА ВИТАМИННОЙ НЕДОСТАТОЧНОСТИ не имеет каких-либо внешних проявлений и симптомов, однако, оказывает отрицательное влияние на работоспособность, устойчивость организма к различным неблагоприятным факторам, удлиняет выздоровление после перенесенного заболевания.

ПИЩЕВЫЕ ВОЛОКНА – высокомолекулярные углеводы (целлюлоза, гемицеллюлоза, пектины, лигнин, хитин и др.) главным образом растительного происхождения, устойчивые к перевариванию и усвоению в тонком кишечнике, но подвергающиеся полной или частичной ферментации в толстом кишечнике.

ВАЖНЕЙШИЕ ПРИЧИНЫ ГИПОВИТАМИНОЗОВ И АВИТАМИНОЗОВ

1. Недостаточное поступление витаминов с пищей.

1.1. Низкое содержание витаминов в рационе.

1.2. Снижение общего количества потребляемой пищи в связи с низкими энерготратами.

1.3. Потеря и разрушение витаминов в процессе технологической переработки продуктов питания, их хранения и нерациональной кулинарной

обработки.

1.4. Отклонения от сбалансированной формулы питания (преимущественно углеводное питание требует дополнительного количества тиамина;

при недостаточном введении полноценных белков витамины С, РР, В 1 быстро выводятся с мочой, не участвуют в обменных процессах, задерживается превращение каротина в витамин А).

1.5. Анорексия.

1.6. Присутствие витаминов в некоторых продуктах в неутилизируемой форме (инозит в виде фитина зерновых продуктов).

2. Угнетение кишечной микрофлоры, продуцирующей некоторые витамины (В 6 , К).

2.1. Болезни желудочно-кишечного тракта.

2.2. Последствия химиотерапии (дисбактериозы).

3. Нарушение ассимиляции витаминов.

3.1. Нарушение всасывания витаминов в желудочно-кишечном тракте

при заболеваниях желудка, кишечника, поражениях гепатобилиарной системы, а также в пожилом возрасте (нарушение секреции желчи, необходимое для всасывания жирорастворимых витаминов).

3.3. Нарушение обмена витаминов и образования их биологически активных (коферментных) форм при различных заболеваниях, действии токсических и инфекционных агентов, химиотерапии, в пожилом возрасте.

4. Повышенная потребность в витаминах.

4.1. Особые физиологические состояния организма (интенсивный рост, беременность, лактация).

4.2. Особые климатические условия (потребность в витаминах повышается на 30-60% в связи с повышенными энерготратами при низкой температуре воздуха в климатической зоне Севера).

4.4. Значительная нервно-психическая нагрузка, стрессовые состояния.

4.5. Воздействие вредных факторов производства (Рабочим горячих цехов в условиях воздействия высоких температур /32 градуса/ при одновременной физической нагрузке требуется вдвое больше витаминов С, В 1 , В 6 , пантотеновой кислоты, чем при 18 градусах).

4.6. Инфекционные заболевания и интоксикации (При тяжелых септических процессах потребность организма в витамине С достигает 300-500 мг в сутки).

4.7. Заболевания внутренних органов и эндокринных желез.

4.8. Повышенная экскреция витаминов.

5. Врожденные, генетически обусловленные нарушения обмена и функций витаминов.

5.1. Врожденные нарушения всасывания витаминов.

5.2. Врожденные нарушения транспорта витаминов кровью и через клеточные мембраны.

5.3. Врожденные нарушения биосинтеза витаминов (никотиновой кислоты из триптофана).

5.4. Врожденные нарушения превращения витаминов в коферментные

формы, простетические группы и активные метаболиты.

5.5. Нарушение включения витаминов в состав активного центра фермента.

5.6. Нарушение структуры апофермента, затрудняющее его взаимодействие с коферментом.

5.7. Нарушение структуры апофермента, приводящее к полной или частичной утрате ферментативной активности вне зависимости от взаимодействия с коферментом.

5.8. Усиление катаболизма витаминов.

5.9. Врожденные нарушения реабсорбции витаминов в почках.

Таблица 47

(в 100 г съедобной части)

Продукты В 1 В 2 РР В 6 С Е А В-ка-ро-тин D В 12 Фо-лие-вая кисл.
Мг/100г Мкг/100 г
Хлеб ржаной 0,18 0,11 0,67 0,17 - 2,2 - - - -
Хлеб пшенич. 0,21 0,12 2,81 0,3 - 3,8 - - - -
Крупа овсян. 0,49 0,11 1,1 0,27 - 3,4 - - - -
Крупа манная 0,14 0,07 1,0 0,17 - 2,5 - - - -
Крупа рисовая 0,08 0,04 1,6 0,18 - 0,4 - - - -
Крупа гречнев. 0,53 0,2 4,19 0,4 - 6,6 - - - -
Пшено 0,62 0,04 1,55 0,52 - 2,6 - 0,15 - -
Макароны 0,17 0,08 1,21 0,16 - 2,1 - - - -
Говядина 0,07 0,18 3,0 0,39 Сл - - - - 2,8 8,9
Свинина 0,52 0,14 2,4 0,33 Сл - - - - - 5,5
Печень говяж. 0,3 2,19 6,8 0,7 1,3 3,8 1,0 -
Колбаса варен. 0,25 0,18 2,47 0,19 - - - - - -
Куры 0,07 0,15 3,6 0,61 - - 0,1 - - - 5,8
Яйца куриные 0,07 0,44 0,2 0,14 - 0,3 - 4,7 0,1 7,5
Треска 0,09 0,16 2,3 0,17 Сл. 0,9 Сл. - - 1,6 11,3
Икра осетр. 0,3 0,36 1,5 0,29 7,8 - 0,2 - -
Молоко Пастер. 0,03 0,13 0,1 - 1,0 - Сл. 0,01 - - -
Кефир 0,03 0,17 0,14 0,06 0,7 0,1 Сл. 0,01 - 0,4 7,8
Сметана 0,02 0,1 0,07 0,07 0,2 0,5 0,2 0,1 0,1 0,36 8,5
Творог 0,04 0,27 0,4 0,11 0,5 0,4 0,1 0,03 - 1,0 35,0
Сыры твердые 0,02 0,3 0,3 0,1 1,6 0,5 0,2 0,1 - 2,5 10-45
Масло сливоч. Сл 0,01 0,1 - - - 0,5 0,34 - - -
Масло подсолнечное рафинирован. _ - - - - - - - - -
Горох 0,81 0,15 2,2 0,27 - 9,1 - 0,07 - -
Картофель 0,12 0,05 0,9 0,3 0,1 - 0,02 - -
Капуста белокачанная 0,06 0,05 0,4 0,14 0,1 - 0,02 - -
Лук зеленый 0,02 0,1 0,3 0,15 - - -
Томаты 0,06 0,04 0,53 0,1 0,4 - 1,2 - -
Огурцы 0,03 0,04 0,2 0,04 0,1 - 0,06 - -
Свекла 0,02 0,04 0,2 0,07 0,1 - 0,01 - -
Морковь 0,06 0,07 0,13 0,6 - - -
Грибы белые 0,02 0,3 4,6 0,07 0,6 - - - -
Яблоки 0,01 0,03 0,3 0,08 0,6 - 0,03 - - 1,6
Абрикосы 0,03 0,06 0,07 0,05 0,9 - 1,6 - -
Вишни 0,03 0,3 0,4 0,05 0,3 - 0,1 - -
Малина 0,02 0,05 0,6 0,07 0,6 - 0,2 - -
Земляника 0,03 0,05 0,3 0,06 0,5 - 0,03 - -
Смородина чер. 0,02 0,02 0,3 0,13 0,7 - 0,1 - -
Облепиха 0,1 0,05 0,6 0,11 - - -
Шиповник сух. 0,15 0,84 1,5 - - - 6,7 - - -
Виноград 0,05 0,02 0,3 0,09 - - Сл. - -
Лимоны 0,04 0,02 0,1 0,06 - - 0,01 - -
Апельсины 0,04 0,03 0,2 0,06 0,2 - 0,05 - -
Пирожные, торты 0,75 0,1 0,7 - - - 0,1 0,14 - - -
Дрожжи прессован. 0,6 0,68 11,4 0,58 - - - - - -

Введение

Определение витамина В1 (обзор литературы)

1 Историческая справка

2 Классификация витаминов

4 Синтез витамина В1

Методы определения витаминов

1 Биологические методы

2 Химические методы

3 Физические методы

4 Физико-химические методы

Аналитическое определение витамина В1 (экспериментальная часть)

1 Потенциометрическое определение витамина В1

2 Аргентометрическое определение витамина В1

Заключение


Введение


В настоящее время на рынке появилось огромное количество витаминизированных продуктов питания для человека и кормов для животных, представляющих собой сухие многокомпонентные смеси. Ассортимент таких продуктов представлен достаточно широко. Это, прежде всего, биологически активные добавки к пище, комбикорма для животных и птиц, поливитаминные препараты. Критерием качества таких продуктов может являться их анализ на содержание витаминов и, особенно, таких жизненно необходимых, как водорастворимые и жирорастворимые витамины, количество которых регламентируется нормативными документами и санитарными нормами качества.

Витамины принадлежат к различным классам органических соединений. Поэтому для них не могут существовать общие групповые реакции; каждый из витаминов требует особого аналитического подхода.

Химическая структура витамина В1 (антиневритический витамин, аневрин, бери-бери витамин, анти-бери-бери витамин), позволяет применить различные методы химического и физико-химического количественного определения:

кислотно-основное титрование, осадительное титрование (аргентометрия), физико-химические методики (спектрофотометрические), гравиметрия.

Целью данной курсовой работы, является количественное определение витамина В1. Было выбрано два способа количественного определения- химический и физико-химический методы.

Задачи курсовой работы: Произвести анализ литературы, выполнить два количественных определения тиамина- потенциометрическим титрованием и аргентометрическим методом.


1. Определение витамина В1 (обзор литературы)


1 Историческая справка


Всем известное слово "витамин" происходит от латинского "vita" - жизнь. Такое название эти разнообразные органические соединения получили далеко не случайно: роль витаминов в жизнедеятельности организма чрезвычайно велика.

Витамины представляют собой группу разнообразных по строению химических веществ, принимающие участие во многих реакциях клеточного метаболизма. Они не являются структурными компонентами живой материи и не используются в качестве источников энергии. Большинство витаминов не синтезируются в организме человека и животных, но некоторые синтезируются микрофлорой кишечника и тканями в минимальных количествах, поэтому основным источником этих веществ является пища.

Ко второй половине XIX века было выявлено, что пищевая ценность продуктов питания определяется содержанием в них в основном следующих веществ: белков, жиров, углеводов, минеральных солей и воды.

Однако практика далеко не всегда подтверждала правильность укоренившихся представлений о биологической полноценности пищи.

Экспериментальное обоснование и научно-теоретическое обобщение этого многовекового практического опыта впервые стали возможны благодаря исследованиям русского ученого Николая Ивановича Лунина.

Он провел эксперимент с мышами, разделив их на 2 группы. Одну группу он кормил натуральным цельным молоком, а другую держал на искусственной диете, состоящей из белка-казеина, сахара, жира, минеральный солей и воды.

Через 3 месяца мыши второй группы погибли, а первой остались здоровыми. Этот опыт показал, что помимо питательных веществ, для нормальной жизнедеятельности организма, необходимы еще какие-то компоненты. Это было важное научное открытие, опровергавшее установившееся положения в науке о питании.

Блестящим подтверждением правильности вывода Н. И. Лунина установлением причины болезни бери-бери.

В 1896 году английский врач Эйкман заметил, что куры, питавшиеся полированным рисом, страдали нервным заболеванием, напоминавшим бери-бери у людей. После дачи курам неочищенного риса заболевание прекратилось. Он сделал вывод, что витамин содержится в оболочке зерен. В 1911 году польский ученый Казимир Функ выделил витамин в кристаллическом виде. Окончательное строение витамина В1 было установлено в 1973 году.

По своим химическим свойствам это вещество принадлежало к органическим соединениям и содержало аминогруппу. Функ, полагая, что во всех подобных веществах обязательно должны входить аминные группировки, предложил называть эти неизвестные вещества витаминами, т.е. аминами жизни. В дальнейшем было установлено, что многие из них аминных групп не содержат, но термин «витамин» прижился в науке и практике.

Согласно классическому определению, витамины - это необходимые для нормальной жизнедеятельности низкомолекулярные органические вещества, которые не синтезируются организмом данного вида или синтезируются в количестве, недостаточном для обеспечения жизнедеятельности организма. Витамины необходимы для нормального протекания практически всех биохимических процессов в нашем организме.


2 Классификация витаминов


Современная классификация витаминов не является совершенной. Она основана на физико-химических свойствах (в частности, растворимости) или на химической природе. В зависимости от растворимости в неполярных органических растворителях или в водной среде различают жирорастворимые и водорастворимые витамины. В приводимой классификации витаминов, помимо буквенного обозначения, в скобках указан основной биологический эффект, иногда с приставкой «анти», указывающей на способность данного витамина предотвращать или устранять развитие соответствующего заболевания.

Витамины, растворимые в жирах

Витамин Л (антиксерофгальмический); ретинол

Витамин D (антирахитический); кальциферолы

Витамин Е (антистерильный, витамин размножения); токоферолы

Витамин К (антигеморрагический); нафтохиноны

Витамины, растворимые в воде

.Витамин В1 (антиневритный); тиамин

.Витамин В2 (витамин роста); рибофлавин

.Витамин В6 (антидерматитный, адермин); пиридоксин

.Витамин В12 (антианемический); цианкобаламии; кобаламин

.Витамин РР (антипеллагрический, ниацин); никотинамид

.Витамин Н (антисеборейный, фактор роста бактерий, дрожжей и грибков); биотин

.Витамин С (антискорбутный): аскорбиновая кислота


3 Строение и свойства витамина В1

Витамин В1-тиамин является хлористоводородной солью 4-метил-5-?-оксиэтил- N - (2-метил-4-амино-5-метилпиримидил) -тиазолийхлорида, получается синтетически обычно в виде хлористо-или бромистоводородной соли. В его структуру входят такие гетероциклические системы, как пиримидил и тиазол.

Витамин В1- белый кристаллический порошок горького вкуса, с характерным запахом, хорошо растворяется в воде(1г в 1 мг), ледяной уксусной кислоте, в этиловом спирте. В сильнокислой водной среде тиамин обладает высокой устойчивостью и не разрушается под действием таких энергичных окислителей, как перекись водорода, марганцовокислый калий и озон. При рН=3,5 тиамин может нагреваться до температуры 120ºС без заметных признаков разложения.

Витамин В1 способен окисляться. В щелочной среде под действием красной кровяной соли тиамин переходит в тиохром. Превращение тиамина в тиохром количественный необратимый процесс.

Эта реакция положена в основу одного из количественных методов определения витамина В1. Превращение тиамина в тиохром сопровождается утратой витаминной способности.


1.4 Синтез


Учитывая особенности строения витамина В1, его синтез может быть осуществлен тремя путями: конденсацией пиримидинового и тиазольного компонентов, на основе пиримидинового компонента и на основе тиазольного компонента.

Рассмотрим первый вариант. Оба компонента синтезируются параллельно, а затем соединяются в молекулу тиамина. Конкретно 2- метил-4-амино-5 хлорметилпиримидин взаимодействует с 4-метил-5-оксиэтиазолом, образуя четвертичную тиазолевую соль:

Конденсация проходит при температуре 1200С в толуоле или бутиловом спирте. Далее полученный тиамин выделяют из реакционной смеси осаждением ацетоном и очищают перекристаллизацией из метанола.


5 Распространение в природе и применение


Тиамин распространен повсеместно и обнаруживается у разных представителей живой природы. Как правило, количество его в растениях и микроорганизмах достигает величин значительно более высоких, чем у животных. Кроме того, в первом случае витамин представлен преимущественно свободной, а во втором - фосфорилированной формой. Содержание тиамина в основных продуктах питания колеблется в довольно широких пределах в зависимости от места и способа получения исходного сырья, характера технологической обработки полупродуктов и т. п.

В злаковых семенах растений тиамин, подобно большинству водорастворимых витаминов, содержится в оболочке и зародыше. Переработка растительного сырья (удаление отрубей) всегда сопровождается резким снижением уровня витамина в полученном продукте. Шлифованный рис, например, совсем не содержит витамина.

Витамин В1 широко применяется в медицинской практике для лечения различных нервных заболеваний (неврозов, полиневритов), сердечно - сосудистых расстройств(гипертония) и др.

Витаминизация хлебобулочных изделий и комбикормов в животноводстве и птицеводстве.

Суточная потребность взрослого человека в среднем составляет 2-3 мг витамина В1. Но потребность в нём в очень большой степени зависит от состава и общей калорийности пищи, интенсивности обмена веществ и интенсивности работы. Преобладание углеводов в пище повышает потребность организма в витамине; жиры, наоборот, резко уменьшают эту потребность.


2. Методы определения витаминов


Все методы исследования витаминов подразделяются на биологические (микробиологические), физические, химические и физико-химические.


1 Биологические методы


Несмотря на то, что биологические методы определения некоторых витаминов отличаются высокой чувствительностью и могут использоваться для исследования образцов с незначительным содержанием этих соединений, в настоящее время они представляют главным образом исторический интерес. Точность этих методов невысока, кроме того биологические методы требуют больших затрат времени и средств и неудобны для проведения серийных анализов.

Микробиологические методы основаны на измерении скорости роста бактерий, которая пропорциональна концентрации витамина в исследуемом объекте.


2.2 Химические методы


Специфичность свойств витаминов обусловлена наличием в их молекулах функциональных групп. Это свойство широко используется при количественном и качественном химическом анализе.

Химические методы анализа:

) Фотометрический;

) Титриметрический(заключается в том, что все вещества реагируют между собой в эквивалентных количествах С*V = С*V);

3) Гравиметрический(заключается в выделении вещества в чистом виде и его взвешивании. Чаще всего такое выделение проводят осаждением. Реже определяемый компонент выделяют в виде летучего соединения(метод отгонки). Аналитический сигнал-масса);

) Оптический(основан на поглощении системой некоторого количества лучистой энергии атомами. Количество энергии поглощения находится в прямой зависимости от концентрации вещества в растворе).


3 Физические методы


Применение физических методов в анализе витаминов (например, ПМР) ограничено высокой стоимостью приборов.

Кондуктометрический - основан на измерении электропроводности раствора.

Потенциометрический(в основе метода лежит измерение зависимости равновесного потенциала электрода от активности(концентрации) определяемого иона определяемого иона. Для измерений необходимо сравнивать элемент из подходящего индикаторного электрода и электрода сравнения).

Масс-спектральный - применяется при помощи сильных элементов и магнитных полей, происходит разделение газовых смесей на компоненты в соответствии с атомами или молекулярными массами компонентов. Применяется при исследовании смеси изотопов, инертных газов, смесей органических веществ.


4 Физико-химические методы


В настоящее время в практике фармацевтического анализа находят все большее применение физико-химические методы анализа, как наиболее точные и экспрессные по своему исполнению. К ним относятся оптические, электрохимические и хроматографические методы анализа.

Среди оптических методов наибольшее распространение получили спектрофотометрические и фотоколориметрические методы, основанные на общем принципе - существовании в известных границах концентраций прямой пропорциональной зависимости между светопоглощением раствора и концентрацией растворенного вещества. Спектрофотометрический анализ по непосредственному измерению оптической плотности может быть проведен для веществ, обладающими определенными особенностями строения - в структуре должны быть хромофорные и ауксохромные группы (например, гетероатомы, системы сопряженных связей).

К достоинствам колориметрических (фотометрических) методов можно отнести доступность оборудования и средств измерения, экспрессность. Основным недостатком является низкая селективность, препятствующая применению этих методов к сложным по составу объектам. Сказывается влияние сопутствующих компонентов: провитаминов, антиоксидантов, производных витаминов, продуктов деструкции витаминов, способных подобно витаминам, давать окрашенные продукты. Встречаются трудности при подборе специфического реактива для взаимодействия с определенным витамином.

Несмотря на недостатки этого метода, для многих витаминов разработаны методики фотометрического определения.

Несмотря на разнообразие методик фотометрического определения витаминов ученые до сих пор интересуются этим методом, унифицируют старые методики и создают новые.

Хроматографические методы анализа очень распространены в фармацевтической практике. Эти методы перспективны при анализе веществ, содержащих витамины и имеющих сложную структуру.

Вплоть до относительно недавнего времени наиболее часто из хроматографических методов использовали газожидкостную хроматографию (ГЖХ).

В настоящее время альтернативным способом быстрого определения витаминов в разнообразных объектах является высокоэффективная жидкостная хроматография (ВЭЖХ).

Определение витаминов методом высокоэффективной жидкостной хроматографии не требует длительной пробоподготовки, достаточно высока чувствительность метода, однако высокая стоимость оборудования существенно ограничивает применение этого метода.

Электрохимические методы анализа основаны на использовании ионообменных или электрообменных процессов, протекающих на поверхности электрода или в при электродном пространстве. Аналитическим сигналом служит любой электрический параметр (потенциал, сила тока, сопротивление, электропроводность и т.д.), функционально связанный с составом и концентрацией раствора.

Электрохимические методы анализа играют важную роль в современной фармацее, поскольку характеризуются высокой чувствительностью, низкими пределами обнаружения, широким интервалом определяемых содержаний. Самыми распространенными методами являются полярография и вольтамперометрия. Литературные данные по полярографическому исследованию витаминов самые многочисленные. Полярографически можно определять количественное содержание каждого витамина в индивидуальных и в сложных фармацевтических препаратах.

Метод достаточно чувствительный, но использование полярографии ограничено применением токсичного ртутного электрода.

Вместе с тем метод потенциометрического титрования является экспрессным, простым в выполнении, не требует дорогостоящего оборудования и реактивов.


3. Экспериментальная часть


1 Потенциометрическое определение витамина В1


В структуру витамина В1 входит подвижный хлор (С12Н18ОN4Cl2S):


витамин тиамин титрование потенциометрический

Это дало возможность использовать осадительное потенциометрическое титрование для определения тиамина. В качестве индикаторного электрода использовался серебряный электрод. Титрантом служил раствор нитрата серебра с концентрацией 0,05 моль/л.

Для проведения анализа готовили растворы с концентрацией витамина В1 0,02968моль/л. Для этого содержимое 10 ампул количественно переносили в колбу на 50 мл и доводили до метки дистиллированной водой. Объем ампул равен 1 мл, содержание витамина В1 - 50 мг (Производитель: ОАО «Мосхимфармпрепараты» им. Н.А.Семашко). Отбирали аликвоты, объемом по 5 мл и проводили потенциометрическое титрование. Эквивалентный объем раствора нитрата серебра при титровании 5 мл раствора витамина 6 мл. Было выполнено 8 потенциометрических измерений.

Примеры кривых титрования представлены на рисунках 1, 2, 3, 4, 5. Кривые титрования построены в координатах- интегральные кривые V, мл- Е, Вт, а дифференциальные кривые в координатах - ?V -


Рис.1 Кривая потенциометрического титрования витамина В1(Val=5 мл)


Рис.2 Кривая потенциометрического титрования витамина В1(Val=5 мл)


Рис.3 Кривая потенциометрического титрования витамина В1(Val=5 мл)


Рис.4 Кривая потенциометрического титрования витамина В1(Val=5 мл)


Рис.5 Кривая потенциометрического титрования витамина В1(Val=5 мл)


где ТAgNO3/вит.В1.= (0,05*337)/1000=0,01685г/мл; Vэ- объем нитрата серебра, пошедший на титрование.



где Vколбы = 50мл, ТAgNO3/вит.В1 =0,008425г/мл, Vэ - объем нитрата серебра, пошедший на титрование, Val = 5 мл, N - число ампул (10 шт).

Результаты анализа представлены в таблице 1.


Таблица 1. Результаты анализа потенциометрического титрования.

№V, мла, мгm, г160.10110,05055260.10110,0505536,50,10950,05476460.10110,05055560.10110,05055660.10110,05055760.10110,05055860.10110,05055<среднее>6,06250,102150,051076

где x - "подозрительное" значение (вероятный промах) - это максимальное или минимальное значение выборки, xближайшее - ближайшее к подозрительному значение, xmin и xmax - максимальное и минимальное значения выборки. Значение Q сравнивают с табличным значением(Таблица 2). Доверительную вероятность берут равной 0.90 или 0.95. Если Q> Qтабл - подозрительный результат является промахом и исключается из дальнейшего рассмотрения;Q< Qтабл - подозрительный результат не является промахом.


Таблица 2. Критические значения Q-критерия для различной доверительной вероятности p и числа измерений n.

np0.900.950.9930.9410.9700.99440.7650.8290.92650.6420.7100.82160.5600.6250.74070.5070.5680.68080.4680.5260.63490.4370.4930.598100.4120.4660.568

Вычисления: n=8; р=0.90;= =1,0>0,468 критерий свидетельствует, что результат является промахом, и мы его не учитываем.

Исключая промах получаем m= 0,05055 г, по нормативным документам содержание витамина В1 должно быть равным 0,05 г.

Погрешность составляет:

Х= 0,05055-0,05= 0,00055 г

1,1%

. Среднее квадратичное отклонение, характеризующее разброс результатов КХА:


Таблица 3. Вспомогательная таблица для расчета СКО.

mimi - (mi - )2S0,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,05055000


. Доверительный интервал:

0,05055


3.2 Аргентометрическое определение витамина В1


Аргентометрическое определение по методу Фаянса,. Метод Фаянса - это метод прямого титрования галогенидов раствором AgNO30,1М в слабо кислой среде с применением адсорбционных индикаторов, которые показывают изменение цвета не в растворах, а на поверхности выпавшего осадка. Использовали раствор, приготовленный для первого метода количественного определения тиамина с концентрацией витамина 0,02968моль/л. Val= 5 мл. Прибавляли 2-3 капли раствора бромфенолового синего и по каплям разведенную уксусную кислоту до получения зеленовато-желтого окрашивания. Полученный раствор титровали 0,1 М раствором нитрата серебра до фиолетовой окраски.

Титрование идет по уравнению:


12Н17N4ОS)Cl- .HCl +2AgNO3= 2AgCl + (С12Н17N4ОS)NO3- .HNO3



Таблица 4. Результаты аргентометирического определения витамина В1

№V, млm, г11,50,0505521,50,0505531,50,0505541,50,0505551,40,0471861,50,0505571,50,0505581,50,0505591,40,04718101,50,05055<среднее>1,480,04988

Приведённые результаты свидетельствуют о наличии выпадающих результатов. Определение промахов ведем по Q-критерию: Тестовая статистика Q-критерия вычисляется по формуле:

Вычисления: n=10; р=0.90;

> 0,412критерий свидетельствует, что результат является промахом, и мы его не учитываем в дальнейших расчетах.

1.Установление титра AgNO3 0,1 N по раствору NaCl 0,1 N


= ;


V-объем AgNO3, пошедший на титрование, мл.

2.Погрешность составляет:

Х= 0,05055 -0,05= 0,00055 г

1,1%

Математическая обработка результатов КХА (количественного химического анализа)

. Среднее квадратичное отклонение, характеризующее разброс результатов КХА


Таблица 5. Вспомогательная таблица для расчета СКО.

mimi - (mi - )2S0,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,05055000



. Доверительный интервал:

Верхнюю и нижнюю границы интервала, в котором погрешность результатов КХА находится с доверительной вероятностью 0,95, определяли следующим образом:

0,05055


Заключение


В данной курсовой работе стояла задача количественно определить витамин В1. Для определения витаминов применяют различные методы. Так же необходимо учитывать химическое строение каждого витамина. Широко используемые оптические методы анализа трудоемки, требуют больших затрат времени и дорогостоящих реактивов, применение хроматографических методов осложнено использованием дорогостоящего оборудования. Было выбрано два метода определения тиамина:

.Потенциометрическое титрование, который имеет ряд преимуществ по сравнению с существующими методами анализа фармпрепаратов, на содержание в них витаминов: метод прост, экспрессен, не требует дорогостоящего оборудования, расход реактивов минимален, исключено влияние субъективных факторов.

По этому методу ошибка составляет 1,1%.

.Титрование, заключается в том, что все вещества реагируют между собой в эквивалентных количествах С*V = С*V

В данном методе определения тиамина ошибка составляет 1,1%.

Доверительный интервал: 0,05055.


Список используемой литературы


1. Биохимия: учеб.для вузов 3-е изд., стереотип. / В.П. Комов; В.Н. Шведова М.: Дрофа, 2008. -638 с.

Химия витаминов/ В.М. Березовский М.: «Пищевая промышленность», 1973. -632 с.

Основы аналитической химии книга 2 методы химического анализа / Ю.А. Золотов «Высшая школа» год; 2002. -494 с.

4. Аналитическая химия, учебное пособие/ Н.Я. Логинов; А.Г.Воскресенский; И.С. Солодкин-. М.: «Просвещение» 1975.- 478 с.

5. Михеева Е.В. Вольтамперометрическое определение водорастворимых витаминов В1 и В2 в витаминизированных подкормках и кормах./ Е. В. Михеева, Л. С. Анисимова // Материалы 6 конференции « Аналитика Сибири и Дальнего Востока» г.Новосибирс.-2000.-с.367.

Химические методы в количественном анализе лекарственных средств: Методическое указание для студентов V курса по «Контроль качества лекарственных средств»/ Государственный Университет Медицины и Фармации им. Н. Тестемицану.- Кишинэу.- 2008

ГОСТ 29138-91

8. Л.Н. Корсун, Г.Н. Баторова, Э.Т. Павлова/- Математическая обработка результатов химического эксперимента: учебное пособие для студентов химических, медицинских и биологических специальностей и направлений-Улан-Удэ.- 2011.-70 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top