Резистентные микроорганизмы. Размышления клинициста об устойчивости микробов к антибиотикам

Резистентные микроорганизмы. Размышления клинициста об устойчивости микробов к антибиотикам

Открытию антибиотиков человечество обязано Александру Флемингу, который первым в мире смог выделить пенициллин. «В тот день, когда я проснулся утром 28 сентября 1928 года, я, конечно, не планировал совершать своим открытием первого в мире антибиотика революцию в медицине… Однако, похоже, именно это я и сделал», - говорил сам ученый.

Труды Флеминга были оценены по заслугам. Вместе с Эрнстом Борисом Чейном и Ховардом Уолтером Флори, которые занимались очисткой пенициллина, он был удостоен Нобелевской премии.

Образцы той самой плесени, которую вырастил Флеминг в 1928 году, были отправлены многим знаменитостям - среди них некоторые ученые-современники, а также Папа Римский Пий XII, Уинстон Черчилль и Марлен Дитрих. Не так давно уцелевший и дошедший до нас фрагмент плесени был продан на одном из лондонских аукционов - стоимость образца составила 14 617 долларов США.

Стремительное развитие

Начиная с 1940-х годов, новые антибиотики стали появляться один за другим: за пенициллином последовали тетрациклин, эритромицин, метициллин, ванкомицин и многие другие. Эти препараты в корне изменили медицину: заболевания, в большинстве случаев считавшиеся смертельными, теперь стало возможно вылечивать. Так, например, до открытия антибиотиков почти в трети случаев пневмония оказывалась смертельной, после начала использования пенициллина и других препаратов смертность сократилась до 5 %.

Однако чем больше появлялось антибиотиков и чем шире они применялись, тем чаще встречались бактериальные штаммы, устойчивые к действию этих препаратов. Микроорганизмы эволюционировали, приобретая резистентность к антибиотикам. Устойчивый к пенициллину пневмококк появился в 1965 году, а резистентный к метициллину золотистый стафилококк, который и по сей день остается одним из возбудителей наиболее опасных внутрибольничных инфекций, был обнаружен в 1962 году, всего через 2 года после открытия метициллина.

Появление и широкое использование антибиотиков действительно ускорило процесс формирования мутаций, отвечающих за резистентность, но не инициировало его. Бактериальная устойчивость (точнее, мутации, отвечающие за нее) появилась задолго до того, как люди начали использовать антибиотики. Так, бактериальный штамм, ставший причиной дизентерии у одного из солдат, умерших во время Первой мировой войны, был устойчив и к пенициллину, и к эритромицину. Эритромицин же был открыт лишь в 1953 году.

При этом количество бактерий, приобретающих устойчивость к антибиотикам, ежегодно увеличивается, а антибиотики новых классов, обладающие принципиально новым механизмом действия, практически не появляются.

Последний бастион

Особую опасность представляют супербактерии, которые устойчивы абсолютно ко всем существующим антибиотикам. До недавнего времени универсальным оружием, которое помогало во всех безнадежных случаях, был антибиотик колистин. Несмотря на то что он был открыт еще в 1958 году, он успешно справлялся со многими бактериальными штаммами, которые обладали множественной лекарственной устойчивостью.

Из-за того, что колистин высокотоксичен для почек, его назначали лишь в безнадежных случаях, когда другие препараты оказывались бессильны. После 2008 года и этот бастион пал - в организме заболевших пациентов стали обнаруживать бактерии, устойчивые к колистину. Микроорганизм был найден у пациентов в Китае, странах Европы и Америки. К 2017 году зарегистрировано несколько смертей от инфекции, вызванной супербактериями, - помочь таким пациентам не смог ни один антибиотик.

Причина в пациентах

В 2015 году Всемирная организация здравоохранения провела опрос среди жителей 12 стран. В нем приняли участие почти 10 тысяч человек. Всем участникам нужно было ответить на вопросы о применении антибиотиков и развитии устойчивости к этим препаратам.

Оказалось, что почти две трети опрошенных лечат с помощью антибиотиков грипп, а около 30 % прекращают принимать антибиотики при первых улучшениях. Респонденты продемонстрировали удивительное невежество не только в правилах приема антибиотиков, но и в вопросах, касающихся антибиотикоустойчивости. Так, 76 % участников опроса были уверены, что устойчивость приобретают не бактерии, а организм самого пациента. 66 % считают, что, если принимать антибиотики, то антибиотикоустойчивая инфекция не страшна.

Все это свидетельствует о том, что люди знают об антибиотиках и резистентности к ним микроорганизмов удручающе мало, а угрозу того, что эти лекарственные препараты перестанут работать, не принимают всерьез.


Соблюдайте правила

Между тем, вероятность того, что уже в этом веке человечество останется без антибиотиков, достаточно высока. Эксперты ВОЗ и другие специалисты в области здравоохранения убеждают общество пользоваться антибиотиками с умом.

Прежде всего стоит помнить: лекарство должен назначать врач, а сам антибиотик - продаваться по рецепту. Курс антибиотиков нужно проходить целиком, а не прекращать прием лекарства после первых улучшений. В том случае, если после завершения лечения у вас остаются неиспользованные таблетки, не нужно предлагать их своим друзьям и родным. В каждом конкретном случае назначить лекарство должен врач, и, возможно, ваши препараты не подойдут другим людям.

Фармпроизводителей же ВОЗ стимулирует активнее заниматься разработкой новых антибиотиков, подчеркивая, что сейчас в разработке находится около полусотни антибиотиков, лишь 8 (!) из которых относятся к инновационным препаратам. Эксперты подчеркивают, что этого количества явно недостаточно для обеспечения человечества необходимыми лекарствами - ведь по статистике только 14 % лекарств доходят до потребителя после всех этапов клинических испытаний.

Елена Безрукова

Устойчивость микроорганизмов к антибиотикам

С открытием антибиотиков, обладающих избирательным действием на микробы in vivo (в организме), могло показаться, что наступила эпоха окончательной победы человека над инфекционными болезнями. Но уже вскоре было обнаружено явление резистентности (устойчивости) отдельных штаммов болезнетворных микробов к губительному действию антибиотиков. По мере увеличения сроков и масштабов практического применения антибиотиков нарастало и число устойчивых штаммов микроорганизмов. Если в 40-х годах клиницистам приходилось сталкиваться с единичными случаями инфекций, вызванных устойчивыми формами микробов, то в настоящее время количество, например, стафилококков, устойчивых к пенициллину, стрептомицину, хлорамфениколу (левомицетину), превышает 60-70%. Чем же объясняется явление антибиотикорезистентности?


Устойчивость микроорганизмов к действию антибиотиков вызвана несколькими причинами. В основном они сводятся к следующим. Во-первых, в любой совокупности микроорганизмов, сосуществующих на каком-то определенном участке субстрата, встречаются естественно устойчивые к антибиотикам варианты (примерно одна особь на миллион). При воздействии антибиотика па популяцию основная масса клеток гибнет (если антибиотик обладает бактерицидным действием) или прекращает развитие (если антибиотик обладает бактериостатическим действием). В то же самое время устойчивые к антибиотику единичные клетки продолжают беспрепятственно размножаться. Устойчивость к антибиотику этими клетками передается по наследству, давая начало новой устойчивой к антибиотику популяции. В данном случае происходит селекция (отбор) устойчивых вариантов с помощью антибиотика. Вовторых, у чувствительных к антибиотику микроорганизмов может идти процесс адаптации (приспособления) к вредному воздействию антибиотического вещества. В этом случае может наблюдаться, с одной стороны, замена одних звеньев обмена веществ микроорганизма, естественный ход которых нарушается антибиотиком, другими звеньями, не подверженными действию препарата. При этом микроорганизм также не будет подавляться антибиотиком. С другой - микроорганизмы могут начать усиленно вырабатывать вещества, разрушающие молекулу антибиотика, тем самым нейтрализуя его действие. Например, ряд штаммов стафилококков и спороносных бактерий образует фермент пенициллиназу, разрушающий пенициллин с образованием продуктов, не обладающих антибиотической активностью. Это явление называется энзиматической инактивацией антибиотиков.


Интересно отметить, что пенициллиназа в настоящее время нашла практическое применение в качестве антидота - препарата, снимающего вредное действие пенициллина, когда он вызывает тяжелые аллергические реакции, угрожающие жизни больного.


Микроорганизмы, обладающие устойчивостью к одному антибиотику, одновременно устойчивы и к другим антибиотическим веществам, сходным с первым по механизму действия. Это явление называется перекрестной устойчивостью. Например, микроорганизмы, ставшие устойчивыми к тетрациклину, одновременно приобретают устойчивость к хлортетрациклину и окситетрациклину.


Наконец, есть штаммы микроорганизмов, которые содержат в своих клетках так называемые R-факторы, или факторы резистентности (устойчивости). Распространение R-факторов среди болезнетворных бактерий в наибольшей степени снижает эффективность лечения многими антибиотиками по сравнению с другими видами микробной устойчивости, так как обусловливает устойчивость одновременно к нескольким антибактериальным веществам.


Все эти факты говорят о том, что для успешного лечения антибиотиками следует перед их назначением определять антибиотикорезистентность болезнетворных микробов,- а также пытаться преодолевать лекарственную устойчивость микробов.


Основные пути преодоления устойчивости микроорганизмов к антибиотикам, снижающей эффективность лечения, следующие:


изыскание и внедрение в практику новых антибиотиков, а также получение производных известных антибиотиков;


применение для лечения не одного, а одновременно нескольких антибиотиков с различным механизмом действия; в этих случаях одновременно подавляются разные процессы обмена веществ микробной клетки, что ведет к быстрой ее гибели и в значительной степени затрудняет развитие устойчивости у микроорганизмов; применение комбинации антибиотиков с другими химиотерапевтическими препаратами. Например, сочетание стрептомицина с парааминосалициловой кислотой (ПАСК) и фтивазидом резко повышает эффективность лечения туберкулеза;


подавление действия ферментов, разрушающих антибиотики (например, действие пенициллиназы можно подавить кристаллвиолетом);


освобождение устойчивых бактерий от факторов множественной лекарственной устойчивости (R-факторов), для чего можно использовать некоторые красители.


Существует много противоречивых теорий, которые пытаются объяснить происхождение устойчивости к лекарственным веществам. В основном они касаются вопросов о роли мутаций и адаптации в приобретении устойчивости. По-видимому, в процессе развития устойчивости к лекарственным веществам, в том числе и к антибиотикам, играют определенную роль как адаптивные, так и мутационные изменения.


В настоящее время, когда антибиотики широко применяются, устойчивые к антибиотическим препаратам формы микроорганизмов встречаются очень часто.

Жизнь растений: в 6-ти томах. - М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный редактор чл.-кор. АН СССР, проф. А.А. Федоров . 1974 .


Смотреть что такое "Устойчивость микроорганизмов к антибиотикам" в других словарях:

    устойчивость к антибиотикам - Одна из форм устойчивости микроорганизмов к лекарственным препаратам, характерна для многих природных штаммов например, при гастроэнтерите 86 % выделенных штаммов сальмонеллы проявляют устойчивость к различным антибиотикам. [Арефьев В.А.,… … Справочник технического переводчика

    - … Википедия

    Antibiotic resistance устойчивость к антибиотикам. Oдна из форм устойчивости микроорганизмов к лекарственным препаратам, характерна для многих природных штаммов например, при гастроэнтерите 86% выделенных штаммов сальмонеллы проявляют… … Молекулярная биология и генетика. Толковый словарь.

    Фаги, как и микроорганизмы, способны изменять все свои свойства: форму и размеры негативных колоний, спектр литического действия, способность к адсорбции на микробной клетке, устойчивость к внешним воздействиям, антигенные свойства.… … Биологическая энциклопедия

    Антибиотикорезистентность трансмиссивная (трансферабельная) - устойчивость микроорганизмов к антибиотикам, закодированная на внехромосомных генных элементах микробной клетки, наиболее часто встречающийся селективный маркер рекомбинантной ДНК ГММ... Источник: ПОРЯДОК И ОРГАНИЗАЦИЯ КОНТРОЛЯ ЗА ПИЩЕВОЙ… … Официальная терминология

    Использование антибиотиков в ветеринарии началось сразу же после их открытия. Это объясняется целым рядом преимуществ, которыми обладают антибиотики по сравнению с другими химиотерапевтическими веществами: антимикробное действие в очень… … Биологическая энциклопедия

    Вырабатываемые микроорганизмами химические вещества, которые способны тормозить рост и вызывать гибель бактерий и других микробов. Противомикробное действие антибиотиков имеет избирательный характер: на одни организмы они действуют сильнее, на… … Энциклопедия Кольера

    Способность микроорганизмов сохранять жизнедеятельность, включая размножение, несмотря на контакт с химиопрепаратами. Лекарственная устойчивость (резистентность) микроорганизмов отличается от их толерантности, при которой микробные клетки не… … Медицинская энциклопедия

    Базовая химическая структура тетрациклинов Тетрациклины (англ. tetracyclines) группа антибиотиков, относящихся к классу поликетидов, близких по химическому строению и биологическим свойства … Википедия

Препараты против бактерий были изобретены меньше 100 лет назад, однако у микробов сразу же началась вырабатываться резистентность к антибиотикам. О том, что такое резистентность, задумывался каждый человек, который слышал об этом понятии от врача или простого обывателя. Резистентность - развитие терпимости и устойчивости к антибактериальному средству. С каждым днем антибиотики становятся менее эффективными, неправильные действия человека усугубляют этот процесс.

Виды резистентности

Специалисты выделяют два вида устойчивости бактерий: приобретенный, природный. Приобретенная сопротивляемость возникает в ходе различных мутаций и передачи гена от одной бактерии другой. Стоит отметить, что человек может способствовать этим процессам. Природный вид имеется у бактерии изначально. Существуют микроорганизмы, которые по своей природе устойчивы к тому или иному препарату.

Стоит отметить, что в данный момент ученым еще не удалось создать идеальный антибиотик. К любому даже самому современному антибиотику рано или поздно будет выработана устойчивость. Например, первый в своем роде антибиотик пенициллин на сегодняшний день имеет крайне низкую эффективность.

Перед врачами и учеными стоит непростая задача, которая заключается в постоянном выпуске антибиотиков, которые были бы эффективны против всех известных микробов. В данный момент антибактериальные средства сменили уже 4 поколения.

Каким образом развивается приобретенная резистентность

Если с природной устойчивостью микробов все понятно (это является их индивидуальной особенностью), то развитие приобретенной сопротивляемости вызывает у многих вопросы. Механизмы резистентности микроорганизмов очень сложны и подразделяются на несколько видов.

В первую очередь выделяют мутацию, которая развивается после контакта с антибиотиком. Микробы передают эту способность следующим поколениям. Именно поэтому их нужно уничтожать до конца. Многие врачи говорят людям о том, что, если курс лечения будет прерван, у бактерий появится резистентность к лекарствам.

На сколько быстро будет развиваться устойчивость, зависит от следующих факторов:

  • тип патогенной флоры;
  • вида лекарственного средства;
  • индивидуальных условий.

Стоит отметить, что существуют разные виды проявления резистентного ответа к антибиотикам. Бактерии сопротивляются лекарству следующим образом:

  • усилением собственной мембраны (это мешает лекарственному средству проникать внутрь микроорганизма);
  • развитием способности к выведению лекарства (ученые и врачи называют этот процесс эффлюкс);
  • уменьшением активности воздействия препарата за счет специальных ферментов.

Как правило, серьезная резистентность возникает, когда определенный штамм микроорганизмов сопротивляется лекарству несколькими способами.

В формировании сопротивляемости большую роль играет тип бактерии. Быстрее всего к пагубному воздействию лекарства привыкают:

  • синегнойные палочки;
  • стафилококки;
  • эшерихии;
  • микоплазмы.

Антибиотики широкого спектра воздействуют одновременно на несколько видов патологических элементов. При их неправильном приеме в будущем сразу у нескольких типов инфекций будет развиваться терпимость к воздействию медикамента.

Как действуют антибиотики

Несмотря на то, что антибактериальные средства - часть жизни человека, не все знают о том, как они действуют. Механизм действия антибиотиков достаточно сложен, описать его кратко будет проблематично.

Антибиотик - лекарственное средство, которое борется с различными микробами. Это означает, что его используют только для лечения бактериальных болезней, так как антибактериальные лекарства способны воздействовать только на молекулярные ДНК бактерии (грибки нечувствительны к ним). Существуют два вида:

  • природные (первое антибактериальное средство пенициллин являлось плесневым грибком, действующее вещество которого называлось аминопенициллановой кислотой);
  • синтетические (все медикаменты, полученные искусственным путем).

Как правило, синтетические варианты эффективнее. Тяжелые и легкие болезни лечатся посредством их использования. Существуют классы антибиотиков. Каждый класс обычно назван в честь главного действующего вещества медикамента. У представителей разных классов эффективность сильно варьируется. Существуют как тяжелые, так и легкие противомикробные средства. В структуре мощных классов находятся несколько химических элементов.

Стоит отметить, что антибактериальные средства не способны бороться с вирусами и грибками. Люди могут не видеть разницы, это приведет к серьезным последствиям. Однако при лечении тяжело протекающих вирусных заболеваний (простуда, вирусная ангина) могут использоваться препараты против микробов для профилактики осложнений. Нередко на фоне тяжело протекающих болезней бактерии начинают переходить в активную фазу, вызывая опасные осложнения.

Как происходит лечение

Воздействие на бактерии можно описать только научным языком. В зависимости от типа антибактериального средства, действие на микроорганизм разное. Главная задача лекарств - прекратить процессы пагубного воздействия микроба на организм человека. Делают это они двумя путями:

  • уничтожают (лекарства, которые действуют таким образом именуются бактерицидными);
  • останавливают их размножение (такие препараты именуются бактериостатическими).

В зависимости от типа бактерии, состояния человека и других индивидуальных особенностей, подбирается конкретный медикамент. Стоит отметить, что бактерицидные и бактериостатические лекарства действуют разными путями. Например, уничтожением вредоносной бактерии посредством проникновения через клеточную мембрану, нарушая процессы синтеза клеточной стенки, или уничтожением микроба за счет прерывания процессов синтезов белка. Еще один способ уничтожение его ДНК, такое можно осуществить за счет ингибиторов матричных биосинтезов. Способов уничтожить патогенную микробную клетку много.

Механизмы действия антибиотиков на определенные микроорганизмы всегда одинаковы. Антибиотик подбирается, исходя из результатов обследований. Сейчас для каждого микроба есть возможность подобрать специализированный препарат. В случае если диагностика не дает результатов, подбираются средства широкого спектра действия.

Вариантов того, как будет действовать лекарство очень много. Резистивность бактерий к антибиотикам развивается намного быстрее, если человек использует лекарство по любым причинам. Практически все виды антибактериальных лекарств наносят небольшой вред организму.

Вред организму

Любое лекарственное средство воздействуют на организм человека как с положительной, так и с отрицательной стороны. Не существует ни одного лекарства, которое имело бы терапевтический эффект, но не имело бы побочных эффектов. Вред антибактериальных лекарств известен многим. Иногда он значительно преувеличен. С побочными эффектами, которые вызываются приемом таких препаратов, должен ознакомиться каждый человек.

Люди знакомы с побочным эффектом нарушения микрофлоры кишечника. В организме человека есть и полезные бактериальные организмы, которые страдают при приеме противомикробных таблеток. Помимо этого, выделяют следующие неприятные явления:

  • аллергические реакции;
  • развитие кандидозов (грибковые инфекции часто сдерживаются за счет микробов);
  • развитие болезней печени (при регулярном приеме большого количества антибиотиков оказывается токсический эффект на печень);
  • заболевания кровеносной системы.

Механизмы действия антибактериальных препаратов на бактерии и организм человека полностью изучены. Людям остается только обращаться за квалифицированной помощью. Это поможет снизить шансы развития побочных эффектов и получить максимальную пользу от приема лекарственных средств. Избежать негативного влияния от приема антибиотиков просто, главное, соблюдать дозировки и не превышать определенные сроки приема. При хронических заболеваниях для лечения лучше принимать медикаменты курсами.

Как подбираются

Антибактериальные таблетки или уколы подбираются, исходя из результатов диагностики. Когда человек чувствует себя плохо, он обращается к врачу. Специалист обязательно назначает анализы и проводит внешние обследования. Именно на основе анализов удается подобрать правильный препарат.

Главным диагностическим средством выступает анализ на чувствительность к антибиотикам патогенной микрофлоры. Проводится изучение биологического материала пораженной области. Например, если речь идет о заболеваниях мочеполовой системы, то берется анализ мочи с дальнейшим бактериальным посевом.

Стоит отметить, что узкоспециализированный препарат будет эффективнее, чем аналог с широким спектром действия. Чтобы была возможность назначить такой медикамент, необходимо точно определить возбудителя заболевания.

Поколения и резистентность

Существует 4 поколения антибактериальных медикаментов. Последнее поколение демонстрирует наибольшую эффективность. В структуре противомикробных таблеток или уколов находится множество сложных элементов. Препараты 4 поколения обладают не только большей лекарственной эффективностью, но и менее токсичны для организма.

Средства последнего поколения принимаются меньшее количество раз в день. Эффект от их использования достигается гораздо быстрее. С их помощью возможно вылечить хроническое заболевание. Ингибирование ферментов микроба у современных препаратов очень высокая. При правильных действиях медикаменты последнего поколения будут эффективны несколько десятилетий.

В больницах часто назначают лекарства 3 и 4 поколения. Простые заболевания поддаются терапии при использовании препаратов 3 поколения. Они обладают большей токсичностью, но приобретаются в аптеке по более выгодной цене. Современное поколение не так широко распространенно и имеет стоимость выше, чем у более устаревших аналогов. Прием самого современного лекарства не всегда целесообразен. Пользоваться необходимо тем медикаментом, который оказывает нужный эффект. Если пренебрегать этим правилом, вызывается резистивность к современным лекарствам.

Пока еще микробы не имеют резистентность к антибиотикам последнего поколения. Хотя в условиях больниц и мест скопления различных патогенных микроорганизмов уже ходят слухи о том, что существуют невероятно устойчивые штаммы стафилококков и стрептококков. Со слов ученых антибиотикорезистентность способна развиваться бесконечно. Более того, об этом процессе было известно до появления первого антибиотика. Это глобальная проблема, так как создавать эффективные препараты все сложнее. Резистентность - особенность живых организмов. Это значит, что, в данный момент создать лекарство, к которому не будет привыкания - невозможно. Однако ученые двигаются в сторону изобретения идеального медикамента. Скорее всего, это будет абсолютно новый класс лекарств.

Принципы применения для предотвращения резистентности

От правильных действий человека зависит, как быстро микробы будут развиваться. Если будет вестись беспорядочный прием противомикробных медикаментов, в нужный момент лекарство просто не подействует. Любые антибиотики по механизму своего действия со временем вызывают резистентность.

Выделяют следующие правила приема антибиотиков:

  • всегда заканчивать курс, даже если наступило улучшение;
  • принимать медикамент по инструкции или рекомендациям врача;
  • после приема проводить профилактику дисбактериоза;
  • избегать самостоятельного назначения и использования антибактериальных препаратов.

Если соблюдать это, удастся повысить пользу от терапии и снизить частоту возникновения побочных эффектов. Если микробы будут уничтожены, то резистентность не передастся новым микроорганизмам. Стоит понимать, что соблюдение норм приема антибиотиков необходимо, чтобы при столкновении с серьезной болезнью (бактериальная пневмония, менингит) воздействовать на патогенные инфекции и возбудителей.


И. Г. Березняков

Размышления клинициста об устойчивости микробов к антибиотикам, и не только о ней

Харьковский институт усовершенствования врачей

Введение

В последние десятилетия сохраняется отчетливая тенденция к расширению применения антибиотиков в амбулаторной практике. В 90-е годы в странах Западной Европы и США в четырех случаях из пяти антибиотики назначаются больным, находящимся за пределами стационаров . При этом возбудитель заболевания у значительной части пациентов неизвестен и остается таковым после проведения бактериологических исследований. Не вдаваясь в детальное перечисление причин, можно выделить некоторые из них:

трудность получения образцов для исследования (например, скудное отделение мокроты при пневмонии);
нежелание больных сдавать образцы для исследования (в частности, при циститах женщины нередко прибегают к самолечению, поскольку проблемы, затрагивающие мочеполовую сферу, могут восприниматься ими как «запретные», т. е. не подлежащие обсуждению с посторонними, в том числе с врачами);
самостоятельное применение антибиотиков до обращения за медицинской помощью;
слабая лабораторная база;
отсутствие методов экспресс-диагностики многих инфекций, вызванных «привередливыми» микробами, и т. д.

Недостаток достоверных сведений об этиологии заболеваний обусловливает необходимость назначения антибиотиков «вслепую», т. е. эмпирически. Эмпирическая антимикробная терапия опирается на эпидемиологические данные о встречаемости определенных возбудителей в зависимости от локализации и характера инфекционного заболевания, условий его возникновения, особенностей больного и т. д. Другими словами, на основании учета совокупности анамнестических и клинических признаков делается предположение о вероятном возбудителе (возбудителях) заболевания и затем подбираются антибактериальные препараты, которые, в соответствии с их спектром противомикробной активности, могли бы оказаться наиболее эффективными в данной клинической ситуации . Однако клиническая эффективность антибиотика зависит не только от спектра действия, но и от распространенности устойчивости возбудителей к этому медикаменту в конкретном регионе.

Чувствительность и резистентность бактерий к антибиотикам

По степени чувствительности к антибактериальным препаратам бактерии делятся на:

Для определения чувствительности бактерий к антибактериальным средствам в клинической практике используют:

Метод серийных разведений и Е-тесты позволяют количественно оценить чувствительность выделенного микроба к данному лекарству и определить минимальную концентрацию препарата, подавляющую рост выделенного штамма возбудителя. Диско-диффузионный метод дает возможность получить только качественный результат (возбудитель является чувствительным, умеренно чувствительным или устойчивым к данному медикаменту), однако он наиболее прост и широко используется в рутинной клинической практике. При регистрации диаметра зон подавления роста микробов вокруг бумажных дисков с антибиотиком диско-диффузионный метод в ряде случаев позволяет косвенно судить о величине минимальной подавляющей концентрации, т. е. приближается к количественным методам .

Резистентность бактерий к антибактериальным препаратам может быть природной или приобретенной.

Природная резистентность - это генетически обусловленное отсутствие чувствительности микроорганизма к антимикробным средствам (например, устойчивость вирусов к антибиотикам, грамотрицательных бактерий к бензилпенициллину, анаэробных бактерий к цефалоспоринам 1-го поколения).

Приобретенная устойчивость возникает в результате мутации отдельных штаммов бактерий и селекции устойчивых клонов микроорганизмов, либо вследствие внехромосомного (плазмидного) обмена генетической информацией между отдельными бактериальными клетками.

К антибактериальным средствам с близкой химической структурой может возникать полная или частичная перекрестная резистентность. Например, пневмококки, устойчивые к эритромицину, резистентны также к другим 14- и 15-членным макролидам (кларитромицин, рокситромицин, азитромицин). Напротив, эта устойчивость в большинстве случаев преодолевается при назначении 16-членных макролидов, например, спирамицина или мидекамицина.

Известны следующие механизмы развития бактериями устойчивости к антибактериальным препаратам:

изменение проницаемости клеточной стенки бактерий для антимикробного средства;
активное выталкивание антибиотика из микробной клетки (такой способностью, в частности, обладает эпидермальный стафилококк по отношению к макролидам);
изменение структуры компонентов бактериальной клетки, которые являются мишенями для антибактериальных препаратов (например, пенициллинсвязывающих белков, в результате чего утрачивается или снижается возможность связывания с ними бета-лактамных антибиотиков);
выработка бактериями определенных ферментов, нарушающих строение медикаментов (например, бета-лактамаз, разрушающих бета-лактамное кольцо пенициллинов, цефалоспоринов и других бета-лактамных антибиотиков, что влечет за собой инактивацию лекарств).

Возможность генетической трансформации возбудителей инфекций у человека в естественных условиях впервые продемонстрировал в 1928 г. Ф. Гриффит (Великобритания). В своем, ставшем классическим, эксперименте он показал, что мертвые вирулентные пневмококки могут превращать живых невирулентных пнемококков в вирулентные. В настоящее время доказана возможность перемешивания генов как внутри одного вида бактерий, так и между родственными видами. В результате формируются «мозаики», состоящие из нуклеотидов, принадлежавших ранее бактериям разных штаммов и видов . Доступ к такому биологическому разнообразию открывает возможности для эволюции устойчивости бактерий к антибиотикам.

Источники распространения резистентных штаммов бактерий

Выделяют два основных пути распространения резистентных к антибиотикам штаммов бактерий:

  1. Вследствие нерационального использования антибактериальных средств;
  2. С продуктами питания, прежде всего, произведенными в животноводстве.

Термин «нерациональное использование антибиотиков» охватывает широкий круг вопросов. Не претендуя на полноту изложения, перечислим и проиллюстрируем некоторые из них.

Отсутствие государственного регулирования применения антибактериальных средств

Государственное регулирование должно, как минимум, включать в себя создание системы постоянного наблюдения за распространенностью антибиотикорезистентности среди клинически важных видов микробов; разработку и регулярный пересмотр рекомендаций по эмпирической терапии инфекций различных локализаций; запрещение безрецептурной продажи антибиотиков; жесткий контроль качества антимикробных средств, произведенных как отечественными, так и иностранными фирмами и предприятиями. К сожалению, ни одно из этих положений в настоящее время не выполняется - либо вовсе, либо должным образом.

Назначение лекарств на основании результатов микробиологических исследований

Еще одна тревожная тенденция, наметившаяся в последние годы: выбор того или иного антибиотика «диктует» (когда - в прямом, а когда - в переносном смысле) микробиолог. Это характерно для тех случаев, когда из исследуемого образца (кровь, мокрота, моча и т. д.) удается выделить микроорганизм и определить его чувствительность к антибиотикам. Следует напомнить, что, во-первых, выделенный микроб вовсе не обязательно является возбудителем заболевания у конкретного пациента. Он может быть сапрофитом (т. е. нормальным обитателем, например, носоглотки), либо появиться в результате загрязнения образцов при транспортировке или в ходе исследования (в частности, попасть с рук персонала или при использовании плохо стерилизованного оборудования и т. д.).

Во-вторых, данные лабораторных исследований могут искажать реальное положение дел. Например, на результаты определения чувствительности к антибиотикам влияют состав, pН, толщина и равномерность слоя питательной среды, плотность микробной взвеси (инокулюма), скорость роста микроорганизмов и возраст культуры, условия инкубации (температура, атмосфера), содержание антибиотика в диске и скорость диффузии его в агар и т. д. Немаловажный фактор - квалификация персонала. Поэтому эта методика требует строгой стандартизации: использования строго определенного агара, соблюдения правил приготовления инокулюма, условий инокуляции и инкубации чашек, правильного и регулярного проведения процедур по контролю качества .

В-третьих, результаты лабораторных исследований далеко не отражают того, что происходит в организме больного. Многие антибиотики способны накапливаться в очаге воспаления, где их концентрация может в десятки раз превышать плазменную.

В-четвертых, результаты лечения зависят не только от вида возбудителя и антибактериального препарата, но и от состояния макроорганизма, его иммунной системы. Учесть тонкости взаимодействия лекарства и иммунной системы, сочетаемость антибиотиков с другими медикаментами, которые принимает больной, аллергологический анамнез, локализацию воспалительного процесса и многие другие важные детали способен только врач.

Замена аптечными работниками антибиотиков, назначенных врачом, на более дешевые «аналоги»

Обычно это делается из лучших побуждений. На практике, к сожалению, часто выходит иначе. Например, что произойдет, если заменить ципрофлоксацин на норфлоксацин? Да, эти препараты - одной группы (фторхинолоны), но первый из них - широкого спектра действия, а второй применяется, главным образом, при инфекциях мочевых путей. Такая замена, может, и не страшна для пациентки с циститом, а если она больна пневмонией?

Другой пример. Цефалоспорины в массовом сознании (к сожалению, врачи и провизоры - не всегда исключение) ассоциируются с высокой эффективностью и соответствующей ценой. Деление же их на поколения воспринимается как движение от хорошего к лучшему. То есть, кефзол (цефазолин, препарат 1-го поколения) - хорошо, а клафоран (цефотаксим, 3-е поколение) - лучше. Не может больной купить клафоран - пусть покупает кефзол! Однако спектр действия цефалоспоринов разных поколений существенно различается. Если цефазолин наиболее эффективен при инфекциях, вызванных грамположительными микробами, то цефотаксим, напротив, при вызванных грамотрицательными возбудителями.

Еще один пример непосредственно связан с темой этой публикации. В последние годы не раз приходилось слышать, что-де «гентамицин, особенно отечественный, совершенно неэффективен». Вопрос о соответствии содержимого ампулы ее маркировке следует задавать производителям и контролирующим организациям. Но, думается, проблема шире. Гентамицин - прекрасный и дешевый антибиотик, десятилетиями назначавшийся по поводу и без повода. К сожалению, широкое применение какого-либо антибактериального препарата приводит к селекции (отбору) и распространению резистентных к нему штаммов микробов. Отсутствие отечественных данных о распространенности устойчивых бактерий к гентамицину в какой-то мере могут восполнить аналогичные сведения о положении дел в России. Около половины (44%) возбудителей внутрибольничных инфекций резистентны к гентамицину. Аналогичный показатель по отношению к другому аминогликозиду - амикацину - составил в среднем 3% . Поэтому бездумно заменять более дорогие амикацин и нетилмицин на привычный гентамицин не следует.

Популяризация «мифов» о применении антибиотиков

Эта обширная тема выходит за рамки настоящей работы. В качестве иллюстрации приведем только два.

Миф первый: «Антибиотики при лечении инфекций надо вводить парентерально». Почему, спрашивается? Существует много эффективных препаратов для приема внутрь. Так нет же, пока большинству пациентов не исколют ягодицы, что «ни сесть, ни лечь», они полагают, что врачи их «не лечили». К сожалению, многие медработники идут у больных на поводу и назначают «уколы». Какие? Да те, что подешевле - ампициллин с гентамицином. В результате возрастает как стоимость лечения (медикаменты, одноразовые шприцы, расходные материалы, труд медсестер и т. д.), так и количество резистентных штаммов микробов.

Миф второй: «Пневмонию нужно лечить антибиотиками до исчезновения инфильтрации в легких». И лечат - две, три недели... Но разве антибиотики - это противовоспалительные средства? Нет, их задача - подавление роста и уничтожение возбудителей. И решается она, как правило, гораздо быстрее. Обычно продолжительность антибактериальной терапии не должна превышать трех суток после нормализации температуры тела. А лечение азитромицином (по 0,5 г внутрь 1 раз в день) вообще продолжается всего 3 дня. Естественно, больной не выздоровеет за этот срок. Ему еще понадобятся физиопроцедуры, лечебная физкультура, массаж грудной клетки. Но в антибактериальных препаратах он уже нуждаться не будет.

Завершая раздел о нерациональном применении антибиотиков как источнике резистентности к ним микробов, следует подчеркнуть, что главным источником последних все же являются крупные больницы и госпитали. Именно там, прежде всего в отделениях реанимации и неотложной помощи, наиболее часто назначаются новые мощные антибиотики широкого спектра действия. Именно там больные приобретают, обмениваются друг с другом, а после выписки - заносят в свои коллективы и передают окружающим полирезистентные штаммы микробов. А, следовательно, налаживать регулярное наблюдение за состоянием внутрибольничной флоры, разрабатывать и корректировать требования по рациональному использованию антибиотиков нужно, в первую очередь, в многопрофильных больницах и госпиталях. Подобные правила едва ли найдут применение в общенациональном масштабе. Более того, в разных отделениях одной и той же больницы они, вероятно, будут отличаться в существенных деталях - ведь в каждом отделении облик микробной флоры будет различаться так же, как лица людей.

Еще один источник появления и распространения резистентных к антибиотикам микробов среди людей - это животноводство. Там антибиотики используются как стимуляторы роста и для лечения больных животных. С продуктами питания резистентные штаммы микробов попадают к людям. Доказаны случаи заболевания людей, инфицированных устойчивыми к антибиотикам сальмонеллами, кишечной палочкой, кампилобактером и энтерококками. Особого внимания заслуживает широкое использование в животноводстве фторхинолонов. Объем продаж антимикробных средств этой группы ежегодно увеличивается в последние годы, а ципрофлоксацин по итогам 1997 г. был самым продаваемым антибиотиком в мире. Не следует драматизировать ситуацию, но если сопоставить логическую цепочку из 3-х фактов: рост объема продаж фторхинолонов - эти антибиотики широко применяются в птицеводстве - «куриные окорочка Буша-Клинтона», то получается не самая радостная перспектива.

Однако есть и оборотная сторона медали. «Мы не нуждаемся в устойчивых к антибиотикам сальмонеллах и кампилобактере и не должны потреблять их с пищей. Но нам также не нужны и чувствительные к антибиотикам штаммы сальмонелл. В любом случае, следует прекращать кормить цыплят фторхинолонами, но нам следует позаботиться еще и о том, чтобы цыплят готовили должным образом, и мы не глотали сальмонелл... Отказ ветеринаров от использования антибиотиков у животных может привести к другим опасностям для людей, связанным с попаданием в пищу больных животных», подчеркивает J. D. Williams, Президент Международного общества химиотерапевтов .

Эпидемиология антибиотикорезистентности микробов

Ситуация с распространенностью устойчивых к антибиотикам штаммов бактерий неодинакова в разных странах мира и в пределах одной страны. Так, в отдельных районах Франции, Испании, Венгрии распространенность устойчивых к пенициллину пневмококков достигает 60%, в то время как в России - не превышает 5%. Хотя мир стал теснее и для нас важны сведения о положении дел где-нибудь в Ла-Пасе или Уагадугу, продолжать обсуждение этого раздела хотелось бы на отечественном материале. Такового, к сожалению, нет.

Выводы для провизоров

1. При отпуске антибиотиков верить назначениям врачей, а не микробиологов или собственной интуиции.

2. Не заменять антибиотик без согласования с врачом, а если заменять - только на:

а) более дешевый;
б) имеющий то же самое международное непатентованное название, что и заменяемый препарат;
в) произведенный фирмой или предприятием с устойчивой хорошей репутацией.

4. Предусмотреть возможность поштучного (а не «поупаковочного») отпуска необходимого количества таблеток (ампул, флаконов) антибиотиков.

Вывод для врачей

«Salus aegroti suprema lex medicorum» («Здоровье больного - высший закон для врачей»). Делать все, чтобы соблюдать этот закон. В том числе: учиться рационально применять антибиотики, налаживать взаимодействие с микробиологами и провизорами, поднимать перед администрацией и решать вместе с нею вопросы создания в своем лечебном учреждении системы наблюдения за распространенностью устойчивости микробов к антибиотикам, и многое другое.

Вывод для провизоров и врачей

Читайте журнал «Провизор»!

P.S. Поздравляю всех читателей и редакцию журнала «Провизор» с Новым Годом и Рождеством. Желаю всем здоровья, благополучия, радости и удачи в наступившем году.

P. P. S. Несмотря на полушутливый тон некоторых пассажей, статья вполне серьезная. Да и выпуск этот - «первоянварский», а не «первоапрельский».

Хорошего всем настроения.

С наилучшими пожеланиями - И. Березняков

Литература

  1. Williams JD. Opinion ~ antibiotic resistance: Have we got the right culprits? Antibiotics Chemotherapy, 1998; vol.2, N.4: 15-16.
  2. Березняков ИГ, Страшный ВВ. Антибактериальные средства: стратегия клинического применения. Харьков: Константа, 1997: 1-200.
  3. Яковлев СВ. Клиническая химиотерапия бактериальных инфекций. М.: Ньюдиамед, 1996: 1-120.
  4. Страчунский ЛС, Козлов СН. Макролиды в современной клинической практике. Смоленск: Русич, 1998: 1-303.
  5. Dowson C. Influence of horizontal gene transfer (mosaic genes) on antibiotic resistance in Streptococcus pneumoniae and Neisseria meningitidis. Antibiotics Chemotherapy, 1998; vol.2, N.2: 13.
  6. Stratchounski LS, Stetsiouk OU. Antibiotic resistance in Russia. Antibiotics Chemotherapy, 1997; vol.1, N.4: 8-9.

ОБЩИЕ ЗАКОНОМЕРНОСТИ

Основой терапевтического действия антибактериальных препаратов является подавление жизнедеятельности возбудителя инфекционной болезни в результате угнетения более или менее специфичного для микроорганизмов метаболического процесса. Угнетение происходит в результате связывания антибиотика с мишенью, в качестве которой может выступать либо фермент, либо структурная молекула микроорганизма.

Резистентность микроорганизмов к антибиотикам может быть природной и приобретенной.

  • Истинная природная устойчивость характеризуется отсутствием у микроорганизмов мишени действия антибиотика или недоступности мишени вследствие первично низкой проницаемости или ферментативной инактивации. При наличии у бактерий природной устойчивости антибиотики клинически неэффективны. Природная резистентность является постоянным видовым признаком микроорганизмов и легко прогнозируется.
  • Под приобретенной устойчивостью понимают свойство отдельных штаммов бактерий сохранять жизнеспособность при тех концентрациях антибиотиков, которые подавляют основную часть микробной популяции. Возможны ситуации, когда большая часть микробной популяции проявляет приобретенную устойчивость. Появление у бактерий приобретенной резистентности не обязательно сопровождается снижением клинической эффективности антибиотика. Формирование резистентности во всех случаях обусловлено генетически: приобретением новой генетической информации или изменением уровня экспрессии собственных генов.

Известны следующие биохимические механизмы устойчивости бактерий к антибиотикам:

  1. Модификация мишени действия.
  2. Инактивация антибиотика.
  3. Активное выведение антибиотика из микробной клетки (эффлюкс).
  4. Нарушение проницаемости внешних структур микробной клетки.
  5. Формирование метаболического "шунта".

МЕХАНИЗМЫ УСТОЙЧИВОСТИ К АНТИБАКТЕРИАЛЬНЫМ ПРЕПАРАТАМ ОТДЕЛЬНЫХ ГРУПП

β-лактамные антибиотики

Ферментативная инактивация . Наиболее распространенным механизмом устойчивости микроорганизмов к β-лактамам является их ферментативная инактивация в результате гидролиза одной из связей β-лактамного кольца ферментами β-лактамазами . К настоящему времени описано более 200 ферментов, различающихся по следующим практически важным свойствам:

  • Субстратный профиль (способность к преимущественному гидролизу тех или иных β-лактамов, например пенициллинов или цефалоспоринов , или тех и других в равной степени).
  • Локализация кодирующих генов (плазмидная или хромосомная). Эта характеристика определяет эпидемиологию резистентности. При плазмидной локализации генов происходит быстрое внутри- и межвидовое распространение резистентности, при хромосомной - наблюдают распространение резистентного клона.
  • Чувствительность к применяющимся в медицинской практике ингибиторам : клавулановой кислоте, сульбактаму и тазобактаму.
Таблица 1. Наиболее распространенные β-лактамазы и их свойства
Ферменты Характеристика
Плазмидные β-лактамазы класса А стафилококков Гидролизуют кроме метициллина и оксациллина
Плазмидные β-лактамазы широкого спектра класса А грамотрицательных бактерий Гидролизуют природные и полусинтетические пенициллины , цефалоспорины I поколения . Чувствительны к ингибиторам.
Плазмидные β-лактамазы расширенного спектра класса А грамотрицательных бактерий Гидролизуют природные и полусинтетические пенициллины , цефалоспорины I-IV поколения . Чувствительны к ингибиторам.
Хромосомные β-лактамазы класса С грамотрицательных бактерий Гидролизуют природные и полусинтетические пенициллины , цефалоспорины I-III поколения
Хромосомные β-лактамазы класса А грамотрицательных бактерий Гидролизуют природные и полусинтетические пенициллины , цефалоспорины I-II поколения . Чувствительны к ингибиторам.
Хромосомные β-лактамазы класса В грамотрицательных бактерий Эффективно гидролизуют практически все β-лактамы, включая карбапенемы . Не чувствительны к ингибиторам.
Плазмидные β-лактамазы класса D грамотрицательных бактерий (преимущественно P.aeruginosa ) Гидролизуют природные и полусинтетические пенициллины , цефалоспорины I-II поколения . Многие способны также гидролизовать цефалоспорины III поколения . Большинство не чувствительны к ингибиторам.

К наиболее распространенным ферментам относятся стафилококковые β-лактамазы (встречаются у 60-80% штаммов) и β-лактамазы широкого спектра грамотрицательных бактерий (среди штаммов E.coli встречаются в 30-40% случаев). Несмотря на широкое распространение перечисленных ферментов, они не представляют серьезной проблемы для терапии, поскольку многие современные β-лактамы (цефалоспорины II-IV поколений , ингибиторозащищенные пенициллины , карбапенемы) не чувствительны к гидролизу.

В настоящее время наибольшее значение для клинической практики имеют плазмидные БЛРС грамотрицательных бактерий, поскольку они способны разрушать цефалоспорины III и, в меньшей степени, IV поколения . Рутинные методы оценки антибиотикочувствительности очень часто не выявляют этот механизм устойчивости. Чаще всего БЛРС встречаются у микроорганизмов рода Klebsiella , достаточно часто у E.coli и Proteus spp., реже у других грамотрицательных бактерий. В России в отдельных учреждениях частота распространенности этих ферментов среди клебсиелл достигает 90%.

Модификация мишени действия . Мишенями действия β-лактамов являются ферменты - ПСБ , участвующие в синтезе клеточной стенки бактерий. В результате модификации у некоторых ПСБ уменьшается сродство к β-лактамам, что проявляется в повышении МПК этих препаратов и снижении клинической эффективности. Реальное клиническое значение имеет устойчивость среди стафилококков и пневмококков. Гены модифицированных ПСБ локализованы на хромосомах.

  • Устойчивость стафилококков (S.aureus и КНС) обусловлена появлением у микроорганизмов дополнительного ПСБ (ПСБ2а).
    • Маркером наличия ПСБ2а является устойчивость к метициллину или оксациллину .
    • Независимо от результатов оценки in vitro при инфекциях, вызываемых MRSA , все β-лактамы следует считать клинически неэффективными и не использовать в терапии.
    • Частота распространения MRSA в некоторых отделениях реанимации, онкологии и гематологии в России превышает 50-60%, что создает крайне серьезные проблемы для терапии.
  • Устойчивость пневмококков обусловлена появлением в генах, кодирующих ПСБ , чужеродной ДНК, происхождение которой связывают с зеленящими стрептококками. При этом перекрестная устойчивость между отдельными β-лактамами неполная. Значительная часть штаммов, устойчивых к пенициллину , сохраняет чувствительность к цефалоспоринам III поколения и карбапенемам . К настоящему времени накоплено значительное количество данных, свидетельствующих о сохранении клинической эффективности β-лактамов при инфекциях ДП, вызываемых штаммами с промежуточным уровнем устойчивости, однако при инфекциях ЦНС (менингитах) эффективность этих антибиотиков явно снижается. Накопленные данные послужили основанием для пересмотра критериев чувствительности пневмококков к амоксициллину , обсуждается целесообразность изменения критериев чувствительности к пенициллину .
  • Данные о частоте распространения в России пенициллинорезистентных пневмококков ограничены. В Москве, в период с 1998 г. по 2001 г., частота встречаемости штаммов пневмококков со сниженной чувствительностью к пенициллину колебалась в пределах 10-22%. При этом высокий уровень устойчивости отмечали не более чем у 1-2% штаммов.
  • Среди грамотрицательных бактерий устойчивость, связанная с модификацией ПСБ встречается редко. Определенное значение этот механизм устойчивости имеет у H.influenzae и N.gonorrhoeae . Микроорганизмы, проявляют устойчивость не только к , но и к ингибиторозащищенным препаратам .

Аминогликозиды

Ферментативная инактивация. Основным механизмом устойчивости к аминогликозидам является их ферментативная инактивация путем модификации. Модифицированные молекулы аминогликозидов теряют способность связываться с рибосомами и подавлять биосинтез белка. Описаны три группы АМФ , осуществляющих инактивацию аминогликозидов , путем их связывания с различными молекулами: ААС - присоединяющие молекулу уксусной кислоты, АРН - присоединяющие молекулу фосфорной кислоты, нуклеотидил- или ANT - присоединяющие молекулу нуклеотида аденина.

Таблица 2. Характеристика наиболее распространенных АМФ

На практике среди грамотрицательных бактерий могут встречаться практически все комбинации устойчивости к отдельным аминогликозидам . Это связано с разнообразием субстратных профилей отдельных ферментов и возможностью наличия у бактерии одновременно нескольких генов АМФ .

Для России характерна высокая частота распространения устойчивости среди грамотрицательных бактерий к гентамицину и тобрамицину , что, вероятно, связано с необоснованно широким применением гентамицина . Частота устойчивости к нетилмицину , как правило, несколько ниже. Устойчивость к амикацину встречается достаточно редко.

У ряда микроорганизмов (S. pneumoniae , Mycobacterium spp., Brachyspira hyodysenteriae , Propionibacterium spp., B. pertussis , H. influenzae , H. pylori ) известен и другой механизм модификации мишени для макролидов и линкозамидов - в результате мутаций в V домене 23S рРНК снижается сродство к антибиотикам и формируется клинически значимая устойчивость. При этом механизме наблюдают перекрестную резистентность ко всем макролидам и линкозамидам макролидам /линкозамидам штаммов S. pneumoniae , S. pyogenes и S. oralis вызывают также мутации в генах рибосомальных белков L4 и L22.

Активное выведение. Активное выведение макролидов и линкозамидов осуществляют несколько транспортных систем. Основное клиническое значение имеет система выведения, кодируемая mef -геном, распространенная среди S.pneumoniae , S.pyogenes и многих других грамположительных бактерий. Соответствующий белок-транспортер выводит 14- и 15-членные макролиды и обеспечивает невысокий уровень резистентности (МПК от 1 до 32 мг/л). Линкозамиды и 16-членые макролиды сохраняют активность.

Гены mef локализованы на хромосомах в составе конъюгативных элементов, что обеспечивает достаточно эффективное внутри- и межвидовое распространение. У стафилококков и энтерококков активное выведение макролидов , но не линкозамидов , осуществляют транспортные системы другого типа, кодируемые генами msr . Существуют также транспортные системы, осуществляющие избирательное выведение некоторых препаратов, например, линкомицина или олеандомицина.

Ферментативная инактивация. Ферменты, инактивирующие макролиды и линкозамиды , описаны среди грамположительных и грамотрицательных микроорганизмов. Некоторые из них обладают широким субстратным профилем (макролидфосфотрансферазы E.coli и Staphylococcus spp.), другие инактивируют только отдельные антибиотики (эритромицинэстеразы, распространенные среди семейства Enterobacteriaceae , линкомицинацетилтрансферазы стафилококков и энтерококков). Клиническое значение ферментов, инактивирующих макролидные антибиотики , невелико.

Роль отдельных механизмов резистентности к макролидам не равноценна. Накапливаются данные о том, что при инфекциях, вызываемых S. pneumoniae и S. pyogenes с устойчивостью, обусловленной активным выведением, некоторые макролиды могут сохранять клиническую эффективность.

Устойчивость энтерококков к гликопептидам является серьезной проблемой в ОРИТ в США и Западной Европе. Чаще всего устойчивость отмечают у штаммов E.faecium , ее частота может достигать 15-20%. Достоверных данных о выделении VRE в России нет.

Сообщения о выделении единичных штаммов метициллинорезистентных и метициллиночувствительных S.aureus со сниженной чувствительностью к ванкомицину (GISA) начали появляться в различных странах с 1997г.. Для штаммов со сниженной чувствительностью характерно утолщение клеточной стенки, уменьшение аутолитической активности. Обсуждается возможность избыточной продукции мишеней действия гликопептидов . Снижение чувствительности к гликопептидам было описано ранее среди КНС .

На практике при выделении ванкомицинорезистентных энтерококков и стафилококков необходимо проявлять настороженность, тщательно проверять чистоту исследуемой культуры и точность ее идентификации. Так, необходимо иметь в виду, что некоторые грамположительные бактерии (Lactobacillus spp., Leuconostoc spp., Pediococcus spp.) обладают природной устойчивостью к гликопептидам . .

Сульфаниламиды и ко-тримоксазол

Полимиксины

ЗАКЛЮЧЕНИЕ

В заключение целесообразно коротко суммировать данные о наиболее распространенных механизмах резистентности среди основных клинически значимых микроорганизмов.

Возбудители внебольничных инфекций

  • Staphylococcus spp. - устойчивость к природным и полусинтетическим пенициллинам , связанная с продукцией β-лактамаз .
  • S.pneumoniae - устойчивость различного уровня к пенициллину (часть штаммов устойчива к цефалоспоринам III поколения), связанная с модификацией ПСБ ; высокая частота ассоциированной устойчивости к макролидам , тетрациклинам , ко-тримоксазолу .
  • H.influenzae , M.catarrhalis - устойчивость к полусинтетическим пенициллинам , связанная с продукцией β-лактамаз .
  • N.gonorrhoeae - устойчивость к пенициллинам , связанная с продукцией β-лактамаз , устойчивость к тетрациклинам , фторхинолонам .
  • Shigella spp. - устойчивость к ампициллину , тетрациклинам , ко-тримоксазолу , хлорамфениколу .
  • Salmonella spp. - устойчивость к ампициллину , ко-тримоксазолу , хлорамфениколу . Появление устойчивости к цефалоспоринам III поколения и фторхинолонам .
  • E.coli - при внебольничных инфекциях МВП - возможна устойчивость к ампициллину , ко-тримоксазолу , гентамицину .
  • Enterobacteriaceae - продукция БЛРС (чаще всего среди Klebsiella spp.), обуславливающая клиническую неэффективность всех цефалоспоринов ; очень высокая частота ассоциированной устойчивости к гентамицину /тобрамицину ; в некоторых учреждениях тенденция к росту ассоциированной резистентности к фторхинолонам , амикацину .
  • Pseudomonas spp., Acinetobacter spp., S.maltophilia - ассоциированная устойчивость к цефалоспоринам , аминогликозидам , фторхинолонам , иногда карбапенемам .
  • Enterococcus spp. - ассоциация устойчивости к пенициллинам , высокого уровня устойчивости к аминогликозидам , фторхинолонам и гликопептидам .
  • Staphylococcus spp. (метициллинорезистентные) - ассоциированная устойчивость к макролидам , аминогликозидам , тетрациклинам , ко-тримоксазолу , фторхинолонам .

Механизмы резистентности к противотуберкулезным препаратам

Особенности патогенеза туберкулеза и биологии возбудителя (медленная пролиферация, длительное персистирование в организме и последующая реактивация инфекции) накладывают определенные отпечатки на формирование устойчивости у микобактерий. Из-за крайне ограниченных возможностей генетического обмена между микобактериями формирование у них резистентности практически всегда связано с накоплением хромосомных мутаций в генах, кодирующих мишени действия препаратов.

Терминология антибиотикоустойчивости микобактерий отличается некоторыми особенностями, что связано с чисто практическими задачами. Согласно рекомендациям ВОЗ, в зависимости от того, получал ли пациент специфическую противотуберкулезную терапию до выделения возбудителя, различают первичную и приобретенную устойчивость. К микроорганизмам с первичной устойчивостью относят штаммы, выделенные от пациентов, не получавших специфическую терапию. Если устойчивый штамм выделен у пациента на фоне противотуберкулезной терапии, то устойчивость расценивают как приобретенную. В тех случаях, когда невозможно достоверно установить факт применения противотуберкулезных препаратов , используют термин "начальная" устойчивость. К множественноустойчивым микобактериям относят микроорганизмы, устойчивые, как минимум, к рифампицину и изониазиду .

Риск развития мутаций, опосредующих устойчивость, составляет: 3,32 x 10 -9 на одно деление клетки для рифампицина ; 2,56 x 10 -8 для изониазида ; 2,29 x 10 -8 для стрептомицина ; 1,0 x 10 -7 для этамбутола . Риск одновременного развития устойчивости к двум препаратам меньше чем 10 -15 . Вероятность такого события крайне низка, особенно учитывая тот факт, что обсемененность микобактериями очага инфекции обычно не превышает 10 8 КОЕ . Учитывая приведенные факты, формирование у микобактерий множественной устойчивости связывают с нарушением режимов антибактериальной терапии, хотя прямых доказательств этому нет.

Рифамицины

Активное выведение, опосредуемое продуктом гена pfmdr , вероятно, является причиной феномена множественной устойчивости P.falciparum к противомалярийным препаратам .

Нитроимидазолы

Ряд простейших, прежде всего T.vaginalis , G.lamblia и E.histolytica , характеризуются анаэробным метаболизмом, во многом сходным с метаболизмом анаэробных бактерий. Чувствительность этих простейших к нитроимидазолам (прежде всего к метронидазолу) объясняется способностью микроорганизмов к восстановлению нитрогруппы препаратов и, таким образом, трансформации их в активную форму, повреждающую ДНК. Донором электронов, участвующим в активации нитроимидазолов , является ферредоксин. Устойчивость анаэробных простейших к нитроимидазолам связана со снижением уровня экспрессии ферредоксина и, следовательно, со снижением способности микроорганизмов активировать препараты.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top