Световая адаптация и механизмы, ее обеспечивающие. Светоощущение глаза и методы его проверки (тесты) При каких заболеваниях снижается темновая адаптация

Световая адаптация и механизмы, ее обеспечивающие. Светоощущение глаза и методы его проверки (тесты) При каких заболеваниях снижается темновая адаптация

Рассматривание предметов обоими глазами. Когда человек смотрит на какой-либо предмет обоими глазами, то у него не получается восприятия двух одинаковых предметов. Это связано с тем, что изображения от всех предметов при бинокулярном зрении падают на соответствующие, или идентичные, участки сетчатки, в результате чего в представлении человека эти два изображения сливаются в одно

Бинокулярное зрение имеет большое значение в определении расстояния до предмета, его формы. Оценка величины предмета связана с размером его изображения на сетчатке и расстоянием предмета от глаза

Отсутствие бинокулярного зрения часто приводит к косоглазию

Зрачковый рефлекс

Реакция глаза на свет (сужение зрачка) представляет собой рефлекторный механизм ограничения количества света на сетчатку. В норме ширина зрачка составляет 1,5 – 8 мм

Степень освещения помещения может менять ширину зрачка в 30 раз. При сужении зрачка уменьшается поток света, исчезает сферическая аберрация, которая дает на сетчатке круги саморассеивания. При слабом освещении зрачок расширяется, что улучшает видение. Зрачковый рефлекс принимает участие в адаптации глаза

Адаптация

Приспособление глаза к видению предметов в условиях разной интенсивности освещения помещения

Световая адаптация. При переходе из темного помещения в светлое в первое время наступает ослепление. Постепенно глаз адаптируется к свету за счет понижения чувствительности фоторецепторов сетчатки глаза. Длится 5 – 10 минут.

Механизмы световой адаптации:

    Снижение чувствительности фоторепторов к свету

    Сужение рецепторного поля за счет разрыва связей горизонтальных клеток с биполярными клетками

    Распад родопсина (0,001 сек.)

    Сужение зрачка

Темновая адаптация. При переходе из светлого помещения в темное человек сначала ничего не видит. Через некоторое время чувствительность фоторецепторов сетчатки повышается, появляются контуры предметов, затем начинают различаться их детали. длится 40 – 80 минут.

Процессы темновой адаптации:

    Повышение чувствительности фоторецепторов к свету в 80 раз

    Ресинтез родопсина (0,08 сек.)

    Расширение зрачка

    Увеличение числа связей палочек с нейронами сетчатки

    Увеличение площади рецептивного поля

Рис. 6.11. Темновая и световая адаптация глаза

Цветовое зрение

Человеческий глаз воспринимает 7 основных цветов и 2000 разных оттенков. Механизм восприятия цветов объясняется разными теориями

Трехкомпонентная теория цветоощущения (теория цветоощущения Ломоносова-Юнга-Гельмгольца теория цветоощущения) – предполагает существование в сетчатке трех типов фоточувствительных колбочек, которые реагируют на разную длину лучей света. Это создает разные варианты восприятия цветов

    первый тип колбочек реагирует на длинные волны (610 – 950 мкм) – ощущение красного цвета

    второй тип колбочек – на средние волны (460 – 609 мкм) – ощущение зеленого цвета

    третий тип колбочек воспринимает короткие волны (300 – 459 мкм) – ощущение синего цвета

Восприятие других цветов обусловлено взаимодействием этих элементов. Одновременное возбуждение первого и второго типов формирует ощущение желтого и оранжевого цветов, а второго и третьего дают фиолетовый и голубоватый цвета. Одинаковое и одновременное раздражение трех типов цветовоспринимающих элементов сетчатки дает ощущение белого цвета , а торможение их формирует черный цвет

Разложение светочувствительных веществ, находящихся в колбочках, вызывает раздражение нервных окончаний; возбуждение, дошедшее до коры большого мозга, суммируется, и возникает ощущение одного однородного цвета

Полная потеря способности воспринимать цвета называется анопия , при этом люди видят все только в черно – белом цвете

Нарушение восприятия цвета – цветовая слепота (дальтонизм) - страдают в основном мужчины – около 10% – отсутствие определенного гена в Х-хромосоме

Известны 3 типа нарушений цветового зрения:

    протанопия – отсутствие чувствительности к красному цвету (имеют выпадание восприятия волн длиной 490 мкм)

    дейтеранопия – к зеленому цвету (имеют выпадение восприятия волн длиной 500 мкм)

    тританопия – к синему цвету (выпадение восприятия волн длиной 470 и 580 мкм)

Полная цветовая слепота – монохроматия встречается редко

Исследование цветового зрения проводят с помощью таблиц Рабкина

Зрительный анализатор обладает способностью воспринимать свет и оценивать степень его яркости. Ее называют светоощущением. Такая функция органа зрения является очень ранней и основной. Как известно, другие функции глаза так или иначе базируются на ней. Глаза животных способны ощущать только свет, он воспринимается светочувствительными клетками. В прошлом столетии ученые установили, что ночных животных состоит преимущественно из палочек, а дневных - из колбочек. Это позволило им сделать заключение о двойственности нашего зрения, то есть о том, что - это инструмент ночного или сумеречного зрения, а - дневного.

Световое ощущение возможно благодаря функционированию палочек. Они более чувствительные к световым лучам, нежели колбочки. В наружных частях палочек постоянно происходят первичные ферментативные и фотофизические процессы преобразования энергии света в физиологическое возбуждение.

Особенностью человеческого глаза является способность воспринимать свет разной интенсивности - от очень яркого до практически ничтожного. Порогом раздражения называют минимальную величину светового потока, которая дает восприятие света. Порог различения - это предельная минимальная разница яркости света между двумя освещенными предметами. Величины обоих порогов являются обратно пропорциональными степени светового ощущения.

Световая и темновая адаптация

Основу исследования светоощущения составляет определение величины этих порогов, в частности, порога раздражения. Он изменяется в зависимости от степени предварительного освещения, которое действовало на глазное яблоко. Если человек некоторое время побудет в темноте, а затем выйдет на яркий свет, то у него наступает ослепление. Оно спустя некоторое время проходит самостоятельно, и человек вновь обретает способность хорошо переносить яркий свет. Все мы знаем, что если долго побыть на свету, а затем зайти в затемненное помещение, то вначале практически невозможно различить предметы, которые в нем находятся. Они становятся различимы только спустя некоторое время. Процесс приспособления глаз к различной интенсивности освещения ученые называют адаптацией. Она бывает световой и темновой.

Световая адаптация представляет собой процесс приспособления глаза к условиям более высокой освещенности. Она протекает достаточно быстро. У некоторых пациентов встречается расстройство световой адаптации при наличии врожденной цветовой слепоты. Они лучше видят в темноте, чем на свету.

Темновая адаптация является приспособлением глазного яблока в тех условиях, когда освещение недостаточное. Она представляет собой изменение световой чувствительности глаза после прекращения воздействия на него световых лучей. В 1865 году Г.Ауберт начал исследовать темновую адаптацию. Он предложил использовать термин «адаптация».

При темновой адаптации максимальная чувствительность к свету наступает в течение и после первых 30-45 минут. В том случае, когда исследуемый глаз и дальше будет оставаться в темноте, светочувствительность продолжит повышаться. Причем, скорость нарастания светочувствительности обратно пропорциональна предварительной адаптации глаза к свету. Светочувствительность во время световой адаптации повышается в 8000-10000 раз.

Исследование темновой адаптации проводят при проведении военной экспертизы и профессиональном отборе. Это очень важный метод диагностики нарушений зрительной функции.

Для того чтобы определить световую чувствительность и изучить весь ход адаптации, используют адаптометры. При проведении врачебной экспертизы пользуются адаптометром Н.А. Вишневского и С.В. Кравкова. С его помощью ориентировочно определяют состояние сумеречного зрения при проведении массовых исследований. Исследование проводят в течение 3-5 минут.

Действие этого прибора основано на феномене Пуркинье. Он заключается в том, что в условиях сумеречного зрения максимум яркости перемещается в спектре в направлении от его красной части к фиолетово-синей. В качестве иллюстрации этого феномена можно использовать такой пример: в сумерках мак красного цвета кажется почти черным, а голубые васильки - светло-серыми.

В настоящее время офтальмологи для исследования адаптации широко используют адаптометры модели АДТ. Они позволяют всесторонне изучать состояние сумеречного зрения. Преимуществом прибора является то, результаты исследования можно получить в течение короткого времени. Этот адаптометр позволяет исследовать ход нарастания световой чувствительности у пациентов во время длительного пребывания в темноте.

Для определения состояния темновой адаптации не обязательно использовать адаптометр. Ее можно проверить при помощи таблицы Кравкова-Пуркинье, которую готовят следующим образом:

  • берут кусочек картона размером 20×20см и оклеивают черной бумагой;
  • наклеивают на него 4 квадрата, изготовленные из бумаги голубого, красного, желтого и зеленого цвета, размер которых равен 3×3см;
  • пациенту показывают в затемненной комнате цветные квадратики, разместив их на расстоянии 40 -50 см от глазных яблок.

Если световое ощущение у пациента не нарушено, то вначале исследования он не видит эти квадраты. Спустя 30-40 минут человек начинает различать контуры желтого квадрата, а через некоторое время - голубого. В том случае, когда световое ощущение понижено, то он вовсе не увидит квадрата голубого цвета, а на месте желтого квадрата будет видеть светлое пятно.

Качество световой чувствительности и адаптации зависит от многих причин. Так, у человека в возрасте 20-30 лет световая чувствительность наиболее высокая, а в преклонном возрасте снижается, поскольку в старости ослабевает чувствительность нервных клеток центров зрения. Если понижается барометрическое давление, то из-за недостаточной концентрации в воздухе кислорода световая чувствительность может снижаться.

На ход адаптации влияют такие факторы:

  • менструация;
  • беременность;
  • качество питания;
  • стрессовые ситуации;
  • изменение температуры внешней среды.

Гемералопия

Понижение темновой адаптации называют «гемералопия». Она может быть врожденной или приобретенной. Причины врожденной гемералопатии до сих пор не выяснены. Она в некоторых случаях является семейно-наследственной.

Приобретенная гемералопия является симптомом некоторых заболеваний сетчатки и зрительного нерва:

  • пигментной дистрофии;
  • воспалительных поражений глаза;
  • сетчатки;
  • атрофии зрительно нерва;
  • застойного диска.

Она определяется при и высокой степени. В этих случаях развиваются необратимые изменения анатомических структур глаза. Функциональная приобретенная гемералопатия развивается в случае дефицита в организме витаминов группы В, А и С. После приема комплексных витаминных препаратов с высоким содержанием витамина А темновая светочувствительность восстанавливается.

Восприятие цвета заметно изменяется в зависимости от внешних условий. Один и тот же цвет воспринимается по-разному при солнечном свете и при свете свечей. Однако зрение человека адаптируется к источнику света, что позволяет в обоих случаях идентифицировать свет как один и тот же – происходит цветовая адаптация . В темных очках сначала все кажется окрашенным в цвет очков, но этот эффект через некоторое время пропадает. Аналогично вкусу, обонянию, слуху и другим органам чувств восприятие цвета так же индивидуально. Люди отличаются друг от друга даже чувствительностью к диапазону видимого света.

Приспособление глаза к изменившимся условиям освещенности называется адаптацией . Различают темновую и световую адаптацию.

Темновая адаптация происходит при переходе от больших яркостей к малым. Если глаз первоначально имел дело с большими яркостями, то работали колбочки, родопсин в палочках выцвел, черный пигмент проник в сетчатку, заслоняя колбочки от света. Если внезапно яркость видимых поверхностей значительно уменьшится, то вначале раскроется шире отверстие зрачка, пропуская в глаз больший световой поток. Затем из сетчатки начнет уходить черный пигмент, родопсин будет восстанавливаться, и только когда его наберется достаточно, начнут функционировать палочки. Поскольку колбочки совсем не чувствительны к очень слабым яркостям, то сначала глаз не будет ничего различать, и только постепенно приходит в действие новый механизм зрения. Лишь через 50-60 мин пребывания в темноте чувствительность глаза достигает максимального значения.

Световая адаптация – это процесс приспособления глаза при переходе от малых яркостей к большим . При этом происходит обратная серия явлений: раздражение палочек благодаря быстрому разложению родопсина чрезвычайно сильно (они "ослеплены"), более того, и колбочки, не защищенные еще зернами черного пигмента, раздражены слишком сильно. Только по истечении достаточного времени приспособление глаза к новым условиям заканчивается, прекращается неприятное чувство ослепления и глаз приобретает полное развитие всех зрительных функций. Световая адаптация продолжается 8-10 мин .

При изменении освещенности зрачок может изменяться в диаметре от 2 до 8 мм , при этом его площадь и, соответственно, световой поток изменяются в 16 раз . Сокращение зрачка происходит за 5 сек , а его полное расширение – за 5 мин .

Итак, адаптация обеспечивается тремя явлениями:

· изменением диаметра отверстия зрачка;

· перемещением черного пигмента в слоях сетчатки;

· различной реакцией палочек и колбочек.

Оптические иллюзии

Оптические (зрительные ) иллюзии – это типичные случаи несоответствия между зрительным восприятием и реальными свойствами наблюдаемых объектов . Эти иллюзии свойственны нормальному зрению, поэтому отличаются от галлюцинаций . Всего известно более сотни оптических иллюзий, однако нет общепринятой их классификации, а также убедительных объяснений большинства иллюзий.

А ) При рассматривании неподвижных объектов существуют следующие механизмы возникновения иллюзий:

1) несовершенство глаза как оптического прибора -

· кажущаяся лучистая структура ярких источников малого размера;

· хроматизм хрусталика (радужные кромки предметов) и др.

2) особенности обработки зрительной информации на разных этапах зрительного восприятия (в глазу, в мозге) –

· на этапе выделения сигнала из фона возникает ошибка восприятия "оптический обман " (на оптическом обмане основано применение защитной окраски при маскировке в животном мире);

· на следующем этапе классификации сигналов возникают ошибки

- выявления фигур (рис. а ),

- оценки параметров объектов (яркости, формы, взаимного расположения, рис. б );

· на этапе обработки зрительной информации возникают ошибки

В оценке характеристик объектов , таких как площади, углы, цвет, длины (например, "стрелы Мюллера - Лиера , рис. а ), т. е. геометрические иллюзии ,

- перспективные искажения (рис. б ),

- иллюзия иррадиации , т.е. кажущееся увеличение размеров светлых предметов по сравнению с темными (рис. в ).

Б ) При движении объекта процесс зрительного восприятия усложняется и может привести неадекватному восприятию, поэтому иллюзии можно объединить в группу динамических :

· если долго наблюдать за движущимся объектом и мгновенно прекратить наблюдение, то предмет кажется движущимся в обратном направлении, или "эффект водопада ", открытый Аристотелем (если смотреть на водопад и закрыть глаза, то струя "поднимается вверх"),

· если смотреть на модулированный по времени поток белого света, то возникает ощущение цвета , например , при вращении диска Бенхема , имеющего черные и белые сектора,

· инерция зрения (т.е. свойство глаза сохранять зрительное впечатление около 0,1 с ) приводит ко всем видам стробоскопического эффекта и наблюдению следа от движущегося светящегося источника (инерция зрения лежит в основе кинематографа и телевидения).

Гигиена зрения

Зрение - физиологический процесс, позволяющий получать представление о величине, форме и цвете предметов, их взаимном расположении и расстоянии между ними. 3рение возможно только при нормальном функционировании зрительного анализатора в целом.

Согласно учению И. П. Павлова, зрительный анализатор включает периферический парный орган зрения - глаз с его воспринимающими свет фоторецепторами - палочками и колбочками сетчатки (рис.), зрительные нервы, зрительные пути, подкорковые и корковые зрительные центры. Нормальным раздражителем органа рения является свет. Палочки и колбочки сетчатки глаза воспринимают световые колебания и превращают их энергию в нервное возбуждение, которое через зрительный нерв передается по проводящим путям в зрительный центр головного мозга, где возникает зрительное ощущение.

Под влиянием света в палочках и колбочках происходит распад зрительных пигментов (родопсина и йодопсина). Палочки функционируют при свете слабой интенсивности, в сумерках; зрительные ощущения, полученные при этом, бесцветны. Колбочки функционируют днем и при ярком освещении: их функция определяет ощущение цветности. При переходе от дневного освещения к сумеречному происходит перемещение максимума световой чувствительности в спектре по направлению к его коротковолновой части и предметы красного цвета (мак) кажутся черными, синего (василек) - очень светлыми (феномен Пуркинье).

Зрительный анализатор человека в нормальных условиях обеспечивает бинокулярное зрение, т. е. зрение двумя глазами с единым зрительным восприятием. Основным рефлекторным механизмом бинокулярного зрения является рефлекс слияния изображения - фузионный рефлекс (фузия), возникающий при одновременном раздражении функционально неодинаковых нервных элементов сетчатки обоих глаз. Вследствие этого возникает физиологическое двоение предметов, находящихся ближе или дальше фиксируемой точки. Физиологическое двоение помогает оценивать удаленность предмета от глаз и создает ощущение рельефности, или стереоскопичности, зрения.

При зрении одним глазом (монокулярное зрение) стереоскопичность зрении невозможна и восприятие глубины осуществляется гл. обр. благодаря вторичным вспомогательным признакам удаленности (видимая величина предмета, линейная и воздушная перспективы, загораживание одних предметов другими, аккомодация глаза и т. д.).

Для того чтобы зрительная функция осуществлялась в течение достаточно длительного времени без утомления, необходимо соблюдать ряд гигиенических условий, облегчающих 3. Эти условия объединяются в понятие <гигиена-зрения>. К ним относятся: хорошее равномерное освещение естественным или искусственным светом рабочего места, ограничение блескости, резких теней, правильное положение туловища и головы во время работы (без сильного наклона над книгой), достаточное удаление предмета от глаз (в среднем 30-35 см), небольшие перерывы через каждые 40-45 мин. работы.

Лучшим освещением считается естественный дневной свет. При этом следует избегать освещения глаз прямыми солнечными лучами, т. к. они оказывают слепящее действие. Искусственное освещение создается при помощи светильников с обычными электрическими или люминесцентными лампами. Для устранения и ограничения слепящего действия источников света и отражающих поверхностей высота подвеса светильников должна быть не менее 2,8 м от пола. Особенно важно хорошее освещение в учебных классах школ. Искусственная освещенность на партах и классных досках должна составлять не менее 150 лк [люкс {лк} - единица освещенности] при освещении лампами накаливания и не менее 300 лк при люминесцентном освещении. Необходимо создавать достаточную освещенность рабочего места и в домашних условиях: днем следует работать у окна, а вечером с настольной лампой 60 вт, прикрытой абажуром. Лампу ставят слева от предмета работы. Детям с близорукостью и дальнозоркостью необходимо назначение соответствующих очков.

Различные заболевания глаза, зрительного нерва и центральной нервной системы приводят к понижению зрения и даже слепоте. На зрение влияют: нарушение прозрачности роговицы, хрусталика, стекловидного тела, патологические изменения сетчатки, особенно в области желтого пятна, воспалительные и атрофические процессы в зрительном нерве, заболевания головного мозга. В некоторых случаях понижение зрения связано с профессиональными заболеваниями глаз. К ним относятся: катаракты, вызываемые систематическим воздействием лучистой энергии значительной интенсивности (рентгеновские лучи, инфракрасные лучи); прогрессирующая близорукость в условиях постоянного напряжения зрения при точной мелкой работе; конъюнктивиты и кератоконъюнктивиты у лиц, соприкасающихся с сероводородом и диметилсульфатом. Для предупреждения этих заболеваний большое значение имеет соблюдение правил общественной и индивидуальной защиты глаз от вредных факторов

Светоощущение (световосприятие) – важнейшая функция зрительного анализатора, заключающаяся в способности воспринимать свет, а также различать его светлоту (яркость).

Нарушения, связанные со световосприятием, являются первыми симптомами многих заболеваний, как глаза, так и других органов и систем (например, болезни печени, гипо- и авитаминозы).

Светоощущение в большей степени отвечают фоторецепторы-палочки, которых больше всего расположено в периферических отделах сетчатой оболочки. Именно поэтому чувствительность к свету выше на периферии сетчатки, чем в ее центральной области.

Как известно, колбочки отвечают за дневное зрение, палочки – за сумеречное (ночное).

Всего 1 квант света может возбуждение фоторецепторов сетчатки, но способность различать свет появляется только при действии не менее 6 квантов.

Светоощущение отвечает за следующие характеристики:

  • порог раздражения – минимальный световой поток, который вызывает раздражение рецепторов сетчатки;
  • порог различения – способность зрительного анализатора различать минимальную разницу в интенсивности света.

Световая адаптация

Очень важной способностью глаза является световая адаптация – приспособление к усилению яркости света (освещенности). Сам процесс адаптации длится приблизительно минуту (чем ярче свет, тем длительнее он происходит). Первоначально (в первые секунды после усиления освещенности) чувствительность резко снижается, а приходит в норму только через 50-70 секунд.

Это способность зрительного органа приспосабливаться к уменьшению яркости. При снижении освещенности светочувствительность сначала резко усиливается, но через 15-20 минут начинает ослабевать, а приблизительно через час наступает полная темновая адаптация.

Исследование светоощущения

Наиболее часто применяемая методика для определения нарушения восприятия света – проба Кравкова. В затемненном помещении пациенту показывают квадрат (размеры – 20×20 см.), на углах которого приклеены маленькие квадратики (3×3 см.) зеленого, желтого, синего и голубого цветов. Если световосприятие не нарушено, человек через 40-60 секунд сможет различить желтый и голубой цвет, в противном случае он не определит голубой цвет, а вместо желтого квадрата будет видеть светлый участок.

Также для определения патологии световой чувствительности используются специальные приборы – адаптометры. Суть методики.

Пациент должен приспособиться к свету, глядя на светлый экран, как минимум, в течение 15 минут. Затем выключают свет в помещении. Пациенту показывают слегка освещенный предмет, постепенно усиливая его яркость. Когда пациент сможет различить предмет, он нажимает на специальную кнопку (при этом на бланке адаптометра ставится точка). Яркость предмета изменяют сначала через три минут, а затем каждые пять минут. Исследование длится час, после чего соединяют все точки на бланке, в итоге получается кривая светочувствительности пациента.

Для более полного ознакомления с болезнями глаз и их лечением – воспользуйтесь удобным поиском по сайту или задайте вопрос специалисту.

Если человек находится на ярком свете в течение нескольких часов, и в палочках, и в колбочках происходит разрушение фоточувствительных веществ до ретиналя и опсинов. Кроме того, большое количество ретиналя в обоих типах рецепторов превращается в витамин А. В результате концентрация фоточувствительных веществ в рецепторах сетчатки значительно уменьшается, и чувствительность глаз к свету снижается. Этот процесс называют световой адаптацией .

Наоборот, если человек длительно находится в темноте, ретиналь и опсины в палочках и колбочках снова превращаются в светочувствительные пигменты. Кроме того, витамин А переходит в ретиналь, пополняя запасы светочувствительного пигмента, предельная концентрация которого определяется количеством опсинов в палочках и колбочках, способных соединяться с ретиналем. Этот процесс называют темповой адаптацией.

На рисунке показан ход темновой адаптации у человека, находящегося в полной темноте после нескольких часов пребывания на ярком свете. Видно, что сразу после попадания человека в темноту чувствительность его сетчатки очень низкая, но в течение 1 мин она увеличивается уже в 10 раз, т.е. сетчатка может реагировать на свет, интенсивность которого составляет 1/10 часть от предварительно требуемой интенсивности. Через 20 мин чувствительность возрастает в 6000 раз, а через 40 мин - примерно в 25000 раз.

Законы световой и темновой адаптации

  1. Темновая адаптация определяется достижением максимума световой чувствительности в течение первых 30 - 45 мин;
  2. Световая чувствительность нарастает тем скорее, чем менее до этого глаз был адаптирован к свету;
  3. Во время темновой адаптации светочувствительность повышается в 8 - 10 тысяч раз и более;
  4. После 45 мин пребывания в темноте световая чувствительность повышается, но незначительно, если обследуемый остается в темноте.

Темновая адаптация глаза есть приспособление органа зрения к работе в условиях пониженного освещения. Адаптация колбочек завершается в пределах 7 мин, а палочек - в течение приблизительно часа. Существует тесная связь между фотохимией зрительного пурпура (родопсина) и изменяющейся чувствительностью палочкового аппарата глаз, т. е. интенсивность ощущения в принципе связана с количеством родопсина, «обесцвечиваемого» под воздействием света. Если перед исследованием темновой адаптации сделать яркий за-свет глаза, например, предложить смотреть на ярко освещенную белую поверхность 10-20 мин, то в сетчатке произойдет значительное изменение молекул зрительного пурпура, и чувствительность глаза к свету будет ничтожной (свето(фото) стресс). После перехода к полной темноте чувствительность к свету начнет весьма быстро расти. Способность глаза восстанавливать чувствительность к свету измеряют с помощью специальных приборов - адаптометров Нагеля, Дашевского, Белостоцкого - Гофмана, Гартингера и др. Максимум чувствительности глаза к свету достигается в течение приблизительно 1-2 ч, повышаясь по сравнению с первоначальной в 5000-10 000 раз и более.

Измерение темновой адаптации
Темновая адаптация может быть измерена следующим образом. Сначала испытуемый в течение короткого промежутка времени смотрит на ярко освещенную поверхность (обычно до достижения им определенной, контролируемой степени световой адаптации). При этом чувствительность испытуемого уменьшается, и тем самым создается точно регистрируемая точка отсчета времени, необходимого для его темновой адаптации. Затем выключают свет и через определенные промежутки времени определяют порог восприятия испытуемым светового стимула. Определенный участок сетчатки стимулируется раздражителем с определенной длиной волны, имеющим определенные продолжительность и интенсивность. По результатам такого эксперимента строится кривая зависимости минимального количества энергии, необходимого для достижения порога, от времени пребывания в темноте. Кривая показывает, что увеличение времени пребывания в темноте (абсцисса) приводит к снижению порога (или к возрастанию чувствительности) (ордината).

Кривая адаптации к темноте состоит из двух фрагментов: верхний относится к колбочкам, нижний - к палочкам. Эти фрагменты отражают разные стадии адаптации, скорость протекания которых различна. В начале адаптационного периода порог резко снижается и быстро достигает постоянного значения, что связано с увеличением чувствительности колбочек. Общее возрастание чувствительности зрения за счет колбочек значительно уступает возрастанию чувствительности за счет палочек, и темновая адаптация наступает за 5-10 мин пребывания в темном помещении. Нижний фрагмент кривой описывает темновую адаптацию палочкового зрения. Рост чувствительности палочек наступает после 20-30-минутного пребывания в темноте. Это значит, что в результате примерно получасовой адаптации к темноте глаз становится примерно в тысячу раз более чувствительным, чем был в начале адаптации. Однако хотя увеличение чувствительности в результате темновой адаптации, как правило, происходит постепенно и для завершения этого процесса требуется время, даже весьма непродолжительное воздействие света может прервать его.

Ход кривой темновой адаптации зависит от скорости фотохимической реакции в сетчатке, а достигнутый уровень зависит уже не от периферического, а от центрального процесса, а именно от возбудимости высших корковых зрительных центров.




Самое обсуждаемое
К чему увидеть кошку во сне? К чему увидеть кошку во сне?
Яркая и мечтательная женщина-Овен: как завоевать ее? Яркая и мечтательная женщина-Овен: как завоевать ее?
Печень индейки рецепт приготовления в сметане Печень индейки рецепт приготовления в сметане


top