телевизоры. Советы пользователю

 телевизоры. Советы пользователю

В мире все большую популярность набирают технологии объемного изображения. Это и выпуск новых фильмов в 3D формате, и оборудование кинотеатров новыми техническими средствами для просмотра объемных фильмов, и развитие 3D телевидения. И если создание и передача контента в 3D формате не от нас зависит, то приобретение телевизора с такой функцией это уже зависит от покупателя.

Все разработки основываются на особенностях человеческого зрения. У нас есть два глаза расположенные на некотором расстоянии друг от друга, обычно 5-7 см. Каждый глаз видит свое изображение, это можно увидеть, если поочередно закрывать глаза, глядя на одну картинку. Вы увидите, как картинка немного смещается и видно все под несколько другим углом. Вот эта особенность и позволяет нам видеть все в объеме. Наш мозг, получая две картинки немного смещенные, научился совмещать их в одно изображение, но уже объемное. И нам кажется, что мы сразу же видим все в объеме. На самом деле мозг сам обрабатывает увиденное глазами и формирует объемное изображение, то есть он воспринимает расстояние до объекта и понимает глубину пространства.

По такому пути и пошли разработчики 3D телевидения. В основу был положен принцип, по которому для каждого глаза формировалось свое изображение, что бы мозг уже сам сложил их, и мы увидели объемную картинку.

Почти все лидеры в производстве телевизионной техники начали осваивать выпуск 3D телевизоров и другой техники этого формата, как например проигрыватели для дисков с 3D фильмами и другое. Основное развитие в 3D формате получили плазменные и жк LED телевизоры. В силу технологических особенностей плазменные 3D телевизоры показывают лучшее качество, чем LCD 3D телевизоры из-за строгого требования ко времени отклика матрицы (должно быть меньше 3 миллисекунд).

Все современные 3D телевизоры воспроизводят изображение в качестве Full HD . При этом видео выводится поочередно для каждого глаза и, что бы сохранить плавность картинки, нужна кадровая частота минимум в 60 Гц для каждого глаза. То есть общая кадровая частота должна быть не меньше 120 Гц да еще и в каждом кадре должно быть качество Full HD. Отсюда и такое строгое требование ко времени отклика матрицы, как писалось выше, оно должно быть не больше 3 мс.

Внешний вид телеприемника и очков для показа 3D

Для передачи сигнала Full HD сигнала с частотой не меньше 120 Гц может потребоваться применение HDMI 1.4. В телевизорах может еще быть HDMI 1.3.

При таком требовании к видео, выводимом на экран, реализация 3D эффектов возможна только с применением специальных очков. Сейчас все фирмы применяют так называемые активные очки. Эти 3D очки имеют встроенную микросхему и управляются сигналами с телевизора с помощью инфракрасного излучения. В зависимости от изображения на экране очки пропускают сигнал только для одного глаза, а в следующий кадр для другого глаза. Очки одной фирмы не будут работать на телевизоре другой фирмы.

Анаглифические очки

Впервые объемное изображение попытались получить еще в 1853 году в Германии. На экран выводилось изображение в разных цветовых оттенках. Зрителям раздавались очки, линзы которых были окрашены в разные цвета – красный, синий или зеленый. Каждый глаз получал только то изображение, которое было окрашено в цвет линзы на очках. Так каждый глаз видел только свое изображение, и картинка получала объем.


Анаглифические очки

Но недостатки были такими большими, что о применении данной технологии в домашних условиях нельзя было говорить. Изображение было с очень плохой цветопередачей. Из-за тонирования линз в очках картинка получалась с оттенками красного и синего (зеленого). И качество 3D картинки получалось не очень качественным.

Поляризационные очки

Другой технологией, где очки отфильтровывали изображение для каждого глаза, была поляризационная. Здесь уже линзы очков покрывались поляризационными светофильтрами в виде поляризационных пленок. Разделение изображения для левого и правого глаза получалось благодаря поляризации изображения. Поляризация – это когда световые волны имеют разные направления колебаний, по-другому колебания электрического поля световой волны происходит в разных плоскостях. В кинотеатре для этого используют два кинопроектора. Поляризационные очки используют в IMAX 3D и в RealD кинотеатрах.

Поляризационные очки

В очках фильтр на одной линзе пропускает только волны света горизонтально ориентированные, а фильтр на другой линзе пропускает только волны с вертикальной поляризацией. В итоге каждый глаз получает только свою картинку, и мы воспринимаем изображение как объемное. Для того чтобы не терялись контрастность и яркость изображения при наклоне головы, стали применять круговую поляризацию. Здесь уже одно изображение имеет левую поляризацию, а другое – правую.

Использовать эту технологию получения объемного изображения на телевизоре в домашних условиях очень сложно. Из-за этого производители телетехники стали использовать её только в 2011 году. Первой на рынок телевизоров 3D с поляризационной технологией свои модели представила фирма LG со своей разработкой LG Cinema 3D. Увидев определенный интерес к данной технологии у покупателей, свои модели представили и компании Toshiba, Philips, Samsung.

К достоинствам поляризационной технологии можно отнести качественное изображение 3D с хорошей цветопередачей и детальностью. Поляризационные очки получились легкими и удобными без электронной схемы. Отсутствуют перекрестные искажения и мерцания в отличие от активной технологии, поэтому и уменьшена утомляемость глаз.

Недостатком считают уменьшение разрешения по вертикали, потому что в кадре идет чередование строк для левого и правого глаз.

Затворные очки для телевидения 3D

Самая совершенная на сегодня технология получения на телевизоре 3D изображения - это технология с активными очками. В таких очках линзы закрываются специальной электронной схемой управления, находящейся в очках. Линзы состоят из жидких кристаллов, как и матрица телевизора, и схема управления в нужные моменты времени дает сигнал кристаллам пропускать световой поток к глазам поочередно для получения объемной картинки. Управляются очки от телевизора по инфракрасному каналу связи или по Bluetooth. Наиболее сильно данную технологию продвигают Samsung, Sony, Panasonic.


Затворные очки

Потому как для каждого глаза нужно подавать отдельное изображение то в таких телевизорах кадровая частота понижается вдвое. Поэтому телевизоры 3D с активной технологией имеют кадровую частоту 100/120 Гц. Для борьбы с мерцанием изображения кадровую частоту повышают до 200/240 Гц. При этом движения в кадре становятся более равномерными и плавными.

К достоинствам активной технологии можно отнести её надежность и совершенство. Ведущие производители уже успели её отработать и устранить большинство недостатков. Применяется ведущими производителями плазменных и жк телевизоров.

Недостатком являются очки, которые стоят дорого и требуют постоянной замены батареек. Линзы очков задерживают часть светового потока, поэтому может быть тусклым изображение при низкой яркости экрана. Частота кадров в 100/120 Гц при динамических сценах может быть недостаточной.

Безочковые 3D телевизоры

В продаже стали появляться автостереоскопические 3D телевизоры, которым не нужны очки для просмотра объемного телевидения. Но им тяжело конкурировать с другими технологиями, потому что их цена ещё высока и качество изображения не очень высокое. В автостереоскопических телевизорах наносятся на экран прозрачные оптические элементы. Вот они и разделяют изображение для каждого глаза отдельно.

Безочковый 3D телевизор Toshiba 55ZL2

Первый метод получения стереоизображения в таких телевизорах получается путем нанесения множества продольных линз. Называется он – метод лентикулярных линз.

При втором методе перед матрицей жк располагают множество щелевых отверстий. Называется такой метод – параллаксный барьер. В качестве визуальных барьеров используются жидкие кристаллы. Под действием сигнала эти кристаллы поворачиваются и направляют световой поток в нужном направлении. При необходимости этот барьер отключается и можно смотреть обычное 2D телевидение.

3D эффект может быть достигнут, если зритель находится в определенных точках при просмотре. Хорошо, что таких точек много и телевизор можно смотреть и нескольким людям.

Развитие автостереоскопических телевизоров продолжается, и в ближайшие пять лет их доля на рынке будет только расти.

Достоинством такого метода получения объемного изображения можно считать отсутствие очков. А к недостаткам можно отнести выбор определенного места при просмотре.

Дополнительная информация

Источником сигнала для 3D телевизоров может служить проигрыватель, специально предназначенный для воспроизведения 3D дисков. Так же в некоторых странах уже началось вещание отдельных каналов в 3D формате.

На сегодня уже фирмы разрабатывают системы, позволяющие 3D телевизорам преобразовывать в режиме реального времени видео из 2D в 3D. Например, для таких целей Samsung выпустила новый процессор 3D Hyper Real Engine.

Некоторые фирмы говорят о вредном влиянии на здоровье человека при долгом просмотре 3D. Особенно нужно быть аккуратными детям, пожилым людям и беременным женщинам.

Цены на 3D телевизоры будут, конечно, выше чем на обычные LCD LED телевизоры. Например, 3D телевизор с диагональю 40 дюймов примерно будет стоить 2000 долларов. Телевизоры Samsung 9000 серии (9000 серия в линейке Samsung лучше других серий) с диагональю 55 дюймов будет стоить 7000 долларов. Телевизор Sony с диагональю 40 дюймов будет стоить примерно 2400 долларов. К таким телевизорам может понадобиться купить отдельно для каждого члена семьи очки по цене примерно 100-150 долларов и инфракрасный передатчик за 50 долларов. Еще нужно купить специальный проигрыватель и диски с 3D фильмами.

Развитие 3D к 2014 году

Развитие 3D телевидения к 2014 году не сделало каких-то революционных открытий. Идет усовершенствование уже работающих технологий. Многие покупатели не являются большими поклонниками объемного видео. Поэтому производители телевизоров пошли по пути развития разрешения экрана и введения новой технологии OLED.

А что касается 3D, то на сегодня используются технологии требующие очков. Безочковое 3D не получило развитие. Что касается использования очков, то развитие получили и активная технология формирования объемного эффекта и пассивная. Например, Samsung производит телевизоры 3D только по активной технологии. А вот LG продолжает развивать пассивную технологию на своих моделях 2014 года. Фирма Philips применяет как активную, так и пассивную технологию. У многих телевизоров с функцией 3D есть возможность конвертации обычного 2D изображения в 3D.

Что касается цены, то все больше моделей телевизоров среднего класса и даже бюджетного сегмента оснащаются функцией 3D. Поэтому и цены на телевизоры 3D снижаются.

3D-технологии – общее название для разных видов объемного изображения. В переводе с английского сочетание ”3 dimensional” означает буквально «трехмерный». К 3D относят трехмерное изображение, трехмерную графику, а также совокупность аппаратных и программных инструментов и методов, дающих возможность создавать объемные объекты.

Основное применение такие технологии нашли в создании изображений на экране или плоском листе. 3D-технологии используются в телевидении, кинематографе, архитектуре, в компьютерных играх. Последним достижением в сфере трехмерных технологий стало изобретение объемной печати.

На специальных 3D-принтерах уже сегодня можно печатать простые физические объекты, имеющие длину, ширину и высоту.

Говоря о формате 3D, чаще всего подразумевают кинематограф. Такая система позволяет сконструировать иллюзию объемного изображения, выводимого на большой экран. Использование трехмерных технологий в кино базируется на бинокулярном зрении, характерном для человека. Все мельчайшие детали, которые пассивно улавливает зрительный анализатор, сетчатка глаза обрабатывает по отдельности. И только потом мозг соединяет отдельные элементы в целостный трехмерный образ.

Особенности технологий 3D

3D-графика предполагает взаимодействие с воображаемым пространством, имеющим три измерения. Но отображается этот объемный мир на плоской поверхности, имеющей всего два измерения. В ряде случаев изображенные на плоскости объект или воспринимаются как объемные без всяких дополнительных приспособлений.

Нередко для восприятия трехмерной реальности применяют виртуальные шлемы или специальные очки со стереоскопическим эффектом.

Объемное изображение в двухмерном пространстве включает в себя конструирование проекции трехмерной модели на плоский лист или экран. Здесь чаще всего не обойтись без использования специальных компьютерных программ. Представляемый в трехмерном виде объект при этом обычно является точной копией предмета из материального мира. Но он может быть и каким-либо абстрактным образом, выполненным, к примеру, из геометрических фигур.

Создание 3D-объекта начинается с построения модели при помощи математических методов обработки данных. Затем следует визуализация математической модели, после чего она принимает вид проекции, в которой отражается выбранная для моделирования или физический объект. Результат визуализации при помощи технических средств выводят на оконечное устройство, например, на экран телевизора или дисплей персонального компьютера.

Идея 3D-телевидения так же стара, как мир телевидения и кино. Желание получить трёхмерное изображение и создать иллюзию того, что изображение на экране является чем-то большим, чем просто двухмерная картинка, существует с самого момента зарождения кинематографа и телевещания.
К сожалению, 3D-кино и 3D-телевидение всегда оставались на уровне лёгкого увлечения. И проблема всегда состояла в том, что поиск решений для того, чтобы заставить 3D работать, казался совершенно пустой тратой времени. С появлением HD-экранов ситуация начала улучшаться. В данном материале мы посмотрим, как выглядят современные 3D-телевизоры, рассмотрим принципы их работы, а также поможем вам определиться с наиболее подходящим для вас типом таких телевизоров.

Что такое 3D, и как его снимают?

Производство 3D-контента, по большому счёту, происходит именно так, как вы себе можете это представить. Для съёмок фильма в 2D используется одна камера, а для производства 3D-фильма требуется две камеры. Цель состоит в том, чтобы снять два различных и немного раздельных изображения, которые можно будет затем использовать для того, чтобы левый и правый глаз могли получать немного разные картинки происходящего. Такое действие, по сути, повторяет то, как мы видим естественную трёхмерную картину мира.
Для проведения такой «двойной» съёмки многие теле- и кинокомпании используют специальное оборудование, обеспечивающее одновременную работу двух камер. Устройство снабжено системой точного контроля, которая позволяет настраивать и подстраивать камеры для слаженной работы. Данный процесс сам по себе довольно сложен, кроме того, он требует, чтобы камеры и, в первую очередь, их оптическая составляющая, были практически идентичными – именно это и позволит получить наилучший результат. На рынке также имеется несколько видеокамер, снабжённых двухлинзовой системой съёмки. В частности, такие камеры – как для профессиональной, так и для любительской съёмки – поставляют компании Panasonic и Sony.


Разумеется, есть и другие способы съёмки 3D-видео. К примеру, изображение можно сделать трёхмерным в процессе пост-продакшна, особенно, когда речь идёт о фильмах с большим количеством компьютерных эффектов и графики. Поскольку большое количество фильмов снимается с использованием технологии «зелёный экран», сегодня есть много возможностей создавать то, что принято называть «искусственный 3D».


Во всех случаях готовый 3D-фильм состоит из двух отдельных рядов кадров: один ряд – для левого глаза, второй – для правого. А то, каким образом вы можете смотреть данное видео, определяется типами вещательной системы и системы просмотра, на которые мы и предлагаем обратить более пристальное внимание.

Активная 3D-технология

Активная 3D-технология – это система, которая работает на плазменных и жидкокристаллических экранах и требует наличия специальных активных 3D-очков для просмотра трёхмерного изображения. Сегодня эти очки достаточно лёгкие и удобные в использовании, хотя некоторые производители ещё не совсем довели их дизайн и функциональность до совершенства. Частенько данные очки снабжены аккумуляторным блоком, который заряжается при помощи подключаемого через USB зарядного устройства.
В основе данных очков лежит использование специальных линз с жидкокристаллическим верхним слоем. При прохождении через этот слой электрического напряжения линза практически полностью теряет прозрачность, при отсутствии напряжения прозрачность восстанавливается. Тем не менее некоторые световые потери наблюдаются при смотрении через линзу и в момент отсутствия напряжения в жидкокристаллическом слое, что делает видимое через очки изображение на экране телевизора немного темноватым по сравнению с оригиналом.
Для формирования 3D-кар-тинки телевизор последовательно отображает кадры для левого и для правого глаз. При этом очки затемняют линзу для «ненужного» в данный момент глаза. Частота таких затемнений для каждого раза составляет 24, 25 или даже 30 раз в секунду, поэтому вы практически этого не замечаете. Впрочем, отдельные люди жалуются на некоторое ощущение моргания картинки – именно с этим и связано возникновение головных болей у небольшого количества зрителей, использующих 3D-очки.

Большим преимуществом активной системы является то, что она даёт истинное 1080p 3D изображение. Это значит, что, по крайней мере, в плане качества картинки данная система значительно превосходит пассивную 3D-технологию. Однако многое зависит от конкретной ситуации, и есть много причин для того, чтобы полюбить пассивную 3D-систему.

Пассивная 3D-технология

Наибольшим преимуществом пассивной 3D-технологии является то, что очки, необходимые для просмотра изображения в данной системе, являются безумно дешёвыми по сравнению со стоимостью очков с активным затвором.
Впрочем, при домашнем использовании пассивная 3D-система имеет один большой недостаток: разрешение изображения составляет половину от разрешения картинки в активной 3D-технологии. Причина этого состоит в том, что картинки для обоих глаз должны появляться на экране одновременно. На поверхности жидкокристаллического экрана (плазменных панелей для пассивного 3D не существует) размещён специальный фильтр, который по-разному поляризует каждую из строк, формирующих изображение. Таким образом, телевизор одновременно отображает две картинки (для правого и левого глаза), составляющие 3D-изображение: к одной из них относятся чётные строки, к другой – нечётные. Данный процесс называется «чересстрочная развёртка».
Каждая из двух линз, составляющих пассивные 3D-очки, поляризована таким образом, чтобы соответствовать поляризации того или иного набора строк на экране. Таким образом, каждый глаз видит лишь то, что предназначено конкретно для него. Минусом данной технологии является то, что чересстрочная развёртка снижает разрешение картинки: в пассивной 3D-технологии каждый глаз видит картинку с разрешением 1920 x 540 пикселей.

Таким образом, вы получаете полное разрешение по горизонтали, однако лишь половину – по вертикали. Впрочем, на практике это не составляет такой уж большой проблемы. Большинство зрителей считает, что пассивная 3D-технология намного удобнее для длительного использования, и если вокруг вас есть много любителей смотреть фильмы и спортивные трансляции, данная система является наиболее практичной и доступной.

Как 3D-видео передаётся в телевизионных сетях?

Телевизионные вещатели весьма ограничены в плане имеющейся у них ёмкости, поэтому передача полноценного 3D-сигнала, состоящего из двух отдельных потоков, в общем-то, нереальна. Для того чтобы обойти данную проблему, вещатели используют метод, названный «бок о бок». Данный метод заключается в том, чтобы взять пару из кадров, предназначенных для правого и левого глаза, и разместить их на экране бок о бок таким образом, чтоб вместе они заняли ровно столько же места, сколько на экране телевизора занимает стандартное HD-изображение. Если телезритель смотрит такую трансляцию на экране обычного 2D-телевизора, то он видит две практически идентичные картинки, сдавленные с боков так, что всё на них кажется высоким и тонким. В то же время 3D-телевизор разделяет этот «сдвоенный» кадр на две половинки и отображает их согласно принципам, свойственным использованной в нём системы 3D.


В результате мы получаем 3D-изображение, которое технически имеет HD-качество, однако это качество значительно ниже качества Full HD 3D фильма, воспроизводимого с Blu-ray диска. Тем не менее получаемые результаты весьма хороши, и качество 3D-картинки можно считать приемлемым.

Как работает 3D на Blu-ray дисках?

Гораздо в лучшем положении оказывается 3D-видео, будучи записанным на Blu-ray диск. В этом случае вы можете получить картинку в качестве Full HD 3D с разрешением 1080p, но только в случае использования правильного оборудования: пассивные 3D-системы не могут отображать 3D-видео в формате Full HD, на это способны лишь активные системы.
С ростом популярности 3D была разработана новая система видеокомпрессии, которая позволяет значительно экономить объёмы используемой памяти. В итоге на стандартном диске можно разместить большее количество кадров, что крайне необходимо для 3D. Это, в свою очередь, означает, что на таком диске можно сохранять в формате Full HD оба ряда кадров – для правого и левого глаза, без того сжатия, которое мы видим при трансляции сигнала 3D-телевидения. Запись 3D-видео, даже с использованием новой системы компрессии, всё равно требует значительного пространства на диске, что в итоге приводит к отсутствию на диске места для записи дополнительных материалов. Однако это не является такой уж большой проблемой, поскольку в коробку всегда можно положить второй, дополнительный диск, записанный в HD-формате. Видео, состоящее из двух рядов кадров (для правого и левого глаза), отображается на экране вашего телевизора согласно системе, в которой он работает.

3D-кинотеатры против домашних 3D-систем

Существует несколько конкурирующих между собой 3D-форматов, используемых в кинотеатрах. Каждый из кинотеатров волен выбирать систему на собственное усмотрение. Большинство кинотеатров сегодня использует пассивные 3D-системы, и это означает, что им не приходится тратить деньги на дорогие очки с активным затвором для каждого зрительского места. В то же время первые кинотеатры IMAX 3D использовали активные 3D-очки, таким образом, эта система далеко не чужда кинотеатрам.
Для Dolby-кинотеатров существует система, которая является пассивной по своему характеру, однако требует использования более дорогих очков. Преимущество в использовании данной Dolby-системы состоит в том, что для её использования кинотеатру не приходится проводить замену экрана. Вместо этого используются очки со светофильтрами, «заточенными» под определённую длину световой волны, а также вращающийся фильтр, установленный перед проектором, позволяющие направлять картинки в нужный глаз.
Однако, по большому счёту, доминирующим 3D-форматом для кинотеатров является система RealD, которая использует поляризующие фильтры и недорогие очки. Кадры, предназначенные для левого и правого глаза, проецируются на экран через специальный поляризатор, установленный перед объективом кинопроектора. Система RealD предусматривает отдельную передачу кадров для правого и левого глаза – они передаются друг за дружкой с частотой 144 раза в секунду, а очки с поляризованными линзами перед глазами зрителей приводят к тому, что каждый глаз получает в итоге предназначенное лишь ему изображение.


Компания Sony предлагает облегчённый вариант данной системы, в котором используется 4К-проектор для одновременной передачи изображений для левого и правого глаза, при этом для каждого из глаз предназначается картинка с разрешением 2К.

3D-технология, не требующая специальных очков

У производителей телевизоров во всём мире есть одна общая цель: создать такую систему, которая бы не требовала использования очков при просмотре 3D-видео, но при этом создавала бы зрителю полный эффект трёхмерности. Технически это уже возможно, и телевизоры, использующие такие системы, уже в течение нескольких лет демонстрируются в рамках CES и других телевизионных выставок.
Наибольшей проблемой 3D-систем, не требующих использования очков для просмотра видео, является проблема качества. Безусловно, эти системы способны давать 3D-изображение, однако это далеко не то качество картинки, которое вам хотелось бы видеть. Кроме того, для полного погружения в просмотр такого видео вам придётся смотреть на экран под определённым углом, и эксперты, исследующие качество работы таких систем, после проведения испытаний жаловались на лёгкую косоглазость.
Впрочем, в компании Dolby убеждены, что полноценные 4K/3D-телевизоры, не требующие для просмотра очков, должны начать появляться на рынке в 2015 году. Технология Dolby, разработанная в сотрудничестве с Philips, основана на применении дисплеев с повышенным разрешением, используемым для отображения видео в формате 1080p/3D. Для проведения демонстрации технологии на выставке CES 2014 использовался 8K-телевизор производства Sharp. В компании Dolby утверждают, что в новой технологии сведены до минимума все проблемы прежних систем «3D без очков», включая необходимость сидеть перед экраном в определённой точке.

3D-системы на основе шлемов-масок

Одной из сфер, в которой 3D-видео имеет огромный потенциал, является использование 3D-дисплеев, которые можно носить на лице подобно очкам или шлему. В качестве примеров можно назвать такие устройства, как Oculus Rift и Project Morpheus, которые являются 3D-совместимыми масками-шлемами и могут быть использованы в качестве устройств виртуальной реальности.
Помимо заложенного в эти устройства игрового потенциала, в силу наличия в них отдельных экранов для каждого из глаз, можно предположить их использование в качестве устройств, дающих впечатляющий 3D-эффект. Возможно, поначалу зрителям будет немного некомфортно носить на лице такую маску, и потребуется некоторое время для привыкания к ней, однако данные устройства несут в себе невероятный потенциал для реалистичного 3D-видео.


Есть ли будущее у 3D-телевидения?

Сегодня дополнить телевизор 3D-функцией относительно недорого. Для активных 3D-систем стоимость такого усовершенствования не превышает стоимости активных очков. Это значит, что практически все выпускаемые сегодня телевизоры имеют встроенную опцию 3D. Впрочем, это не отменяет использование маркировки «3D» для повышения продаж.
Поскольку Голливуд продолжает снимать фильмы в 3D, этот формат, несомненно, имеет своё место в домах зрителей. Запрос на новые блокбастеры, снятые и записанные в 3D, существует, хоть он и не так велик, как того хотелось бы Голливуду.
Возможно, в один прекрасный день на смену 3D придёт что-то гораздо лучшее – например, голографическое кино. Однако, судя по всему, этот день настанет ещё не скоро.

Трёхмерной модели сцены на плоскость (например, экран компьютера) с помощью специализированных программ. Однако с созданием и внедрением 3D-дисплеев и 3D-принтеров трёхмерная графика не обязательно включает в себя проецирование на плоскость.

Применение

Трёхмерная графика активно применяется для создания изображений на плоскости экрана или листа печатной продукции в науке и промышленности , например, в системах автоматизации проектных работ (САПР; для создания твердотельных элементов: зданий, деталей машин, механизмов), архитектурной визуализации (сюда относится и так называемая «виртуальная археология »), в современных системах медицинской визуализации .

Самое широкое применение - во многих современных компьютерных играх , а также как элемент кинематографа , телевидения , печатной продукции .

Трёхмерная графика обычно имеет дело с виртуальным , воображаемым трёхмерным пространством, которое отображается на плоской, двухмерной поверхности дисплея или листа бумаги. В настоящее время известно несколько способов отображения трёхмерной информации в объемном виде, хотя большинство из них представляет объёмные характеристики весьма условно, поскольку работают со стереоизображением. Из этой области можно отметить стереоочки, виртуальные шлемы, 3D-дисплеи, способные демонстрировать трёхмерное изображение. Несколько производителей продемонстрировали готовые к серийному производству трёхмерные дисплеи . Но, чтобы насладиться объёмной картинкой, зрителю необходимо расположиться строго по центру. Шаг вправо, шаг влево, равно как и неосторожный поворот головы, карается превращением трёхмерности в несимпатичное зазубренное изображение. Решение этой проблемы уже созрело в научных лабораториях. Германский Институт Фраунгофера демонстрировал 3D-дисплей, при помощи двух камер отслеживающий положение глаз зрителя и соответствующим образом подстраивающий изображение, в этом году [когда? ] пошёл ещё дальше. Теперь отслеживается положение не только глаз, но и пальца, которым можно «нажимать» трёхмерные кнопки. А команда исследователей Токийского университета создали систему, позволяющую почувствовать изображение. Излучатель фокусируется на точке, где находится палец человека, и в зависимости от его положения меняет силу акустического давления. Таким образом, становится возможным не только видеть объемную картинку, но и взаимодействовать с изображенными на ней предметами.

Однако и 3D-дисплеи по-прежнему не позволяют создавать полноценной физической, осязаемой копии математической модели, создаваемой методами трёхмерной графики.

Развивающиеся с 1990-х годов технологии быстрого прототипирования ликвидируют этот пробел. Следует заметить, что в технологиях быстрого прототипирования используется представление математической модели объекта в виде твердого тела (воксельная модель).

Создание

Для получения трёхмерного изображения на плоскости требуются следующие шаги:

  • моделирование - создание трёхмерной математической модели сцены и объектов в ней;
  • текстурирование - назначение поверхностям моделей растровых или процедурных текстур (подразумевает также настройку свойств материалов - прозрачность, отражения, шероховатость и пр.);
  • освещение - установка и настройка ;
  • анимация (в некоторых случаях) - придание движения объектам;
  • динамическая симуляция (в некоторых случаях) - автоматический расчёт взаимодействия частиц, твёрдых/мягких тел и пр. с моделируемыми силами гравитации , ветра , выталкивания и др., а также друг с другом;
  • рендеринг (визуализация) - построение проекции в соответствии с выбранной физической моделью;
  • композитинг (компоновка) - доработка изображения;
  • вывод полученного изображения на устройство вывода - дисплей или специальный принтер.

Моделирование

Схема проецирования сцены на экран компьютера

Наиболее популярными пакетами сугубо для моделирования являются:

  • Robert McNeel & Assoc. Rhinoceros 3D ;

Для создания трёхмерной модели человека или существа может быть использована как прообраз (в большинстве случаев) Скульптура .

Текстурирование

SketchUp

Визуализация трёхмерной графики в играх и прикладных программах

Есть ряд программных библиотек для визуализации трёхмерной графики в прикладных программах - DirectX, OpenGL и так далее.

Есть ряд подходов по представлению 3D-графики в играх - полное 3D, псевдо-3D.

Такие пакеты даже не всегда дают пользователю оперировать 3D-моделью напрямую, например, есть пакет OpenSCAD , модель в котором формируется выполнением формируемого пользователем скрипта, написанного на специализированном языке.

Трёхмерные дисплеи

Трёхмерные, или стереоскопические дисплеи , (3D displays, 3D screens) - дисплеи, посредством стереоскопического или какого-либо другого эффекта создающие иллюзию реального объёма у демонстрируемых изображений.

В настоящее время подавляющее большинство трёхмерных изображений показывается при помощи стереоскопического эффекта, как наиболее лёгкого в реализации, хотя использование одной лишь стереоскопии нельзя назвать достаточным для объёмного восприятия. Человеческий глаз как в паре, так и в одиночку одинаково хорошо отличает объёмные объекты от плоских изображений [ ] .

Стереоскопические дисплеи

Методы технической реализации стереоэффекта включают использование в комбинации со специальным дисплеем поляризованных или затворных очков , синхронизированных с дисплеем, анаглифических фильтров в комбинации со специально адаптированным изображением.

Существует также относительно новый класс стереодисплеев, не требующих использования дополнительных устройств, но имеющих массу ограничений. В частности, это конечное и очень небольшое количество ракурсов, в которых стереоизображение сохраняет чёткость. Стереодисплеи, выполненные на базе технологии New Sight x3d , обеспечивают восемь ракурсов, Philips WOWvx - девять ракурсов. В октябре 2008 года компания Philips представила прототип стереодисплея с разрешением 3840×2160 точек и с рекордными 46 ракурсами «безопасного» просмотра. Вскоре после этого, однако, Philips объявил о приостановке разработок и исследований в области стереодисплеев

Невозможно представить какую-либо значимую сферу производства, в которой на этапе конструирования не применяют объемную графику. Разработка любого объекта становится доступнее при трехмерном представлении каждого элемента, значимой детали. На каждом этапе создания продукта, будь это несложный механизм или ракетный двигатель, ориентируются на многогранный макет. Он представляет собой многовекторный чертеж, имеющий не только номинальную высоту, длину и ширину, но и визуальное воплощение. В этой статье мы расскажем, как появилась первая компьютерная реалистичная фигура, в каких сферах технология нашла свое применение и какие программы используют проектировщики.

Мы часто слышим это сочетание – 3D. Оно является сокращением английского 3-dimensional, что дословно переводится как «три размера». К этой фразе прибавляют дополнительные слова: звук, изображение, шутер, шоу, принтер и так далее – вариантов масса. Но остается основной смысл: при употреблении этого метода происходит переход из схематического, однолинейного пространства в более реалистичное. Эта способность «одухотворять» неживое ставится в основу многих начинаний. Но визуализация нашла свое начало и получила наибольшую востребованность именно в конструировании объемного образа.

Оно широко применяется в следующих отраслях:

  • индустрия развлечений;
  • медицина;
  • промышленность.

Расскажем о каждой группе подробнее.

Кинематограф, компьютерные игры и анимация: заслуги 3D моделирования

Все виртуальные пространства и несуществующие герои созданы с помощью особой техники использования полигонов. Так называются обыкновенные геометрические фигуры с тремя или четырьмя гранями, которые соединяются под разными углами в один объект. Чтобы он пришел в движение, необходимо менять параметры у составляющих – вытягивать, перемещать, вращать. Так как все они связаны, то действие похоже на натяжение паутины – остальные сегменты деформируются в соответствии с первым.

Чем меньше площадь каждого отдельного куска, тем больше их общее количество, а значит, выше точность изображения. В таких случаях принято говорить о качестве графики – в некоторых играх можно ее делать выше и ниже. Это актуально в тех случаях, когда мощность компьютера не позволяет быстро отображать все фрагменты. Нельзя сказать, что небольшое количество полигонов – модели low poly, хуже чем High poly, когда деталей во много раз больше. Для части анимации достаточно общего вида героя, если он второстепенный или один из многих. Главного персонажа, как правило, рисуют более подробно. Сверху графических фигур накладываются текстуры, которые завершают образ.

Первым САПРом для профессионального и любительского пользования стал AutoCAD. Со временем стали появляться его качественные аналоги и второсортные подделки. Сводный список софтов мы приведем ниже, сейчас ограничимся указанием на очень удобную для 3D моделирования программу – ZWCAD Professional.

Она не уступает «Автокаду» в функционале, но существенно отличается по стоимости, которая у популярного бренда выше. Это разработка компании ZWSOFT, которая поддерживает свои позиции на рынке ПО с 1993 года и реализует свои продукты более чем в 80 странах мира. В 2017 году появилась новая усовершенствованная версия «ЗВкада». Основное направление разработки – это трехмерное конструирование. Которое, кстати, применяется не только в индустрии развлечения, но и здравоохранении.


Визуализация в медицине

Она развивается в двух основных направлениях:

    точечная или комплексная томография;

    конструирование и создание протезов.

Современные 3D-сканирования позволяют обнаружить дефекты органов и тканей, которые скрыты при простом рентгене или УЗИ. Появление таких технологий сделало возможным определение заболевания в тех ситуациях, когда ранее проводились диагностические операции. Широкое распространение они приобрели в стоматологии и челюстно-лицевой хирургии. Для удобства обращения с новшеством больницы не ограничиваются компьютерными макетами, а приобретают принтеры для объемной печати.

Воплощенный в жизнь результат томографии может стать основой для создания импланта, например, зуба, который будет идеально подходить по размерам пациенту. В более сложном варианте технология помогает смоделировать протез конечности, слуховой аппарат, вены, нервы и даже искусственный сердечный клапан. Активно развивается биопечать – в ней вместо красок используются живые человеческие клетки. Но первый этап конструирования остается за компьютерными 3D программами. Здесь, как и при построении мультипликационных героев, используется полигональное моделирование. Искривление пластин показывает дефекты тканей. Воздействие на фрагменты позволит создать объемную фигуру идеального импланта, а вращение и передвижение частей покажет, как будет двигаться протезированная рука.

Главными пользователями являются инженеры, электрики, строители, работники дорожных служб – специалисты технической направленности. Их инструмент – это твердотельные или полые конструкции, обладающие математически точными параметрами, расчетными данными и реальной направленностью на работу. Поэтому, особенно важным для этой категории пользователей является не внешний вид модели, а возможность применения формул, работы с ними, срезовые чертежи, графика, а также проверка всего механизма на любом этапе разработки. Таким образом, цель проектировщика – это не только визуализация объекта, но, в большей степени, измеримая и рабочая информация о нем.


Работа в CAD (русскоязычная аббревиатура – САПР) предполагает профильное образование. Она будет эффективна, когда специалист не только видит образ, но знает материал, с которым ведется макет, особенности использования изделия и многие другие нюансы. Поэтому программы разряда ZWCAD с широким спектром действий и большим количеством инструментов, компании заказывают комплектами, чтобы обеспечить ПО весь отдел. Их же устанавливают на компьютеры студентов технических и архитектурных ВУЗов, чтобы будущие специалисты сразу конструировали в удобной и многофункциональной среде. Ориентируясь не только на индивидуального покупателя, но и на массовые поставки, ZWSOFT разработал гибкую политику лицензирования и существенно снизил цены на серийные закупки.

При работе в Системах Автоматизированного Проектирования инженер получает электронно-геометрическую модель. Что это такое в объемном 3D моделировании поможет понять список действий, который с ней можно совершить:

    Выполнить чертежи любого среза, в любом изображении под выбранным углом. Таким образом необходим один макет вместо массы разрозненных графиков. Поэтому с одним файлом, используя разные слои, могут одновременно работать разные специалисты, и даже разные отделы.

    Подогнать параметры всего изделия, изменив ввод одной данной величины.

    Производить расчеты любого показателя или коэффициента. Как в статичном положении, так и в прогнозируемом движении.

    Написать пакет для компьютерного управления станком или другим техническим оборудованием (ЧПУ).

    Использовать 3D-принтер и воссоздать объемную модель для презентации или показательного конструирования.Что такое план 3-д моделирования

    Каждая работа не обходится без алгоритма действий. Часто последовательность условна, особенно в творческих профессиях, однако даже там конструирование объекта происходит по следующим этапам:


    4. Анимация, если она необходима. Если это статичный объект, то возможно показать, как он приходит во взаимодействие со сторонними элементами. На этом этапе дополнительно можно рассчитать трение, КПД и другие коэффициенты.

    5. Устранение мелких недостатков и визуализация – вывод итогового объекта.

    6. Дополнительным этапом может быть распечатка на 3Д-принтере.

    История объемного моделирования развивается на наших глазах. Это технология будущего. Работать в формате 3D сейчас удобно, интересно и востребовано. Главное, выбрать подходящую программу для наиболее эффективного проектирования.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top