Что такое потенциал покоя в физиологии. Формирование мембранного потенциала покоя

Что такое потенциал покоя в физиологии. Формирование мембранного потенциала покоя

Na + /K + насос или Na + /K + АТФ-аза это тоже, как и ионные каналы комплекс интегральных мембранных белков, которые могут не просто открыть путь для перехода иона по градиенту, а активно перемещать ионы против градиента концентрации. Механизм работы насоса представлен на рисунке 8.

    Белковый комплекс в состоянии Е1, в этом состоянии насос чувствителен к ионам натрия и с цитоплазматической стороны с ферментом связываются 3 иона натрия

    После связывание ионов натрия происходит гидролиз АТФ и выделяется энергия, необходимая для переноса ионов против градиента концентрации, освобождается АДФ неорганический фосфат (именно поэтому насос и называют Na + /K + АТФ-азой).

    Насос меняет конформацию и переходит в состояние Е2. При этом места связывания ионов натрия оказываются обращенными наружу. В этом состоянии насос обладает низким сродством к натрию и ионы освобождаются во внеклеточную среду.

    В конформации Е2 фермент обладает высоким сродством к калию и связывает 2 иона.

    Происходит перенос калия, освобождение его во внутриклеточную среду и присоединение молекулы АТФ – насос вернулся в конформацию Е1, вновь приобрел сродство к ионам натрия и включается в новый цикл.

Рисунок 8 Механизм работы Na + /K + АТФ-азы

Обратите внимание на то, что Na + /K + насос переносит 3 иона натрия из клетки в обмен на 2 иона калия. Поэтому насос является электрогенным : суммарно за один цикл из клетки удаляется один положительный заряд. Транспортный белок выполняет от 150 до 600 циклов в секунду. Поскольку работа насоса представляет собой многоступенчатую химическую реакцию, она, подобно всем химическим реакциям, в значительной степени зависит от температуры. Другой характеристикой насоса является наличие уровня насыщения, это означает, что скорость работы насоса не может возрастать бесконечно при повышении концентрации транспортируемых ионов. В отличие от этого поток пассивно диффундирующего вещества растет пропорционально разности концентраций.

Помимо Na + /K + насоса мембрана содержит еще кальциевый насос, этот насос откачивает ионы кальция из клетки. Кальциевый насос присутствует с очень высокой плотностью в саркоплазматическом ретикулуме мышечных клеток. Цистерны ретикулюма накапливают ионы кальция в результате расщепления молекулы АТФ.

Итак, результатом работы Na + /K + насоса является трансмембранная разность концентраций натрия и калия. Выучите значения концентрация натрия, калия и хлора (ммоль/л) вне и внутри клетки!

Концентрация ионов внутри и вне клетки

Итак, есть два факта, которые необходимо учесть, чтобы понять механизмы, поддерживающие мембранный потенциал покоя.

1 . Концентрация ионов калия в клетке значительно выше, чем во внеклеточной среде. 2 . Мембрана в покое избирательно проницаема для К + , а для Nа + проницаемость мембраны в покое незначительна. Если принять проницаемость для калия за 1, то проницаемость для натрия в покое составит лишь 0,04. Следовательно, существует постоянный поток ионов К + из цитоплазмы по градиенту концентрации . Калиевый ток из цитоплазмы создает относительный дефицит положительных зарядов на внутренней поверхности, для анионов клеточная мембрана непроницаема в результате цитоплазма клетки оказывается заряженной отрицательно по отношению к окружающей клетку среде. Эта разность потенциалов между клеткой и внеклеточным пространством, поляризация клетки, называется мембранным потенциалом покоя (МПП).

Возникает вопрос: почему же ток ионов калия не продолжается до уравновешивания концентраций иона вне и внутри клетки? Следует вспомнить о том, это заряженная частица, следовательно, ее движение зависит и от заряда мембраны. Внутриклеточный отрицательный заряд, который создается благодаря току ионов калия из клетки, препятствует выходу из клетки новых ионов калия. Поток ионов калия прекращается, когда действие электрического поля компенсирует движение иона по градиенту концентрации. Следовательно, для данной разности концентраций ионов на мембране формируется так называемый РАВНОВЕСНЫЙ ПОТЕНЦИАЛ для калия. Этот потенциал (Ek) равен RT/nF *ln Kснаружи/Kвнутри, (n – валентность иона.) или

Ek =61,5 log K снаружи / K внутри

Мембранный потенциал (МП) в большой степени зависит от равновесного потенциала калия, однако, часть ионов натрия все же проникает в покоящуюся клетку, так же, как и ионы хлора. Таким образом, отрицательный заряд, который имеет мембрана клетки, зависит от равновесных потенциалов натрия, калия и хлора и описывается уравнением Нернста. Наличие этого мембранного потенциала покоя чрезвычайно важно, потому, что именно он определяет способность клетки к возбуждению - специфическому ответу на раздражитель.

Итак, есть два факта, которые необходимо учесть, чтобы понять механизмы, поддерживающие мембранный потенциал покоя.

1 . Концентрация ионов калия в клетке значительно выше, чем во внеклеточной среде. 2 . Мембрана в покое избирательно проницаема для К + , а для Nа + проницаемость мембраны в покое незначительна. Если принять проницаемость для калия за 1, то проницаемость для натрия в покое составит лишь 0,04. Следовательно, существует постоянный поток ионов К + из цитоплазмы по градиенту концентрации . Калиевый ток из цитоплазмы создает относительный дефицит положительных зарядов на внутренней поверхности, для анионов клеточная мембрана непроницаема в результате цитоплазма клетки оказывается заряженной отрицательно по отношению к окружающей клетку среде. Эта разность потенциалов между клеткой и внеклеточным пространством, поляризация клетки, называется мембранным потенциалом покоя (МПП).

Возникает вопрос: почему же ток ионов калия не продолжается до уравновешивания концентраций иона вне и внутри клетки? Следует вспомнить о том, это заряженная частица, следовательно, ее движение зависит и от заряда мембраны. Внутриклеточный отрицательный заряд, который создается благодаря току ионов калия из клетки, препятствует выходу из клетки новых ионов калия. Поток ионов калия прекращается, когда действие электрического поля компенсирует движение иона по градиенту концентрации. Следовательно, для данной разности концентраций ионов на мембране формируется так называемый РАВНОВЕСНЫЙ ПОТЕНЦИАЛ для калия. Этот потенциал (Ek) равен RT/nF *ln /, (n – валентность иона.) или

Ek=61,5 log/

Мембранный потенциал (МП) в большой степени зависит от равновесного потенциала калия, однако, часть ионов натрия все же проникает в покоящуюся клетку, так же, как и ионы хлора. Таким образом, отрицательный заряд, который имеет мембрана клетки, зависит от равновесных потенциалов натрия, калия и хлора и описывается уравнением Нернста. Наличие этого мембранного потенциала покоя чрезвычайно важно, потому, что именно он определяет способность клетки к возбуждению - специфическому ответу на раздражитель.

Возбуждение клетки

Возбуждение клетки (переход от покоя к активному состоянию) происходит при повышении проницаемости ионных каналов для натрия, а иногда и для кальция. Причиной изменения проницаемости может быть и изменение потенциала мембраны - активируются электровозбудимые каналы, и взаимодействие мембранных рецепторов с биологически активным веществом – рецептор - управляемые каналы, и механическое воздействие. В любом случае для развития возбуждения необходима начальная деполяризация - небольшое снижение отрицательного заряда мембраны, вызванная действием раздражителя. Раздражителем может быть любое изменение параметров внешней или внутренней среды организма: свет, температура, химические вещества (воздействие на вкусовые и обонятельные рецепторы), растяжение, давление. Натрий устремляется в клетку, возникает ионный ток и происходит снижение мембранного потенциала - деполяризация мембраны.

Таблица 4

Изменение мембранного потенциала при возбуждении клетки .

Обратите внимание на то, что вход натрия в клетку осуществляется по градиенту концентрации и по электрическому градиенту: концентрация натрия в клетке в 10 раз ниже, чем во внеклеточной среде и заряд по отношению к внеклеточному - отрицательный. Одновременно активируются и калиевые каналы, но натриевые (быстрые) активируются и инактивируются в течение 1 – 1,5 миллисекунд, а калиевые дольше.

Изменения мембранного потенциала принято изображать графически. На верхнем рисунке представлена начальная деполяризация мембраны - изменение потенциала в ответ на действие раздражителя. Для каждой возбудимой клетки существует особый уровень мембранного потенциала, при достижении которого резко изменяются свойства натриевых каналов. Этот потенциал назван критическим уровнем деполяризации (КУД ). При изменении мембранного потенциала до КУД открываются быстрые, потенциал зависимые натриевые каналы, поток ионов натрия устремляется в клетку. При переходе положительно заряженных ионов в клетку, в цитоплазме - увеличивается положительный заряд. В результате этого трансмембранная разность потенциалов уменьшается, значение МП снижается до 0, а затем, по мере дальнейшего поступления натрия в клетку происходит перезарядка мембраны и реверсия заряда (овершут)- теперь поверхность становится электроотрицательной по отношению к цитоплазме - мембрана ДЕПОЛЯРИЗОВАНА полностью – средний рисунок. Дальнейшего изменения заряда не происходит потому, что инактивируются натриевые каналы – больше натрий в клетку поступать не может, хотя градиент концентрации изменяется весьма незначительно. Если раздражитель обладает такой силой, что деполяризует мембрану до КУД, этот раздражитель называется пороговым, он вызывает возбуждение клетки. Точка реверса потенциала – это знак того, что вся гамма раздражителей любой модальности переведена в язык нервной системы - импульсы возбуждения. Импульсы, или потенциалы возбуждения называются потенциалами действия. Потенциал действия (ПД) – быстрое изменение мембранного потенциала в ответ на действия раздражителя пороговой силы. ПД имеет стандартные амплитуду и временные параметры, не зависящие от силы стимула - правило "ВСЕ ИЛИ НИЧЕГО". Следующий этап – восстановление мембранного потенциала покоя - реполяризация (нижний рисунок) в основном обусловлена активным ионным транспортом. Наиболее важен процесс активного транспорта - это работа Na/K - насоса, который выкачивает ионы натрия из клетки, одновременно закачивая ионы калия внутрь клетки. Восстановление мембранного потенциала происходит благодаря току ионов калия из клетки – калиевые каналы активируются и пропускают ионы калия до достижения равновесного калиевого потенциала. Это процесс важен потому, что до тех пор, пока не восстановлен МПП, клетка не способна воспринимать новый импульс возбуждения.

ГИПЕРПОЛЯРИЗАЦИЯ - кратковременное увеличение МП после его восстановления, которое обусловлено повышением проницаемости мембраны для ионов калия и хлора. Гиперполяризация бывает только после ПД и характерна далеко не для всех клеток. Попытаемся еще раз представить графически фазы потенциала действия и ионные процессы, лежащие в основе изменений потенциала мембраны (рис. 9). На оси абсцисс отложим значения мембранного потенциала в милливольтах, на оси ординат – время в миллисекундах.

1. Деполяризация мембраны до КУД – могут открыться любые натриевые каналы, иногда кальциевые, и быстрые, и медленные, и потенциал-зависимые, и рецептор-управляемые. Это зависит от вида раздражителя и типа клеток

2. Быстрое поступление натрия в клетку - открываются быстрые, потенциал-зависимые натриевые каналы, и деполяризация достигает точки реверса потенциала – происходит перезарядка мембраны, знак заряда меняется на положительный.

3. Восстановление градиента концентрации по калию – работа насоса. Калиевые каналы активированы, калий переходит из клетки во внеклеточную среду – реполяризация, начинается восстановление МПП

4. Следовая деполяризация, или отрицательный следовой потенциал - мембрана еще деполяризована относительно МПП.

5. Следовая гиперполяризация. Калиевые каналы остаются открытыми и дополнительный ток калия гиперполяризует мембрану. После этого клетка возвращается к исходному уровню МПП. Длительность ПД составляет для разных клеток от 1 до 3-4 мс.

Рисунок 9 Фазы потенциала действия

Обратите внимание на три величины потенциала, важные и постоянные для каждой клетки ее электрические характеристики.

1. МПП - электроотрицательность мембраны клетки в покое, обеспечивающая способность к возбуждению - возбудимость. На рисунке МПП = -90 мв.

2. КУД - критический уровень деполяризации (или порога генерации мембранного потенциала действия) - это такая величина мембранного потенциала, при достижении которой открываются быстрые , потенциал зависимые натриевые каналы и происходит перезарядка мембраны за счет поступления в клетку положительных ионов натрия. Чем выше электроотрицательность мембраны, тем труднее деполяризовать ее до КУД, тем менее возбудима такая клетка.

3. Точка реверса потенциала (овершут) - такая величинаположительного мембранного потенциала, при которой положительно заряженные ионы уже не проникают в клетку - кратковременный равновесный натриевый потенциал. На рисунке + 30 мв. Суммарное изменение потенциала мембраны от –90 до +30 составит для данной клетки 120 мВ, эта величина и является потенциалом действия. Если этот потенциал возник в нейроне, он будет распространяться по нервному волокну, если в мышечных клетках – будет распространяться по мембране мышечного волокна и приведет к сокращению, в железистых к секреции – к действию клетки. Это и есть специфический ответ клетки на действие раздражителя, возбуждение.

При действии раздражителя подпороговой силы возникает неполная деполяризация - ЛОКАЛЬНЫЙ ОТВЕТ (ЛО). Неполная, или частичная деполяризация – это такое изменение заряда мембраны, которое не достигает критического уровня деполяризации (КУД).

Оглавление темы "Передача информации посредством электрического возбуждения.":
1. Передача информации посредством электрического возбуждения. Потенциал покоя.
2. Диффузионный потенциал. Трансмембранный градиент концентрации калия.

4. Влияние глии на состав межклеточной среды. Гематоэнцефалический барьер.
5. Потенциал действия. Временной ход потенциала действия. Реполяризация.
6. Следовые потенциалы. Природа потенциала действия. Порог и возбудимость.
7. Проводимость мембраны. Ионные токи во время потенциала действия.
8. Кинетика ионных токов во время возбуждения. Регистрация мембранных токов.
9. Натрий (Na) и калиевая (K) проводимость во время потенциала действия.
10. Инактивация натриевого (Nа) - тока.

В плазме крови концентрация калия (K) обычно поддерживается близкой к своему нормальному уровню -4 мМ (табл. 1.1). Однако во многих нервных клетках не происходит быстрого обмена ионов с плазмой, и для них [К+]0 может существенно отличаться от нормального уровня. На рис. 2.3 схематически изображен нейрон ЦНС, который отделен от ближайшего капилляра глиальными клетками. Здесь внеклеточное пространство существует в виде узких щелей шириной примерно 15 нм. Периферические аксоны аналогичным образом тесно окружены шванновскими клетками. Такие интерстициальные пространства вполне адекватно обеспечивают в длительных временных масштабах выравнивание состава внешней среды путем диффузии, однако при интенсивной активности нейронов концентрации ионов во внеклеточном пространстве могут на короткое время значительно изменяться. Во время интенсивной электрической активности ионы натрия (Na+) входят в клетку, а ионы калия (K) выходят из нее.


Рис. 2.10. Зависимость максимальной натриевой (Na)-проницаемости , P(Na), от величины скачков деполяризации. Перехват Ранвье был деполяризован от исходного мембранного потенциала -80 мВ до тестирующих потенциалов, отложенных по оси абсцисс. На вставке: деполяризация до тестирующего потенциала и возникающий в ответ натрия (Na) - ток, I(Na). Максимум lNo определяет (вместе с внутри- и внеклеточной концентрациями натрия (Na) и мембранным потенциалом) максимальную P(Na). Кривые зависимости P(Na) от потенциала смещаются вдоль оси абсцисс при изменениях внеклеточной концентрации кальция (Са2+) ([Са2+]0 от 0 до 20 мМ). При снижении [Са2+]0 пороговая деполяризация для повышения P(Na) уменьшается; происходит повышение возбудимости перехвата Ранвье (по с изменениями)

Высокая внеклеточная концентрация натрия (Na+) при этом заметно не меняется, тогда как концентрация калия (K) может существенно-возрастать. Внеклеточную концентрацию К+ можно измерить с помощью микроэлектродов, заполненных селективными К+-ионообменниками. При высокой активности нервных клеток внеклеточная концентрация калия (K) возрастает от нормального уровня 3-4 мМ до 10 мМ . Согласно уравнению Нернста (см. рис. 2.2), такие высокие внеклеточные концентрации калия (K) вызывают сильную деполяризацию нервных клеток. Не исключено, что деполяризация, которая обусловлена повышенной внеклеточной концентрацией калия (K), является одной из причин развития в мозге судорожных разрядов, возникающих, например, во время эпилептических приступов . После окончания интенсивной работы клеток процесс активного транспорта калия (K) может сдвинуть его внеклеточную концентрацию ниже нормального уровня, вызывая гиперполяризацию нервных клеток.


Рис. 2.3. А-Г. Свойства глиальных клеток. А. Схема относительного расположения нейронов, глии и капилляров, составленная по электронно-микроскопическим данным. Астроцит (обозначен розовым цветом), в который введен микроэлектрод для регистрации мембранного потенциала, находится между капилляром и нейроном. Все клетки разделены межклеточными промежутками шириной примерно 15 нм (на схеме относительная ширина щелей увеличена). Б. Зависимость мембранного потенциала глиальных клеток (ордината) от внеклеточной концентрации калия [К+]0. Средний уровень потенциала покоя (ПП) составляет -89 мВ. Экспериментальные данные отклоняются от потенциалов рассчитанных по уравнению Нернста, только при [К+]0 = 0,3 мМ. В. Деполяризация глиальных клеток, обусловленная активностью окружающих нейронов, в зрительном нерве протея (Necturus). при его раздражении одним или тремя стимулами с интервалами 1 с (показаны вертикальными стрелками). Г. Деполяризация глиальных клеток в том же препарате во время серии стимулов длительностью 20 с при частоте 1, 2 или 5 Гц; в последнем случае деполяризация достигает почти 20 мВ. B и Г: следует обратить внимание на гораздо более медленный (секунды!) временной ход деполяризации по сравнению с потенциалом действия (по с изменениями)

Во время активности нейронов ЦНС может изменяться внеклеточная концентрация еще одного иона -кальция (Са) . Концентрацию кальция (Са), так же как и концентрацию калия (K) , можно измерить с помощью микроэлектродов, заполненных селективным ионообменником. При активации синаптических окончаний кальция (Са) входит в них; соответственно во время их высокочастотного возбуждения обнаруживается снижение внеклеточной концентрации кальция (Са) . При низкой концентрации кальция (Са) повышается возбудимость нейронов (см. ниже, рис. 2.10), что может приводить к патологическим изменениям в них .

· Формирование клеточного возбуждения обусловлено именно транспортом ионов. Билипидный слой клеточной мембраны непроницаем для ионов (Na, K, Cl), для их транспорта в клетку и из клетки предназначены ионные каналы - специальные интегральные белки, характеризуемые свойствами специфичность (проницаемость для конкретного иона, что связанно с размером его в гидратной оболочке) и регулируемость.

Можно привести следующую классификацию ионных каналов:

1. Нерегулируемые (всегда открыты)

2. Регулируемые

· Потенциалзависимые

· Лигандзависимые

· Терочувствительные

· Механочувствительные

Особый интерес в рассмотрении темы возбуждения представляют потенциал - зависимые ионные каналы (рис. 2).

Рис. 2.

Схема иллюстрирует потенциалзависимый канал в покое (1), в активированном (2) и инактивированном (3) состоянии, что определяется значением мембранного потенциала. Соответственно: 1- канал не функционирует, т.к. воротный механизм (предположительно - заряженная группа белковой молекулы, образующей канал) закрыт; 2- канал открыт (в результате уменьшения МП) и пропускает катионы (J); 3-канал не пропускает ионов ввиду изменения пространственного положения другой заряженной группы. Вещество (ЛВ, обозначено треугольником) может ускорять и облегчать инактивацию (4), блокировать открытый канал (5), облегчать активацию (6а) или затруднять инактивацию (6б).

Ионные каналы предназначены для регуляции пассивного транспорта ионов путём диффузии, идущего по градиенту концентрации (из области с большей концентрацией в область с меньшей). Однако имеет место также транспорт против градиента концентрации, идущий с затратами энергии с помощью мембранных белков - АТФаз. Данные белки дефосфорилируют молекулы АТФ и за счёт энергии, высвобождающейся при гидролизе макроэргических связей, переносят ионы через мембрану против градиента концентрации по принципу “помпы” для откачки воды. По своей сути данный путь транспорта противопоставляется пассивному транспорту. Основным каналом активного транспорта ионов через мембрану является белок Na-KАТФаза, при гидролизе 1 молекулы АТФ переносящая 3Na из клетки и 2К в клетку. В целом на активный мембранный транспорт затрачивается 30% энергии АТФ от общего количества в клетке.

Цель ионного мембранного транспорта - поддержание разности концентраций ионов в цитоплазме и внешней среде. Действуя непрерывно и противоположно, компенсируя друг друга, пассивный и активный механизмы переноса ионов обеспечивают поддержание динамического концентрационного неравновесия, устойчивого во времени.

Мембранный потенциал покоя

Разность концентраций ионов - заряженных частиц - внутри клетки и снаружи обеспечивает разность зарядов цитоплазмы и внешней среды, а, следовательно, разность зарядов на внутренней и внешней поверхностях мембраны, что является условием возникновения мембранного потенциала. Потенциал покоя (ПП) - мембранный потенциал возбудимой клетки в невозбужденном состоянии. Он представляет собой разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны и составляет у теплокровных от -55 до -100 мВ. У нейронов и нервных волокон обычно составляет -70 мВ.

Так как заряд мембраны объясняется разностью концентраций ионов по обе стороны от неё, то и мембранный потенциал зависит от концентрации ионов в цитоплазме и межклеточной жидкости.

Для расчёта мембранного потенциала через концентрацию ионов используется уравнение Нернста.

Уравнение Нернста

Ф - мембранный потенциал покоя

R= 8,31 -универсальная газовая постоянная

Т - абсолютная температура

Z - заряд иона

F=96000 - постоянная Фарадея

Со - концентрация иона снаружи

Сi - концентрация ионов внутри

С помощью уравнения Нернста можно рассчитать равновесный трансмембранный потенциал для K + , который и определяет значение потенциала покоя. Но значение потенциала покоя полностью не совпадает с dф, так как в создании его участвуют также ионы натрия и хлора, вернее, их равновесные потенциалы.

Было доказано, что основной вклад в создание потенциала покоя вносит выходящий калиевый ток, который осуществляется через специфические белки-каналы - калиевые каналы постоянного тока. В покое калиевые каналы открыты, а натриевые каналы закрыты. Ионы калия выходят из клетки по градиенту концентрации, что создает на наружной стороне мембраны избыток положительных зарядов; при этом на внутренней стороне мембраны остаются отрицательные заряды. Некоторый (небольшой) вклад в создание потенциала покоя вносит также работа так называемого "натрий-калиевого насоса", который образован особым мембранным ферментом - натрий-калиевой АТФазой.

Потенциал покоя для большинства нейронов составляет величину порядка?60 мВ - ?70 мВ. У клеток невозбудимых тканей на мембране также имеется разность потенциалов, разная для клеток разных тканей и организмов.

Формирование потенциала покоя

Первый этап: создание незначительной (-10 мВ) отрицательности внутри клетки за счёт неравного асимметричного обмена Na + на K + в соотношении 3:2. В результате этого клетку покидает больше положительных зарядов с натрием, чем возвращается в неё с калием. Такая особенность работы натрий-калиевого насоса, осуществляющего взаимообмен этих ионов через мембрану с затратами энергии АТФ, обеспечивает его электрогенность.

Результаты деятельности мембранных ионных насосов-обменников на первом этапе формирования ПП таковы:

1. Дефицит ионов натрия (Na +) в клетке.

2. Избыток ионов калия (K +) в клетке.

3. Появление на мембране слабого электрического потенциала (-10 мВ).

Второй этап: создание значительной (-60 мВ) отрицательности внутри клетки за счёт утечки из неё через мембрану ионов K + . Ионы калия K + покидают клетку и уносят с собой из неё положительные заряды, доводя отрицательность до -70 мВ.

Итак, мембранный потенциал покоя - это дефицит положительных электрических зарядов внутри клетки, возникающий за счёт утечки из неё положительных ионов калия и электрогенного действия натрий-калиевого насоса.

Положительно заряженных ионов калия в окружающую среду из цитоплазмы клетки в процессе установления осмотического равновесия. Анионы органических кислот , нейтрализующие заряд ионов калия в цитоплазме, не могут выйти из клетки, однако ионы калия, концентрация которых в цитоплазме велика по сравнению с окружающей средой, диффундируют из цитоплазмы до тех пор, пока создаваемый ими электрический заряд не начнёт уравновешивать их градиент концентрации на клеточной мембране .

Энциклопедичный YouTube

    1 / 3

    ✪ Мембранные потенциалы - Часть 1

    ✪ Потенциал покоя: - 70 мВ. Деполяризация, реполяризация

    ✪ Потенциал покоя

    Субтитры

    Нарисую небольшую клетку. Это будет типичная клетка, и она наполнена калием. Мы знаем, что клетки любят накапливать его внутри себя. Много калия. Пусть его концентрация будет где-то 150 миллимоль на литр. Огромное количество калия. Возьмем это в скобки, потому что скобки обозначают концентрацию. Снаружи также имеется некоторое количество калия. Здесь концентрация будет примерно 5 миллимоль на литр. Я покажу вам, как будет устанавливаться градиент концентрации. Это не происходит само по себе. Для этого требуется много энергии. Два иона калия закачиваются внутрь, и одновременно с этим три иона натрия покидают клетку. Так ионы калия попадают внутрь изначально. Теперь, когда они внутри, будут ли они удерживаться тут сами по себе? Конечно, нет. Они находят анионы, небольшие молекулы или атомы с отрицательным зарядом, и располагаются вблизи них. Таким образом суммарный заряд становится нейтральным. У каждого катиона есть свой анион. И обычно эти анионы являются белками, какими-то структурами, у которых имеется отрицательная боковая цепь. Это может быть и хлорид, или, например, фосфат. Что угодно. Любой из этих анионов подойдет. Изображу еще несколько анионов. Итак, вот два иона калия, которые просто проникли внутрь клетки, вот как все это выглядит теперь. Если все хорошо и статично, то вот как они выглядят. И на самом деле, чтобы быть совсем справедливым, здесь также есть маленькие анионы, которые находятся здесь наравне с ионами калия. В клетке есть маленькие отверстия, через которые калий может вытекать наружу. Давайте посмотрим, как это будет выглядеть и как это повлияет на происходящее здесь. Итак, у нас есть эти маленькие каналы. Через них может пройти только калий. То есть эти каналы очень специфичны в отношении калия. Ничто другое не может пройти через них. Ни анионы, ни белки. Ионы калия как бы разыскивают эти каналы и рассуждают: «Ух ты, как интересно! Здесь столько калия! Надо бы выйти наружу». И все эти ионы калия просто покидают клетку. Выходят наружу. И в результате происходит интересная вещь. Большинство из них переместилось наружу. Но снаружи уже есть несколько ионов калия. Я сказал, что здесь был вот этот маленький ион, и он может теоретически проникнуть внутрь. Он может проникнуть в эту клетку, если захочет. Но дело в том, что в общей сложности, суммарно, у вас происходит больше перемещений наружу, чем внутрь. Теперь я стираю этот путь, потому что хочу, чтобы вы запомнили, что у нас имеется больше ионов калия, которые стремятся выйти наружу вследствие наличия градиента концентрации. Это первый этап. Давайте я это запишу. Градиент концентрации приводит к тому, что калий перемещается наружу. Калий начинает перемещаться наружу. Выходит из клетки. А что потом? Давайте, я нарисую его в процессе выхода наружу. Этот ион калия теперь находится здесь, а этот - здесь. Остаются только анионы. Они остались после ухода калия. И эти анионы начинают производить отрицательный заряд. Очень большой отрицательный заряд. Лишь несколько анионов, перемещающихся туда и обратно, создают отрицательный заряд. А ионы калия на внешней стороне думают, что все это очень интересно. Вот здесь имеется отрицательный заряд. А раз он там есть, они притягиваются к нему, поскольку сами обладают положительным зарядом. Их тянет к отрицательному заряду. Они хотят вернуться. Теперь задумайтесь. У вас имеется градиент концентрации, который выталкивает калий наружу. Но, с другой стороны, присутствует мембранный потенциал, - в данном случае отрицательный - который возникает из-за того, что калий оставил после себя анион. Этот потенциал стимулирует калий к тому, чтобы возвращаться назад. Одна сила, концентрация, выталкивает ион калия наружу, другая сила, мембранный потенциал, который создается калием, заставляет его возвращаться внутрь. Освобожу немного места. Сейчас покажу вам кое-что любопытное. Построим две кривые. Я постараюсь ничего не пропустить на этом слайде. Нарисую все здесь и тогда будет видно небольшой фрагмент этого. Строим две кривые. Одна из них будет для градиента концентрации, а другая - для мембранного потенциала. Это будут ионы калия снаружи. Если следить за ними в течение времени - это время - получится примерно следующее. Ионы калия стремятся выйти наружу и в определенной точке достичь равновесия. Проделаем то же самое со временем на этой оси. Это у нас будет мембранный потенциал. Начинаем в нулевой временной точке и получаем отрицательный результат. Отрицательный заряд будет становиться все больше и больше. Начинаем в нулевой точке мембранного потенциала, и именно в точке, где ионы калия начинают выходить наружу, происходит следующее. В общих чертах все очень похоже, но это происходит как бы параллельно изменениям концентрационного градиента. И когда эти два значения уравняются между собой, когда количество ионов калия, выходящих наружу, равно количеству ионов калия, которые возвращаются внутрь, получается вот такое плато. И оказывается, что заряд при этом составляет минус 92 милливольта. В этой точке, где практически отсутствует различие с точки зрения суммарного перемещения ионов калия, наблюдается равновесие. У него даже есть свое название - «равновесный потенциал для калия». При достижении значения минус 92 - а оно различается в зависимости от типа ионов - при достижении минус 92 для калия, создается равновесие потенциалов. Запишу, что заряд для калия равен минус 92. Это происходит только тогда, когда клетка проницаема лишь для одного элемента, например, для ионов калия. И все равно может возникнуть вопрос. Вы можете рассуждать: «Так, секундочку! Если ионы калия перемещаются наружу - что так и есть - тогда разве в определенной точке у нас не возникает более низкая концентрация, поскольку калий уже вышел отсюда, и более высокая концентрация вот здесь обеспечивается за счет перемещения калия наружу?» Технически это так. Здесь, снаружи, содержится больше ионов калия. И я не упомянул о том, что объем тоже меняется. Здесь получается более высокая концентрация. И то же самое справедливо для клетки. Технически здесь более низкая концентрация. Но фактически я не изменил значения. И причина в следующем. Посмотрите на эти значения, это моли. И это огромное число, согласны? 6,02 умножить на 10 в минус 23 степени, совсем не маленькое число. И если вы умножите его на 5, то получится примерно - давайте я быстро посчитаю, что у нас получилось. 6 умножить на 5 будет 30. А здесь миллимоли. От 10 до 20 молей. Это просто огромное количество ионов калия. А для создания отрицательного заряда их нужно совсем немного. То есть изменения, вызванные перемещениями ионов, будут незначительными по сравнению с 10 в 20 степени. Вот почему изменения концентрации не учитываются.

История открытия

Потенциал покоя для большинства нейронов составляет величину порядка −60 мВ - −70 мВ. У клеток невозбудимых тканей на мембране также имеется разность потенциалов, разная для клеток разных тканей и организмов.

Формирование потенциала покоя

ПП формируется в два этапа.

Первый этап: создание незначительной (-10 мВ) отрицательности внутри клетки за счёт неравного асимметричного обмена Na + на K + в соотношении 3: 2. В результате этого клетку покидает больше положительных зарядов с натрием, чем возвращается в неё с калием. Такая особенность работы натрий-калиевого насоса, осуществляющего взаимообмен этих ионов через мембрану с затратами энергии АТФ , обеспечивает его электрогенность.

Результаты деятельности мембранных ионных насосов-обменников на первом этапе формирования ПП таковы:

1. Дефицит ионов натрия (Na +) в клетке.

2. Избыток ионов калия (K +) в клетке.

3. Появление на мембране слабого электрического потенциала (-10 мВ).

Второй этап: создание значительной (-60 мВ) отрицательности внутри клетки за счёт утечки из неё через мембрану ионов K + . Ионы калия K + покидают клетку и уносят с собой из неё положительные заряды, доводя отрицательность до −70 мВ.

Итак, мембранный потенциал покоя - это дефицит положительных электрических зарядов внутри клетки, возникающий за счёт утечки из неё положительных ионов калия и электрогенного действия натрий-калиевого насоса.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top