Искусственные органы. Искусственные органы: человек умеет все

Искусственные органы. Искусственные органы: человек умеет все

Трансплантация – Пересадка органов - Eurodoctor.ru - 2010

Идеи о замене больных органов здоровыми возникли у человека еще несколько веков назад. Но несовершенные методы хирургии и анестезиологии не позволяли осуществить задуманное. В современном мире трансплантация органов заняла достойное место в лечении терминальных стадий многих заболеваний. Были спасены тысячи человеческих жизней. Но проблемы возникли с другой стороны. Катастрофический дефицит донорских органов, иммунологическая несовместимость и тысячи людей в листах ожидания того или иного органа, которые так и не дождались своей операции.

Ученые всего мира все чащи задумывались над созданием искусственных органов, которые могли бы заменить настоящие по своим функциям, и в этом направлении были достигнуты определенные успехи. Нам известны искусственные почка, легкие, сердце, кожа, кости, суставы, сетчатка, кохлеарные импланты.

Один из самых необходимых искусственных органов - это почка. В настоящее время сотни тысяч людей в мире для того, чтобы жить, должны регулярно получать лечение гемодиализом. Беспрецедентная « машинная агрессия», необходимость соблюдать диету, принимать медикаменты, ограничивать прием жидкости, потеря работоспособности, свободы, комфорта и различные осложнения со стороны внутренних органов сопровождают эту терапию.

Искусственная вентиляция легких (ИВЛ) – эффективное средство интенсивной терапии, обеспечивающее газообмен, имеет все необходимые режимы для обеспечения различных вариантов вентиляции легких. Но как самостоятельное лечение малоэффективно, все достоинства этого метода проявляются в комплексной терапии основного заболевания. При длительном применении также возможно развитие различных осложнений.

Принципы создания искусственного сердца были разработаны В. П. Демиховым еще в 1937 г. С течением времени это устройство претерпело колоссальные преобразования в размерах и способах использования Искусственное сердце – механический прибор, который временно берет на себя функцию кровообращения, в случае если сердце пациента не может полноценно обеспечивать организм достаточным количеством крови. Существенным его недостатком является потребность в постоянной подзарядке от электросети.

Все эти устройства можно рассматривать как временную меру, пока пациент ждет орган для пересадки. Все они далеки от совершенства и доставляют больному массу неудобств.

Идеальный искусственный орган должен соответствовать следующим параметрам:

  • его можно имплантировать в организм человека;
  • он не имеет сообщения с окружающей средой;
  • изготовлен из легкого, прочного, обладающего высокой биологической совместимостью материала;
  • долговечный, выдерживающий большие нагрузки;
  • полностью моделирует функции естественного аналога.

В начале XXI века возникли предпосылки появления принципиально новых подходов к восстановлению функций жизненно важных органов, основанных на технологиях клеточной и тканевой хирургии.

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы – вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые принимают на себя функции оперируемых органов, позволяют на время приостановить их работу.

«Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40 50 раз в минуту. Обычный поршень для этого не подходит: в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь и в других подобных устройствах используют мехи из гофрированного металла или пластика – сильфоны. Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

«Аппарат искусственного кровообращения» устроен аналогично. Его шланги подключаются к кровеносным сосудам хирургическим путем.

Первая попытка замещения функции сердца механическим аналогом была сделана еще в 1812 году. Однако до сих пор среди множества изготовленных аппаратов нет полностью удовлетворяющего врачей.

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия.

Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается – и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца.

Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Российский конструктор Александр Дробышев, несмотря на все трудности, продолжает создавать новые современные конструкции «Поиска», которые будут значительно дешевле зарубежных образцов.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» «Новакор» стоит 400 тысяч долларов. С ней можно целый год дома ждать операции.

В кейсе чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке – наружный сервис: компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома с больным – блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного – следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

Аппараты «Искусственная почка» работают уже довольно давно и успешно применяются медиками.

Еще в 1837 году, изучая процессы движения растворов через полупроницаемые мембраны, Т. Грехен впервые применил и ввел в употребление термин «диализ» (от греческого dialisis – отделение). Но лишь в 1912 году на основе этого метода в США был сконструирован аппарат, с помощью которого его авторы проводили в эксперименте удаление салицилатов из крови животных. В аппарате, названном ими «искусственная почка», в качестве полупроницаемой мембраны были использованы трубочки из коллодия, по которым текла кровь животного, а снаружи они омывались изотоническим раствором хлорида натрия. Впрочем, коллодий, примененный Дж. Абелем, оказался довольно хрупким материалом и в дальнейшем другие авторы для диализа пробовали иные материалы, такие как кишечник птиц, плавательный пузырь рыб, брюшину телят, тростник, бумагу.

Для предотвращения свертывания крови использовали гирудин – полипептид, содержащийся в секрете слюнных желез медицинской пиявки. Эти два открытия и явились прототипом всех последующих разработок в области внепочечного очищения.

Каковы бы ни были усовершенствования в этой области, принцип пока остается одним и тем же. В любом варианте «искусственная почка» включает в себя следующие элементы: полупроницаемая мембрана, с одной стороны которой течет кровь, а с другой стороны – солевой раствор. Для предотвращения свертывания крови используют антикоагулянты – лекарственные вещества, уменьшающие свертываемость крови. В этом случае происходит выравнивание концентраций низкомолекулярных соединений ионов, мочевины, креатинина, глюкозы, других веществ с малой молекулярной массой. При увеличении пористости мембраны возникает перемещение веществ с большей молекулярной массой. Если же к этому процессу добавить избыточное гидростатическое давление со стороны крови или отрицательное давление со стороны омывающего раствора, то процесс переноса будет сопровождаться и перемещением воды – конвекционный массообмен. Для переноса воды можно воспользоваться и осмотическим давлением, добавляя в диализат осмотически активные вещества. Чаще всего с этой целью использовали глюкозу, реже фруктозу и другие сахара и еще реже продукты иного химического происхождения. При этом, вводя глюкозу в больших количествах, можно получить действительно выраженный дегидратационный эффект, однако повышение концентрации глюкозы в диализате выше некоторых значений не рекомендуется из за возможности развития осложнений.

Наконец, можно вообще отказаться от омывающего мембрану раствора (диализата) и получить выход через мембрану жидкой части крови: вода и вещества с молекулярной массой широкого диапазона.

В 1925 году Дж. Хаас провел первый диализ у человека, а в 1928 году он же использовал гепарин, поскольку длительное применение гирудина было связано с токсическими эффектами, да и само его воздействие на свертывание крови было нестабильным. Впервые же гепарин был применен для диализа в 1926 году в эксперименте Х. Нехельсом и Р. Лимом.

Поскольку перечисленные выше материалы оказывались малопригодными в качестве основы для создания полупроницаемых мембран, продолжался поиск других материалов, и в 1938 году впервые для гемодиализа был применен целлофан, который в последующие годы длительное время оставался основным сырьем для производства полупроницаемых мембран.

Первый же аппарат «искусственная почка», пригодный для широкого клинического применения, был создан в 1943 году В. Колффом и Х. Берком. Затем эти аппараты усовершенствовались. При этом развитие технической мысли в этой области вначале касалось в большей степени именно модификации диализаторов и лишь в последние годы стало затрагивать в значительной мере собственно аппараты.

В результате появилось два основных типа диализатора, так называемых катушечных, где использовали трубки из целлофана, и плоскопараллельных, в которых применялись плоские мембраны.

В 1960 году Ф. Киил сконструировал весьма удачный вариант плоскопараллельного диализатора с пластинами из полипропилена, и в течение ряда лет этот тип диализатора и его модификации распространились по всему миру, заняв ведущее место среди всех других видов диализаторов.

Затем процесс создания более эффективных гемодиализаторов и упрощения техники гемодиализа развивался в двух основных направлениях: конструирование самого диализатора, причем доминирующее положение со временем заняли диализаторы однократного применения, и использование в качестве полупроницаемой мембраны новых материалов.

Диализатор – сердце «искусственной почки», и поэтому основные усилия химиков и инженеров были всегда направлены на совершенствование именно этого звена в сложной системе аппарата в целом. Однако техническая мысль не оставляла без внимания и аппарат как таковой.

В 1960 х годах возникла идея применения так называемых центральных систем, то есть аппаратов «искусственная почка», в которых диализат готовили из концентрата – смеси солей, концентрация которых в 30 34 раза превышала концентрацию их в крови больного.

Комбинация диализа «на слив» и техники рециркуляции была использована в ряде аппаратов «искусственная почка», например американской фирмой «Travenol». В этом случае около 8 литров диализата с большой скоростью циркулировало в отдельной емкости, в которую был помещен диализатор и в которую каждую минуту добавляли по 250 миллилитров свежего раствора и столько же выбрасывали в канализацию.

На первых порах для гемодиализа использовали простую водопроводную воду, потом из за ее загрязненности, в частности микроорганизмами, пробовали применять дистиллированную воду, но это оказалось очень дорогим и малопроизводительным делом. Радикально вопрос был решен после создания специальных систем по подготовке водопроводной воды, куда входят фильтры для ее очистки от механических загрязнений, железа и его окислов, кремния и других элементов, ионообменные смолы для устранения жесткости воды и установки так называемого «обратного» осмоса.

Много усилий было затрачено на совершенствование мониторных систем аппаратов «искусственная почка». Так, кроме постоянного слежения за температурой диализата, стали постоянно наблюдать с помощью специальных датчиков и за химическим составом диализата, ориентируясь на общую электропроводность диализата, которая меняется при снижении концентрации солей и повышается при увеличении таковой.

После этого в аппаратах «искусственная почка» стали применять ионо селективные проточные датчики, которые постоянно следили бы за ионной концентрацией. Компьютер же позволил управлять процессом, вводя из дополнительных емкостей недостающие элементы, или менять их соотношение, используя принцип обратной связи.

Величина ультрафильтрации в ходе диализа зависит не только от качества мембраны, во всех случаях решающим фактором является трансмембранное давление, поэтому в мониторах стали широко применять датчики давления: степень разрежения по диализату, величина давления на входе и выходе диализатора. Современная техника, использующая компьютеры, позволяет программировать процесс ультрафильтрации.

Выходя из диализатора, кровь попадает в вену больного через воздушную ловушку, что позволяет судить на глаз о приблизительной величине кровотока, склонности крови к свертыванию. Для предупреждения воздушной эмболии эти ловушки снабжают воздуховодами, с помощью которых регулируют в них уровень крови. В настоящее время во многих аппаратах на воздушные ловушки надевают ультразвуковые или фотоэлектрические детекторы, которые автоматически перекрывают венозную магистраль при падении в ловушке уровня крови ниже заданного.

Недавно ученые создали приборы, помогающие людям, потерявшим зрение – полностью или частично.

Чудо очки, например, разработаны в научно внедренческой производственной фирме «Реабилитация» на основе технологий, использовавшихся ранее лишь в военном деле. Подобно ночному прицелу, прибор действует по принципу инфракрасной локации. Черно матовые стекла очков на самом деле представляют собой пластины из оргстекла, между которыми заключено миниатюрное локационное устройство. Весь локатор вместе с очковой оправой весит порядка 50 граммов – примерно столько же, сколько и обыкновенные очки. И подбирают их, как и очки для зрячих, строго индивидуально, чтобы было и удобно, и красиво. «Линзы» не только выполняют свои прямые функции, но и прикрывают дефекты глаз. Из двух десятков вариантов каждый может выбрать для себя наиболее подходящий.

Пользоваться очками совсем не трудно: надо надеть их и включить питание. Источником энергии для них служит плоский аккумулятор размерами с сигаретную пачку. Здесь же, в блоке, помещается и генератор.

Излучаемые им сигналы, натолкнувшись на преграду, возвращаются назад и улавливаются «линзами приемниками». Принятые импульсы усиливаются, сравниваются с пороговым сигналом, и, если есть преграда, тотчас звучит зуммер – тем громче, чем ближе подошел к ней человек. Дальность действия прибора можно регулировать, используя один из двух диапазонов.

Работы по созданию электронной сетчатки успешно ведутся американскими специалистами НАСА и Главного центра при университете Джона Гопкинса.

На первых порах они постарались помочь людям, у которых еще сохранились кое какие остатки зрения. «Для них созданы телеочки, – пишут в журнале «Юный техник» С. Григорьев и Е. Рогов, – где вместо линз установлены миниатюрные телеэкраны. Столь же миниатюрные видеокамеры, расположенные на оправе, пересылают в изображение все, что попадает в поле зрения обычного человека. Однако для слабовидящего картина еще и дешифруется с помощью встроенного компьютера. Такой прибор особых чудес не создает и слепых зрячими не делает, считают специалисты, но позволит максимально использовать еще оставшиеся у человека зрительные способности, облегчит ориентацию.

Например, если у человека осталась хотя бы часть сетчатки, компьютер «расщепит» изображение таким образом, чтобы человек мог видеть окружающее хотя бы с помощью сохранившихся периферийных участков.

По оценкам разработчиков, подобные системы помогут примерно 2,5 миллионов людей, страдающих дефектами зрения. Ну а как быть с теми, у кого сетчатка практически полностью утрачена? Для них ученые глазного центра, работающего при университете Дюка (штат Северная Каролина), осваивают операции по вживлению электронной сетчатки. Под кожу имплантируются специальные электроды, которые, будучи соединены с нервами, передают изображение в мозг. Слепой видит картину, состоящую из отдельных светящихся точек, очень похожую на демонстрационное табло, что устанавливают на стадионах, вокзалах и в аэропортах. Изображение на «табло» опять таки создают миниатюрные телекамеры, укрепленные на очковой оправе».

И, наконец, последнее слово науки на сегодняшний день – попытка методами современной микротехнологии создать новые чувствительные центры на поврежденной сетчатке. Такими операциями занимаются сейчас в Северной Каролине профессор Рост Пропет и его коллеги. Совместно со специалистами НАСА они создали первые образцы субэлектронной сетчатки, которая непосредственно имплантируется в глаз.

«Наши пациенты, конечно, никогда не смогут любоваться полотнами Рембрандта, – комментирует профессор. – Однако различать, где дверь, а где окно, дорожные знаки и вывески они все таки будут…»

100 великих чудес техники

Санкт-Петербургский Государственный Политехнический Университет

КУРСОВАЯ РАБОТА

Дисциплина: Материалы медицинского применения

Тема: Искусственное легкое

Санкт-Петербург

Перечень условных обозначений, терминов и сокращений 3

1. Введение. 4

2. Анатомия дыхательной системы человека.

2.1. Воздухоносные пути. 4

2.2. Легкие. 5

2.3. Легочная вентиляция. 5

2.4. Изменения объема легких. 6

3. Искусственная вентиляция легких. 6

3.1. Основные методы искусственной вентиляции легких. 7

3.2. Показания к применению искусственной вентиляции легких. 8

3.3. Контроль адекватности искусственной вентиляции легких.

3.4. Осложнения при искусственной вентиляции легких. 9

3.5. Количественные характеристики режимов искусственной вентиляции легких. 10

4. Аппарат искусственной вентиляции легких. 10

4.1. Принцип работы аппарата искусственной вентиляции легких. 10

4.2. Медико-технические требования к аппарату ИВЛ. 11

4.3. Схемы для подачи газовой смеси пациенту.

5. Аппарат искусственного кровообращения. 13

5.1. Мембранные оксигенаторы. 14

5.2. Показания к экстракорпоральной мембранной оксигенации. 17

5.3. Каннюляция для экстракорпоральной мембранной оксигенации. 17

6. Заключение. 18

Список использованной литературы.

Перечень условных обозначений, терминов и сокращений

ИВЛ – искусственная вентиляция легких.

АД – артериальное давление.

ПДКВ — положительное давление в конце выдоха.

АИК – аппарат искусственного кровообращения.

ЭКМО — экстракорпоральная мембранная оксигенация.

ВВЭКМО — веновенозная экстракорпоральная мембранная оксигенация.

ВАЭКМО – веноартериальная экстракорпоральная мембранная оксигенация.

Гиповолемия — уменьшение объёма циркулирующей крови.

Обычно под этим более конкретно подразумевается снижение объёма плазмы крови.

Гипоксемия — понижение содержания кислорода в крови в результате нарушения кровообращения, повышенной потребности тканей в кислороде, уменьшения газообмена в лёгких при их заболеваниях, уменьшения содержания гемоглобина в крови и др.

Гиперкапния — повышенное парциальное давление (и содержание) CO2 в артериальной крови (и в организме).

Интубация — введение в гортань через рот специальной трубки с целью устранения нарушения дыхания при ожогах, некоторых травмах, тяжёлых спазмах гортани, дифтерии гортани и её острых, быстро разрешающихся отёках, например аллергических.

Трахеостома — это искусственно сформированный свищ трахеи, выведенный в наружную область шеи, для дыхания, минуя носоглотку.

В трахеостому вставляется трахеостомическая канюля.

Пневмоторакс — состояние, характеризующееся скоплением воздуха или газа в полости плевры.

1. Введение.

Дыхательная система человека обеспечивает по-сту-п-ле-ние в ор-га-низм ки-сло-ро-да и уда-ле-ние уг-ле-ки-сло-го га-за. Транс-порт га-зов и дру-гих не-об-хо-ди-мых ор-га-низ-му ве-ществ осу-ще-ст-в-ля-ет-ся с по-мо-щью кро-ве-нос-ной сис-те-мы.

Функ-ция ды-ха-тель-ной сис-те-мы сво-дит-ся лишь к то-му, что-бы снаб-жать кровь дос-та-точ-ным ко-ли-че-ст-вом ки-сло-ро-да и уда-лять из нее уг-ле-кис-лый газ. Хи-ми-че-ское вос-ста-нов-ле-ние мо-ле-ку-ляр-но-го ки-сло-ро-да с об-ра-зо-ва-ни-ем во-ды слу-жит для мле-ко-пи-таю-щих ос-нов-ным ис-точ-ни-ком энер-гии. Без нее жизнь не мо-жет про-дол-жать-ся доль-ше не-сколь-ких се-кунд.

Вос-ста-нов-ле-нию ки-сло-ро-да со-пут-ст-ву-ет об-ра-зо-ва-ние CO2 .

Ки-сло-род, входящий в CO2 , не про-ис-хо-дит не-по-сред-ст-вен-но из мо-ле-ку-ляр-но-го ки-сло-рода. Ис-поль-зо-ва-ние O2 и об-ра-зо-ва-ние CO2 свя-за-ны ме-ж-ду со-бой про-ме-жу-точ-ны-ми ме-та-бо-ли-че-ски-ми ре-ак-ция-ми; тео-ре-ти-че-ски ка-ж-дая из них длят-ся некоторое вре-мя.

Об-мен O2 и CO2 ме-ж-ду ор-га-низ-мом и сре-дой на-зы-ва-ет-ся ды-ха-ни-ем. У выс-ших жи-вот-ных про-цесс ды-ха-ния осу-ще-ст-в-ля-ет-ся бла-го-да-ря ря-ду по-сле-до-ва-тель-ных про-цес-сов.

1. Об-мен га-зов ме-ж-ду сре-дой и лег-ки-ми, что обыч-но обо-зна-ча-ют как "ле-гоч-ную вен-ти-ля-цию".

Об-мен га-зов ме-ж-ду аль-ве-о-ла-ми лег-ких и кро-вью (ле-гоч-ное ды-ха-ние).

3. Об-мен га-зов ме-ж-ду кро-вью и тка-ня-ми. Га-зы пе-ре-хо-дят внут-ри тка-ни к мес-там по-треб-ле-ния (для O2) и от мест об-ра-зо-ва-ния (для CO2) (кле-точ-ное ды-ха-ние).

Вы-па-де-ние лю-бо-го из этих про-цес-сов при-во-дит к на-ру-ше-ни-ям ды-ха-ния и соз-да-ет опас-ность для жиз-ни человека.

2.

Ана-то-мия дыхательной системы человека.

Ды-ха-тель-ная сис-те-ма че-ло-ве-ка со-сто-ит из тка-ней и ор-га-нов, обес-пе-чи-ваю-щих ле-гоч-ную вен-ти-ля-цию и ле-гоч-ное ды-ха-ние. К воз-ду-хо-нос-ным пу-тям от-но-сят-ся: нос, по-лость но-са, но-со-глот-ка, гор-тань, тра-хея, брон-хи и брон-хио-лы.

Лег-кие со-сто-ят из брон-хи-ол и аль-ве-о-ляр-ных ме-шоч-ков, а так-же из ар-те-рий, ка-пил-ля-ров и вен ле-гоч-но-го кру-га кро-во-об-ра-ще-ния. К эле-мен-там ко-ст-но-мы-шеч-ной сис-те-мы, свя-зан-ным с ды-ха-ни-ем, от-но-сят-ся реб-ра, меж-ре-бер-ные мыш-цы, диа-фраг-ма и вспо-мо-га-тель-ные ды-ха-тель-ные мыш-цы.

Воз-ду-хо-нос-ные пу-ти.

Нос и по-лость но-са слу-жат про-во-дя-щи-ми ка-на-ла-ми для воз-ду-ха, в ко-то-рых он на-гре-ва-ет-ся, ув-лаж-ня-ет-ся и фильт-ру-ет-ся. По-лость но-са вы-стла-на бо-га-то вас-ку-ля-ри-зо-ван-ной сли-зи-стой обо-лоч-кой. Мно-го-чис-лен-ные же-ст-кие во-лос-ки, а так-же снаб-жен-ные рес-нич-ка-ми эпи-те-ли-аль-ные и бо-ка-ло-вид-ные клет-ки слу-жат для очи-ст-ки вды-хае-мо-го воз-ду-ха от твер-дых час-тиц.

В верх-ней час-ти по-лос-ти ле-жат обо-ня-тель-ные клет-ки.

Гор-тань ле-жит ме-ж-ду тра-хе-ей и кор-нем язы-ка. По-лость гор-та-ни раз-де-ле-на дву-мя склад-ка-ми сли-зи-стой обо-лоч-ки, не пол-но-стью схо-дя-щи-ми-ся по сред-ней ли-нии. Про-стран-ст-во ме-ж-ду эти-ми склад-ка-ми — го-ло-со-вая щель за-щи-ще-но пла-стин-кой во-лок-ни-сто-го хря-ща — над-гор-тан-ни-ком.

Тра-хея на-чи-на-ет-ся у ниж-не-го кон-ца гор-та-ни и спус-ка-ет-ся в груд-ную по-лость, где де-лит-ся на пра-вый и ле-вый брон-хи; стен-ка ее об-ра-зо-ва-на со-еди-ни-тель-ной тка-нью и хря-щом.

Час-ти, при-мы-каю-щие к пи-ще-во-ду, за-ме-ще-ны фиб-роз-ной связ-кой. Пра-вый бронх обыч-но ко-ро-че и ши-ре ле-во-го. Вой-дя в лег-кие, глав-ные брон-хи по-сте-пен-но де-лят-ся на все бо-лее мел-кие труб-ки (брон-хио-лы), са-мые мел-кие из ко-то-рых — ко-неч-ные брон-хио-лы яв-ля-ют-ся по-след-ним эле-мен-том воз-ду-хо-нос-ных пу-тей. От гор-та-ни до ко-неч-ных брон-хи-ол труб-ки вы-стла-ны мер-ца-тель-ным эпи-те-ли-ем.

2.2.

В це-лом лег-кие име-ют вид губ-ча-тых, по-рис-тых ко-ну-со-вид-ных об-ра-зо-ва-ний, ле-жа-щих в обе-их по-ло-ви-нах груд-ной по-лос-ти. Наи-мень-ший струк-тур-ный эле-мент лег-ко-го — доль-ка со-сто-ит из ко-неч-ной брон-хио-лы, ве-ду-щей в ле-гоч-ную брон-хио-лу и аль-ве-о-ляр-ный ме-шок. Стен-ки ле-гоч-ной брон-хио-лы и аль-ве-о-ляр-но-го меш-ка об-ра-зу-ют уг-луб-ле-ния — аль-ве-о-лы. Такая структура легких увеличивает их дыхательную поверхность, которая в 50-100 раз превышает поверхность тела.

Стен-ки аль-ве-ол со-сто-ят из од-но-го слоя эпи-те-ли-аль-ных кле-ток и ок-ру-же-ны ле-гоч-ны-ми ка-пил-ля-ра-ми. Внут-рен-няя по-верх-ность аль-ве-о-лы по-кры-та по-верх-но-ст-но-ак-тив-ным ве-ще-ст-вом сур-фак-тан-том. От-дель-ная аль-ве-о-ла, тес-но со-при-ка-саю-щая-ся с со-сед-ни-ми струк-ту-ра-ми, име-ет фор-му не-пра-виль-но-го мно-го-гран-ни-ка и при-бли-зи-тель-ные раз-ме-ры до 250 мкм.

При-ня-то счи-тать, что об-щая по-верх-ность аль-ве-ол, че-рез ко-то-рую осу-ще-ст-в-ля-ет-ся га-зо-об-мен, экс-по-нен-ци-аль-но за-ви-сит от ве-са те-ла. С воз-рас-том от-ме-ча-ет-ся умень-ше-ние пло-ща-ди по-верх-но-сти аль-ве-ол.

Ка-ж-дое лег-кое ок-ру-же-но меш-ком — плев-рой. На-руж-ный (па-рие-таль-ный) лис-ток плев-ры при-мы-ка-ет к внут-рен-ней по-верх-но-сти груд-ной стен-ки и диа-фраг-ме, внут-рен-ний (вис-це-раль-ный) по-кры-ва-ет лег-кое.

Щель ме-ж-ду ли-ст-ка-ми на-зы-ва-ет-ся плев-раль-ной по-ло-стью. При дви-же-нии груд-ной клет-ки внут-рен-ний лис-ток обыч-но лег-ко сколь-зит по на-руж-но-му. Дав-ле-ние в плев-раль-ной по-лос-ти все-гда мень-ше ат-мо-сфер-но-го (от-ри-ца-тель-ное).

Искусственные органы: человек умеет все

В ус-ло-ви-ях по-коя внут-ри-плев-раль-ное дав-ле-ние у че-ло-ве-ка в сред-нем на 4,5 торр ни-же ат-мо-сфер-но-го (-4,5 торр). Меж-плев-раль-ное про-стран-ст-во ме-ж-ду лег-ки-ми на-зы-ва-ет-ся сре-до-сте-ни-ем; в нем на-хо-дят-ся тра-хея, зоб-ная же-ле-за (ти-мус) и серд-це с боль-ши-ми со-су-да-ми, лим-фа-ти-че-ские уз-лы и пи-ще-вод.

Ле-гоч-ная ар-те-рия не-сет кровь от пра-во-го же-лу-доч-ка серд-ца, она де-лит-ся на пра-вую и ле-вую вет-ви, ко-то-рые на-прав-ля-ют-ся к лег-ким.

Эти ар-те-рии вет-вят-ся, сле-дуя за брон-ха-ми, снаб-жа-ют круп-ные струк-ту-ры лег-ко-го и об-ра-зу-ют ка-пил-ля-ры, оп-ле-таю-щие стен-ки аль-ве-ол. Воз-дух в аль-ве-о-ле от-де-лен от кро-ви в ка-пил-ля-ре стен-кой аль-ве-о-лы, стен-кой ка-пил-ля-ра и в не-ко-то-рых слу-ча-ях про-ме-жу-точ-ным сло-ем ме-ж-ду ни-ми.

Из ка-пил-ля-ров кровь по-сту-па-ет в мел-кие ве-ны, ко-то-рые в кон-це кон-цов со-еди-ня-ют-ся и об-ра-зу-ют ле-гоч-ные ве-ны, дос-тав-ляю-щие кровь в ле-вое пред-сер-дие.

Брон-хи-аль-ные ар-те-рии боль-шо-го кру-га то-же при-но-сят кровь к лег-ким, а имен-но снаб-жа-ют брон-хи и брон-хио-лы, лим-фа-ти-че-ские уз-лы, стен-ки кро-ве-нос-ных со-су-дов и плев-ру.

Боль-шая часть этой кро-ви от-те-ка-ет в брон-хи-аль-ные ве-ны, а от-ту-да — в не-пар-ную (спра-ва) и в по-лу-не-пар-ную (сле-ва). Очень не-боль-шое ко-ли-че-ст-во ар-те-ри-аль-ной брон-хи-аль-ной кро-ви по-сту-па-ет в ле-гоч-ные ве-ны.

10 искусственных органов для создания настоящего человека

Оркестрио́н (нем. Orchestrion) - название ряда музыкальных инструментов, принцип действия которых подобен орга́ну и гармонике.

Первоначально оркестрионом назывался переносной орган, сконструированный по замыслу Аббата Фоглера в 1790 году. Он содержал около 900 труб, 4 мануала по 63 клавиши в каждом из них и 39 педалей. «Революционность» оркестриона Фоглера заключалась в активном использовании комбинационных тонов, что позволило существенно уменьшить размеры лабиальных органных труб.

В 1791 году такое же название было дано инструменту, который создал Томас Антон Кунц в Праге. Этот инструмент был оснащён как органными трубами, так и струнами, подобными фортепианным. Оркестрион Кунца имел 2 мануала по 65 клавиш и 25 педалей, имел 21 регистр, 230 струн и 360 труб.

В начале XIX века под названием оркестрион (также оркестри́на ) появился ряд автоматических механических инструментов, приспособленных для имитации звучания оркестра.

Инструмент имел вид шкафа, внутри которого был помещён пружинный или пневматический механизм, который при вбрасывании монеты приводился в действие. Расположение струн или труб инструмента было подобрано таким образом, чтобы при работе механизма звучали определённые музыкальные произведения. Особую популярность инструмент приобрёл в 1920-е годы в Германии.

Позднее оркестрион был вытеснен проигрывателями граммофонных пластинок.

См. также

Примечания

Литература

  • Оркестрион // Музыкальные инструменты: энциклопедия. - М.: Дека-ВС, 2008. - С. 428-429. - 786 с.
  • Оркестрион // Большая российская энциклопедия. Том 24. - М., 2014. - С. 421.
  • Мирек А.М. Оркестрион Фоглера // Справочник к схеме гармоник. - М.: Альфред Мирек, 1992. - С. 4-5. - 60 с.
  • Оркестрион // Музыкальный энциклопедический словарь. - М.: Советская энциклопедия, 1990. - С. 401. - 672 с.
  • Оркестрион // Музыкальная энциклопедия. - М.: Советская энциклопедия, 1978. - Т. 4. - С. 98-99. - 976 с.
  • Herbert Jüttemann: Orchestrien aus dem Schwarzwald : Instrumente, Firmen und Fertigungsprogramme.

    Bergkirchen: 2004. ISBN 3-932275-84-5.

CC© wikiredia.ru

Эксперимент, проведенный в Университете Гранады стал первым в ходе которого искусственная кожа была создана с дермой на основе арагозо-фибринного биоматериала. До сих пор использовались другие биоматериалы вроде коллагена, фибрина, полигликолиевой кислоты, хитозана и т.д.

Была создана более стабильная кожа с функционалом похожим на функционал обычной человеческой кожи.

Искусственный кишечник

В 2006 году английские ученые оповестили мир о создании искусственного кишечника, способного в точности воспроизвести физические и химические реакции, происходящие в процессе пищеварения.

Орган сделан из специального пластика и металла, которые не разрушаются и не подвергаются коррозии.

Тогда была впервые в истории проведена работа, которая демонстрировала, как плюрипотентные стволовые клетки человека в чашке Петри могут быть собраны в ткань организма с трехмерной архитектурой и типом связей, свойственных естественно развившейся плоти.

Искусственная кишечная ткань может стать терапевтическим средством №1 для людей, страдающих некротическим энтероколитом, воспалением кишечника и синдромом короткого кишечника.

В ходе исследований группа ученых под руководством доктора Джеймса Уэллса использовала два типа плюрипотентных клеток: эмбриональные человеческие стволовые клетки и индуцированные, полученные путем перепрограммирования клеток человеческой кожи.

Эмбриональные клетки называют плюрипотентными, потому что они способны превращаться в любой из 200 различных типов клеток человеческого организма.

Индуцированные клетки подходят для «причесывания» генотипа конкретного донора, без риска дальнейшего отторжения и связанных с этим осложнений. Это новое изобретение науки, поэтому пока неясно, обладают ли индуцированные клетки взрослого организма тем же потенциалом, что и клетки зародыша.

Искусственная ткань кишечника была «выпущена» в двух видах, собранная из двух разных типов стволовых клеток.

Чтобы превратить отдельные клетки в ткань кишечника, потребовалось много времени и сил.

Ученые собирали ткань, используя химикаты, а также белки, которые называют факторами роста. В пробирке живое вещество росло так же, как и в развивающемся эмбрионе человека.

Искусственные органы

Сначала получается так называемая эндодерма, из которой вырастают пищевод, желудок, кишки и легкие, а также поджелудочная железа и печень. Но медики дали команду эндодерме развиться только лишь в первичные клетки кишечника. На их рост до ощутимых результатов потребовалось 28 дней. Ткань созрела и обрела абсорбционную и секреторную функциональность, свойственную здоровому пищеварительному тракту человека. В ней также появились и специфические стволовые клетки, с которыми теперь работать будет значительно легче.

Искусственная кровь

Доноров крови всегда не хватает – российские клиники обеспечены препаратами крови всего на 40 % от нормы.

Для проведения одной операции на сердце с использованием системы искусственного обращения требуется кровь 10 доноров. Есть вероятность, что проблему поможет решить искусственная кровь – ее, как конструктор, уже начали собирать ученые. Созданы синтетические плазма, эритроциты и тромбоциты. Еще немного, и мы сможем стать Терминаторами!

Плазма – один из основных компонентов крови, ее жидкая часть. «Пластиковая плазма», созданная в университете Шеффилда (Великобритания), может выполнять все функции настоящей и абсолютно безопасна для организма. В ее состав входят химические вещества, способные переносить кислород и питательные вещества. На сегодняшний день искусственная плазма предназначена для спасения жизни в экстремальных ситуациях, но в ближайшем будущем ее можно будет использовать повсеместно.

Что ж, впечатляет. Хотя и немного страшновато представить, что внутри тебя течет жидкий пластик, точнее, пластиковая плазма. Ведь чтобы стать кровью, ее еще нужно наполнить эритроцитами, лейкоцитами, тромбоцитами. Помочь британским коллегам с «кровавым конструктором» решили специалисты из Калифорнийского университета (США).

Они разработали полностью синтетические эритроциты из полимеров, способные переносить кислород и питательные вещества от легких к органам и тканям и обратно, то есть выполнять основную функцию настоящих красных кровяных клеток.

Кроме того, они могут доставлять к клеткам лекарственные препараты. Ученые уверены, что в ближайшие годы завершатся все клинические испытания искусственных эритроцитов, и их можно будет применять для переливания.

Правда, предварительно разбавив их в плазме – хоть в естественной, хоть в синтетической.

Не желая отставать от калифорнийских коллег, искусственные тромбоциты разработали ученые из университета Case Western Reserve штата Огайо. Если быть точным, то это не совсем тромбоциты, а их синтетические помощники, тоже состоящие из полимерного материала. Их главная задача – создать эффективную среду для склеивания тромбоцитов, что необходимо для остановки кровотечения.

Сейчас в клиниках для этого используют тромбоцитарную массу, но ее получение – дело кропотливое и довольно долгое. Нужно найти доноров, произвести строгий отбор тромбоцитов, которые к тому же хранятся не более 5 суток и подвержены бактериальным инфекциям.

Появление искусственных тромбоцитов снимает все эти проблемы. Так что изобретение станет хорошим помощником и позволит врачам не бояться кровотечений.

    Настоящая & искусственная кровь. Что лучше?

    Термин «искусственная кровь» немного неточен. Настоящая кровь выполняет большое количество задач. Искусственная кровь пока может выполнять только некоторые из них Если будет создана полноценная искусственная кровь, способная полностью заменить настоящую, это будет настоящий прорыв в медицине.

    Искусственная кровь выполняет две основные функции:

    1) увеличивает объем кровяных телец

    2) выполняет функции обогащения кислородом.

    В то время как вещество, увеличивающее объем кровяных телец, уже давно используется в больницах, кислородная терапия пока находится в стадии разработки и клинических исследований.

      3.Предполагаемые достоинства и недостатки Искусственной крови

    Искусственные кости

    Медики из Империал колледжа в Лондоне утверждают, что им удалось псевдо-костный материал, который наиболее похож по своему составу на настоящие кости и имеет минимальные шансы на отторжение.

    Новые искусственные костные материалы фактически состоят сразу из трех химических соединений, которые симулируют работу настоящих клеток костной ткани.

    Медики и специалисты по протезированию по всему миру сейчас ведут разработки новых материалов, которые могли бы послужить полноценной заменой костной ткани в организме человека.

    Впрочем, на сегодня ученые создали лишь подобные костям материалы, пересаживать которые вместо настоящих костей, пусть и сломанных, до сих пор не доводилось.

    Основная проблема таких псевдо-костных материалов заключается в том, что организм их не распознает как «родные» костные ткани и не приживается к ним. В итоге, в организме пациента с пересаженными костями могут начаться масштабные процессы отторжения, что в худшем варианте может даже привести к масштабному сбою в иммунной системе и смерти пациента.

    Искусственное легкое

    Американские ученые из Йельского университета под руководством Лауры Никласон совершили прорыв: им удалось создать искусственное легкое и пересадить его крысам.

    Также отдельно было создано легкое, работающее автономно и имитирующее работу настоящего органа

    Надо сказать, что человеческое легкое представляет собой сложный механизм.

    Площадь поверхности одного легкого у взрослого человека составляет около 70 квадратных метров, собранных так, чтобы обеспечивать эффективный перенос кислорода и углекислого газа между кровью и воздухом. Но ткань легкого трудно восстанавливать, поэтому на данный момент единственный способ заменить поврежденные участки органа — пересадка. Данная процедура весьма рискованна в виду высокого процента отторжений.

    Согласно статистике, через десять лет после трансплантации в живых остаются лишь 10-20% пациентов.

    «Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40-50 раз в минуту. Обычный поршень для этого не подходит, в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь, и в других подобных устройствах используют мехи из гофрированного металла или пластика - сильфоны.

    Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

    Сменить руку? Не вопрос!..

    Искусственные руки

    Искусственные руки в XIX в.

    разделялись на «рабочие руки» и «руки косметические», или предметы роскоши.

    Для каменщика или чернорабочего ограничивались наложением на предплечье или плечо бандажа из кожаной гильзы с арматурой, к которой прикреплялся соответствующий профессии рабочего инструмент - клещи, кольцо, крючок и т.

    Косметические искусственные руки, смотря по занятиям, образу жизни, степени образования и другим условиям, бывали более или менее сложны.

    Искусственная рука могла иметь форму естественной, в изящной лайковой перчатке, способная производить тонкие работы; писать и даже тасовать карты (как известная рука генерала Давыдова).

    Если ампутация не достигла локтевого сустава, то при помощи искусственной руки возможно было возвратить функцию верхней конечности; но если ампутировано верхнее плечо, то работа рукой была возможна лишь через посредство объемистых, весьма сложных и требующих большого усилия аппаратов.

    Помимо последних, искусственные верхние конечности состояли из двух кожаных или металлических гильз для верхнего плеча и предплечья, которые над локтевым суставом были подвижно соединены в шарнирах посредством металлических шин. Кисть былa сделана из легкого дерева и неподвижно прикреплена к предплечью или же подвижна.

    В суставах каждого пальца находились пружины; от концов пальцев идут кишечные струны, которые соединялись позади кистевого сустава и продолжались в виде двух более крепких шнурков, причем один, пройдя по валикам через локтевой сустав, прикреплялся на верхнем плече к пружине, другой же, также двигаясь на блоке, свободно оканчивался ушком.

    При произвольном сгибании локтевого сустава пальцы смыкались в этом аппарате и совершенно закрывались, если плечо согнуто под прямым углом.

    Для заказов искусственных рук достаточно было указать меры длины и объема культи, а равно и здоровой руки, и объяснить технику цели, которым они должны служить.

    Протезы для рук должны обладать всеми нужными свойствами, к примеру, функцией закрытия и открытия кисти, удержания и выпускание из рук любой вещи, и у протеза должен быть вид, который как можно точнее копирует утраченную конечность.

    Существуют активные и пассивные протезы рук.

    Пассивные только копируют внешний вид руки, а активные, которые делятся на биоэлектрические и механические, выполняют гораздо больше функций. Механическая кисть довольно точно копирует настоящую руку, так что любой человек с ампутацией сможет расслабиться среди людей, а также сможет брать предмет и выпускать его.

    Бандаж, который крепится на плечевом поясе, приводит кисть в движение.

    Биоэлектрический протез работает благодаря электродам, считывающим ток, который вырабатывается мускулами во время сокращения, сигнал передаётся на микропроцессор и протез движется.

    Искусственные ноги

    Для человека с физическим повреждением нижних конечностей, конечно же, важны качественные протезы для ног.

    Именно от уровня ампутации конечности и будет зависеть правильный выбор протеза, который заменит и сможет даже восстановить множество функций, которые были свойственны конечности.

    Существуют протезы для людей, как молодых, так и пожилых, а также для детей, спортсменов, и тех, кто, несмотря на ампутацию, ведёт такую же активную жизнь. Протез высокого класса состоит из системы стоп, коленных шарниров, адаптеров, сделанных из материала высокого класса и повышенной прочности.

    Страницы:← предыдущая1234следующая →


Искусственные механические органы - пожалуй, наиболее реалистичный на сегодня способ починить порядком износившееся тело, которому уже не поможет традиционный терапевтический «ремонт». Что касается других методов, то пересадка органов осложняется дефицитом доноров и биологической несовместимостью. А стволовые клетки, о которых так много говорят, к сожалению, пока слишком далеки от практического применения.

Первыми искусственными органами, видимо, стоит считать зубные протезы. Позднее хирурги стали вживлять металлические суставы и связки, а затем появились и электронные протезы конечностей. Но назвать эти аппараты «революцией в искусственных органах» можно лишь с натяжкой. Конечно, они улучшают качество жизни, но прожить можно и без них. Для создания таких аппаратов главное - подобрать прочный, легкий и безопасный материал, изготовить из него нужную деталь и разработать технологию «установки» в человеческое тело.

Другое дело - наши внутренние органы. Миллионы людей ежегодно умирают от тяжелых болезней сердца, легких, печени и почек, и помочь им зачастую нет никакой возможности. Почти все изобретенные аппараты для поддержания жизни - искусственное легкое, печень или почки - занимают места не меньше, чем холодильник и рассматриваются лишь как временная мера. Как правило, пациент находится около такой машины постоянно и ожидает органа для пересадки. Но подходящих доноров удается найти далеко не всегда.

Но не все так безнадежно. Самым «простым» из этих органов является сердце. Еще в 1938 году американские хирурги впервые использовали аппарат искусственного кровообращения. Не так давно было создано искусственное сердце AbioCor, которое позволяет человеку не просто «доживать», а ходить и даже заниматься спортом. А последняя разработка - австралийский прибор VentrAssist - вовсе должна работать 50 лет. Но об этом аппарате мы расскажем позднее, потому что его технические характеристики будут выглядеть слишком блекло без теоретического вступления.

Параметры искусственного тела

Идеальные искусственные органы - это машины, которые будут работать десятки лет под большими нагрузками и не требовать какого-либо технического обслуживания. Скажем, мощность сердца человека в покое составляет чуть больше 3 ватт. Это значит, что за день оно совершает работу почти в 90 килоджоулей. То есть «поднимает» тонну груза на четвертый этаж. При физической нагрузке, естественно, его производительность должна значительно возрастать. А теперь представьте, что такой аппарат еще должен умещаться в груди, иметь запас энергии, и не останавливаться ни на минуту в течение всей жизни.

Искусственные легкие - не менее сложная задача. Поверхность «оригинальных» дыхательных органов примерно равна теннисному корту. За одну минуту на ней двадцать раз равномерно «разливается» и убирается стакан крови. Кроме того, постоянно происходит самоочищение легких от сажи, пыли и других вредных частиц, которые мы вдыхаем. Если добавить, что такой орган по объему не должен превышать пяти литров, становится понятно, что работа над таким аппаратом еще очень далека от завершения.

Печень - тоже довольно маленький орган, в котором умещается «химический завод» и мощная система фильтрации. Только за одну минуту через нее проходит полтора литра крови, которую нужно очистить от продуктов жизнедеятельности, не нарушив при этом электролитный, гормональный и белковый баланс. Многие вещества, например - алкоголь, лекарства, жиры, не просто задерживаются в печени, но и перерабатываются в форму, наиболее удобную для выведения из организма. Кроме того, этот орган отвечает за синтез примерно литра желчи - эмульгатора пишевых жиров.

Еще один орган, без которого человек прожить не может - это почка. Аппарат, его замещающий должен, как и печень, фильтровать всю кровь организма. Но на этом функция почек не заканчивается: их биологический «компьютер» анализирует состав крови и на основании этих данных поддерживает в очень узких пределах содержание практически всех растворенных в ней веществ.

Беспроводное сердце

Теперь, когда мы оценили масштабы задачи, посмотрим, как она решается в отношении сердца. Аппарат AbioCor денверской компании Abiomed - это настоящее искусственное сердце, которое заменяет оба желудочка и обеспечивает поступление крови в легкие и остальные органы человека. В приборе размером с грейпфрут и весом 900 граммов находятся титановый насос, блок управления и батарея. Ее емкости хватает на 30 минут автономной работы, а зарядка происходит через кожу: то есть на поверхность тела не выходит никаких проводов. Внешняя батарея, носимая на поясе, позволяет оставаться без подзарядки несколько часов.

Такой аппарат предназначен для пациентов с конечной стадией сердечной недостаточности и неблагоприятным прогнозом. Причем, создатели аппарата заявляют, что он позволяет больным не просто «доживать», но гарантирует им вполне приемлемое качество жизни.

Первое сердце AbioCor было пересажено в 2001 году. С тех пор было установлено не более 20 аппаратов, однако в компании смотрят на перспективы аппарата оптимистично и оценивают рынок в 100000 операций в год.

Сердце AbioCor

Аппарат VentrAssist, созданный австралийскими исследователями, в отличие от сердца AbioCor, не может полностью заменить природный орган. VentrAssist лишь помогает перекачивать кровь левому желудочку - самому нагруженному отделу сердца.

Внутрь тела помещается лишь титановый роторный насос. Его ресурс австралийцы оценивают как 50 лет непрерывной работы. Контроллер и батарею, емкости которой хватает на 8 часов, больной носит на поясе.

По замыслу разработчиков, такой прибор должен помочь многим людям с сердечной недостаточностью. Однако в медицинской практике он появится лишь после соответствующего разрешения лицензирующих органов.

Сердце AbioCor сейчас стоит чуть меньше 100 тысяч долларов, VentrAssist обойдется примерно в 50. Однако эта цена значительно меньше затрат, связанных с каждой пересадкой донорского сердца.

Если учесть еще и те средства, которые уходят на медицинское обслуживание больных с сердечной недостаточностью, станет понятно: искусственное сердце не только полезно, но и выгодно для медицинской индустрии. А финансовые стимулы, как известно - самые сильные. В том числе и для технического прогресса.

Остается только уточнить, что поддерживать этот прогресс ценой собственной жизни совершенно необязательно. При своевременной профилактике сердечных заболеваний ваше собственное сердце может прослужить значительно дольше, чем 50 лет. И главное, практически бесплатно.



Слайд 2

Введение

Одно из важных направлений современной медицины - создание искусственных органов. Искусственные органы - это созданные человеком органы - имплантаты, которые могут заменить настоящие органы тела.

Слайд 3

Искусственные органы- технические устройства, предназначенные для временной или постоянной замены функции того или иного внутреннего органа человека.

Слайд 4

Создание И.о. обусловлено также тем, что трансплантация не сможет полностью решить проблему замены нефункционирующих жизненно важных органов человека, т.к. количество пригодных для пересадки донорских органов намного меньше числа больных, нуждающихся в этой операции. И.о. не всегда полностью заменяют функцию естественного органа, особенно когда он обладает рядом сложных функций, например, печень, сердце.

Слайд 5

Чаще И.о. заменяют не весь орган, а наиболее важную его часть, например, искусственные клапаны сердца, предназначенные для обеспечения однонаправленного тока крови.

Слайд 6

Искусственные органы Неимплантируемые частично полностью Имплантируемые имплантируемые

Слайд 7

К неимплантируемымИ.о. можно отнести искусственную почку- аппарат для выведения из крови больного токсических продуктов обмена веществ, которые накапливаются при острой и хронической почечной недостаточности.

Слайд 8

Примеромчастично имплантируемогоИ.о., применяемого лишь только в эксперименте, может служить искусственное сердце с внешним приводом. В этой системе сам насос для перекачивания крови размещается внутри грудной полости, как правило, в пределах перикарда; системой шлангов насос связан с приводом, чаще всего пневматическим, и управляющим комплексов приборов

Слайд 9

Полностью имплантируемымИ.о. является такое устройство, все компоненты которого размещены внутри организма. примером этого являются электрокардиостимуляторы и искусственное сердце такой конструкции, где все узлы(насосы для крови, привод, система управления им, источник энергопитания) имплантируются внутрь организма.

Слайд 10

По времени функционирования И.о. можно разделить на: Аппараты, поддерживающие жизнедеятельность организма только при непрерывной их работе(напр., искусственное сердце) Аппарат, обеспечивающие жизнедеятельность организма при их прерывистом(дискретным) подключении (напр., искусственная почка)

Слайд 11

В проблеме И.о. большое значение имеет выбор материалов, из которых изготавливаются узлы аппаратов, непосредственно контактирующие с тканями и жидкими средами организма. Все эти материалы должны быть биологически инертными, т.е. не вызывающими воспалительной реакции окружающих тканей, не выделяющими со своей поверхности токсических химических веществ и т.д.

Слайд 12

Также важной проблемой в создании И.о. является адекватное поставленной цели инженерное решение. Как правило, при создании и.о. исследователи стремятся к тому, чтобы техническое устройство как можно точнее выполняло функцию естественного аналога. Конструктивные же решения при этом резко отличаются от архитектоники соответствующего органа. Это связано с отсутствием материалов, из которых можно было бы изготовить И.о., идентичных по своей конструкции анатомическому строению естественного органа, а также с определенным несовершенством современной технологии

Слайд 13

10 искусственных органов для создания настоящего человека

Слайд 14

1. Искусственный кишечник. Стадия разработки: успешно создан. Английские ученые оповестили мир о создании искусственного кишечника, способного в точности воспроизвести физические и химические реакции, происходящие в процессе пищеварения. Орган сделан из специального пластика и металла, которые не разрушаются и не подвергаются коррозии.

Слайд 15

2.Искусственное сердце. Стадия разработки: успешно создано, готово к имплантации. Первые искусственные сердца появились еще в 60-х годах прошлого века. Так называемое «временное» сердце Total Artificial Heart создано специально для пациентов, страдающих от нарушений сердечной деятельности. Этот орган поддерживает работу организма и фактически продлевает жизнь пациенту, который находится в ожидании органа для полноценной трансплантации. Первое «временное сердце» было имплантировано в 2007 году бывшему инструктору по фитнесу.

Слайд 16

3.Искусственная кровь. Стадия разработки: кислородная терапия. Если будет создана полноценная искусственная кровь, способная полностью заменить настоящую, это будет настоящий прорыв в медицине. Искусственная кровь выполняет две основные функции: 1) увеличивает объем кровяных телец 2) выполняет функции обогащения кислородом. Если будет создана полноценная искусственная кровь, то по вкладу в развитие науки это открытие будет сравнимо разве что с возможным полетом человека на Марс.

Слайд 17

4.Искусственные кровеносные сосуды. Стадия разработки: подготовка экспериментов на людях. Ученые недавно разработали искусственные кровеносные сосуды, используя коллаге. Использования коллагена из лосося абсолютно безопасно, поскольку современная наука не знает ни одного вируса, который способен передаваться от лосося человеку. Пока эксперименты проводятся на животных, однако ученые готовятся к экспериментам на людях. Исследователи уверены, что созданные ими биоматериалы можно будет использовать для замены поврежденных кровеносных сосудов человека

Слайд 18

5.Искусственные кости. Стадия разработки: проводятся клинические исследования. Ученые довольно давно занимаются проблемой создания искусственных костей. Недавно было обнаружено, что лимонная кислота в сочетание с октандиолом создает вещество желтого цвета, похожее на резину, которому можно придать любую форму и заменить им поврежденную часть кости. Полученный полимер, смешанный с гидроапатитовым порошком, в свою очередь «превращается» в очень твердый материал, который можно использовать для восстановления сломанных костей.

Слайд 19

6.Искусственная матка. Стадия разработки: успешно созданные прототипы. Ученые уже давно работают над созданием искусственной матки, чтобы эмбрионы могли развиваться вне женских репродуктивных органов. Прототипы создавались учеными на основе клеток, выделенных из организма женщины Новая разработка в будущем позволит женщинам, страдающим от бесплодия, иметь детей. Противники новой технологии утверждают, что разработка ученых может в будущем ослабить связь матери и ребенка. Создание искусственной матки также поднимает этические вопросы о возможном клонировании человека и даже о введении запрета на аборты, поскольку эмбрион сможет выжить и в искусственной матке.

Слайд 20

7. Искусственная кожа. Стадия разработки: исследователи на пороге создания настоящей кожи. Созданная в 1996 году искусственная кожа используется для пересадки пациентам, чей кожных покров был сильно поврежден сильными ожогами. В 2001 году на основе этого метода была создана самовосстанавливающаяся искусственная кожа. Английские ученые открыли удивительный метод регенерации кожи. Созданные в лабораторных условиях клетки, генерирующие коллаген, воспроизводят реальные клетки человеческого организма, которые не дают коже стареть. С возрастом количество этих клеток уменьшается, и кожа начинает покрываться морщинами. Искусственные клетки, введенные непосредственно в морщины, начинают вырабатывать коллаген и кожа начинает восстанавливаться.

Слайд 21

8. Искусственная сетчатка. Стадия разработки: создана и успешно прошла тестирования, находится на стадии промышленного производства. Искусственная сетчатка Argus II в скором времени будет лечить людей, страдающих от различных форм слепоты, таких как дегенерация желтого пятна и пигментная дегенерация сетчатки. Дегенерация желтого пятна - это атрофия или дегенерация диска зрительного нерва, расположенного вблизи центра сетчатки. Пигментная дегенерация сетчатки - редкое наследственное заболевание, связанное с нарушением работы и выживанием палочек, а затем и колбочек.

Слайд 22

9. Искусственные конечности. Стадия разработки: эксперименты. Как известно, саламандры могут регенерировать оторванные конечности. Почему бы людям не последовать их примеру? Недавно проведенные исследования подарили людям с ампутированными конечностями надежду на возможную регенерацию утраченных частей тела. Ученые успешно вырастили новые конечности на саламандре, используя экстракт из мочевого пузыря свиньи. Исследователи находятся на самой ранней стадии развития новой технологии, которая только будет разработана - до ее применения на людях еще далеко.

Слайд 23

10. Искусственные органы, созданные из стволовых клеток. Стадия разработки: созданы прототипы, требуются дальнейшие исследования. Когда команда английских ученых смогла создать сердечный клапан из стволовых клеток пациента, сразу же начались разговоры о создании искусственного сердца при помощи схожих технологий. Более того, это научное направление признано более перспективным, так как органы, созданные из стволовых клеток пациента, имеют гораздо больше шансов прижиться.

Слайд 24

Искусственные легкие(оксигенаторы)

Аппарат «искусственное сердце - легкие», аппарат, обеспечивающий оптимальный уровень кровообращения и обменных процессов в организме больного или в изолированном органе донора; предназначен для временного выполнения функций сердца и лёгких. Блок-схема аппарата искусственного и кровообращения.

Слайд 25

АИК включает комплекс взаимосвязанных систем и блоков: «искусственное сердце» - аппарат, состоящий из насоса, привода, передачи и нагнетающий кровь с необходимой для жизнеобеспечения объёмной скоростью кровотока; «искусственные лёгкие» - газообменное устройство, так называемый оксигенатор, служит для насыщения крови кислородом, удаления углекислого газа и поддержания кислотно-щелочного равновесия в физиологических пределах. Аппарат искусственного кровообращения АИК-5 кардиохирургического назначения.

Слайд 26

Искусственное сердце

Искусственное сердце – альтернатива пересадке. Сердце или искусственные желудочки применяются у больных в терминальной стадии сердечной недостаточности для спасения их жизни и поддержки кровообращения до того момента, когда найдется подходящей для пересадки сердца донорский орган. В 1998 году впервые в мире был имплантирован искусственный желудочек с принципиально новым принципом действия, сконструированный при участии специалистов NASA и Майкла ДеБейки. Этот маленький насос массой всего 93 грамма способен перекачивать до 6-7 литров крови в минуту и тем самым обеспечивать нормальную жизнедеятельность всего организма.

Слайд 27

Ученые заявляют, что они разработали полностью рабочий прототип искусственного сердца, который готов для пересадки человеку. Устройство не только воспроизводит сердцебиения, очень схожие с настоящими, но также снабжено специальными электронными сенсорами, позволяющим регулировать сердечный ритм и кровоток.

Слайд 28

Кардиостимуляторы

Одним из наиболее высокотехнологичных видов медицинского оборудования является кардиостимулятор. Кардиостимулятор представляет собой устройство, предназначенное для поддержания ритма сердца. Данный прибор является незаменимым для людей с такими заболеваниями сердца, как брадикардия – недостаточно частое сердцебиение – или атриовентрикулярная блокада.

Слайд 29

Кардиостимуляторы - устройства, работающие в асинхронном режиме, осуществляя при этом стимуляцию сердцебиения с фиксированной частотой. Более совершенные кардиостимуляторы явили собой двухкамерные электростимуляторы. Сегодня используются кардиостимуляторы двухкамерного типа, они позволяют не только стимулировать работу сердца, но и определять у больного фибрилляции, трепетания предсердий. При этом кардиостимулятор способен переключаться на другой, более безопасный режим работы в случае обнаружения отклонений. В данном случае исключается возможность поддержания и стимуляции наджелудочковой тахикардии.

Слайд 30

Временный электрокардиостимулятор

Временная электрокардиостимуляция - один из методов терапии, способствующий предотвращению смертельных случаев. Временный электрокардиостимулятор устанавливается пациенту доктором-реаниматологом, в случае если у пациента неожиданно нарушается ритм сердца, именуемый аритмией, также известной как абсолютная блокада сердца. Наиболее часто блокада сердца встречается при инфаркте миокарда.

Слайд 31

Установка кардиостимулятора

На сегодняшний день имеется совершенно новое поколение данного устройства – трехкамерный кардиостимулятор, однако он находится еще в стадии внедрения в эксплуатацию. Наиболее эффективный и максимально безопасный кардиостимулятор для поддержания ритма сердцебиения, который предназначен для диагностики сердечных заболеваний и использования в условиях клиники. Высокоэффективный кардиостимулятор помогает больным, страдающим заболеваниями сердца, поддерживать хорошее самочувствие и жизнеспособность.

Слайд 32

Кардиовертер-дефибриллятор

Кардиовертер-дефибриллятор - это современное устройство стимуляции, использующееся в целях предотвращения неожиданного прекращения работы сердца у больных, страдающих желудочковой тахикардию.

Слайд 33

Кардиостимулятор (ЭКС) объединяет в себе два элемента: стимулятор электрических разрядов и от одного до трех проводов-электородов, которые играют роль спиралеобразного проводника, характеризующегося изрядной гибкостью и гладкостью, являющегося стойким к изгибам и скручиваниям, происходящим по причине телодвижений и сердечных сокращений.

Слайд 34

Кардиостимуляторы и спорт

Слайд 35

Биологические протезы клапана сердца

На раннем этапе развития кардиохирурги пытались применять в качестве заместительного материала клапанные устройства, основанные на биологических тканях ксеногенного (т.е. заимствованного у животных) или аллогенного (т.е. заимствованного у человека) происхождения. Главным недостатком этих устройств явился ограниченный срок службы клапана в связи с постепенным разрушительным воздействием на биоткани со стороны организма реципиента.

Слайд 36

Двустворчатые протезы

  • Слайд 37

    Биологический ксеноаортальный протез BRAILE (Бразилия) Биологический ксеноперикардиальный протез BRAILE (Бразилия) Биологический ксеноперикардиальный протез Mitraflow Synergy (США) Биологический ксеноаортальный протез “LABCOR” (США) Российский биологический ксеноаортальный протез “КемКор” Гомоаортальный трансплантат (гомографт,аллографт).

    Слайд 38

    Вывод:

    Медицина не стоит на месте, она развивается и в скором будущем созданные искусственные органы смогут полностью заменить больные органы человека. Следовательно продолжительность жизни станет выше. Медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы - вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

    Слайд 39

    Список использованной литературы

    Галлетти П. М., Бричер Г. А., Основы и техника экстракорпорального кровообращения, пер. с англ., М., 1966. Н. А. Супер. www.google.kz www.mail.ru www.wikipedia.ru

    Посмотреть все слайды

    ВВЕДЕНИЕ В КЛИНИЧЕСКУЮ ТРАНСПЛАНТОЛОГИЮ

    Начиная краткий обзор трансплантологических методов лече­ния больных, приведем сообщение, датированное 1993 г (Нью-Йорк): "В одной из клиник США проведена уникальная хирургическая опера­ция - пятилетней английской девочке Лоре Дейвис пересадили печень, желудок, почки, поджелудочную железу и часть кишечника. Необхо­димость в столь сложной операции возникла в связи с тем, что девочка родилась с врожденным пороком органов пищеварения. В июне про­шлого года ей пересадили часть кишечника и печень. Однако летом этого года началась реакция отторжения организмом пересаженных органов....". Указанное сообщение показывает, что в настоящее время клиническая трансплантология, опережая самые смелые фантастиче­ские мысли, прочно вошла в практику лечения ранее обреченных па­циентов.

    Понятие о трансплантологии как о науке. Трансплантология - это наука о пересадках органов и тканей. Успехи трансплантологии, опирающиеся на достижения современной научно-технической рево­люции, получили признание общественности и практических врачей. Наиболее фко об этом свидетельствует накопленный к настоящему времени опыт пересадок почки, сердца, печени и применения искусст­венных устройств для поддержания функции жизненно важных орга­нов. При этом аутотрансплантацией считают пересадку собственной ткани (или органа) в другую позицию (например - аутотрансплантация пальцев или кожи). Изотрансплантация предполагает пересадку между двумя генетически идентичными орга­низмами (однояйцевыми близенецами). Подобные операции очень редки. Гомотрансплантация (аллотрансплантация) - это трансплантация органа или ткани от одного человека другому. Гетеротрансплантация (ксенотрансплантация) означает пересадку от животных человеку с применением ксеногенного органа или ткани.

    Донор - это человек, у которого забирают орган (или ткань) для последующей операции трансплантации. Рецепиент - человек, которому имплантируют донорский орган (или ткань).

    Донорский орган при трансплантации может быть инплантирован как в ортотопическую (прежнюю) или гетеротопическую (на дру­гое место) позицию.

    Трансплантология выкристаллизовалась из хирургии и в совре­менном понятии основной деятельностью трансплантологов является хирургическая, но с многими специфическими особенностями, включающими иммунологический подбор рецепиентов и доноров; решение вопросов иммуносупрессии и вторичной инфекции; забора, транспор­тировки и временной консервации органов и тканей, а также ряд дру. гих важных проблем, в том числе и временного поддержания функции больных до операции (и в последствии трансплантированных после операции) органов при помощи искусственных систем.

    Создание искусственных органов находится в числе основных направлений современной науки и решается на стыке биологических, медицинских и точных наук. Под искусственными органами принято понимать «устройства, предназначенные для постоянной или временной активной замены функции природного прототипа (В.И.Шумаков, 1990). Необходимость разработки искусственных органов обусловлена возможностью временного замещения утраченной функции природного прототипа, тем более, что хирургическая служба пересадки органов от доноров не может полностью обеспечить каждого больного из-за дефицита самих донорских органов.

    Последние 20 лет отмечены бурным развитием трансплантолс гии, при этом советские ученые и медики внесли существенный вклад в развитие данной науки. Прежде всего этому способствовало решение технологических задач для создания биологически инертных материа­лов, способных не изменять своих свойств со временем, не вызывать тромбов и воспалительных реакций.

    Особое значение в решении указанной задачи сыграла разработ­ка экспресс-методов оценки гемосовместимости, токсичности и других качественных характеристик полимеров.

    Значительное значение в развитии науки об искусственных ор­ганах имели разработки в области вспомогательного кровообращения, создания различных моделей искусственного сердца; совершенствова­нии биологических и полимерно-металлических конструкций клапанов сердца; новых моделей дозаторов лекарственных веществ и электро­стимуляторов; разработку и серийный выпуск фракционаторов крови, гибридных перфузионных систем и совершенствование устройств для детоксикации и модификации крови (гемосорбции, обменного грави­тационного и фильтрационного плазмафереза, ультрафильтрации и гемодиализа). Все это позволило оценить данное направление меди­цинской науки как приорететное и требующее дальнейших изысканий.

    История трансплантологии и роль отечественных ученых.

    История трансплантологии насчитывает многовековой период. Еще в Аюрведе (древнем индийском трактате о способах лечения) имеется упоминание в факте пересадки нижней конечности от негра белому человеку. Данное сообщение свидетельствует о необычайной смелости врачей-хирургов и о том, что уже в древние времена мысли о возмож­ной замене больного органа на здоровый занимали умы медиков.

    История научной трансплантологии началась в XIX веке. Мно­гие десятилетия эта наука плодотворно развивалась в рамках хирур­гии. Наибольший вклад в развитие трансплантологии внесли хирурги, особенно из тех, кто занимался восстановительной и пластической хирургией. К числу таких исследователей и клиницистов относят Эри­ха Лексера. В частности, данный хирург занимался вопросами свобод­ной пересадки костей от трупа больным пациентам и разрабатывал методы аллотрансплантации суставов. В 1907 году в Кенигсберге Лексер выполнил первую в мире успешную клиническую аллотрансплантацию сустава. Лексер занимался также трансплантациями сосудов, а именно вен; а также сухожилий; фасций и жировой ткани. В периоде 1914-1924 он издал 2-томное руководство "Свободные транспланта­ции". Это издание долгие годы было на вооружении трансплантологов и хирургов.

    Русский ученый профессор С.В. Шамов не без оснований назы­вал переливание крови пересадкой крови. Ведь действительно, в дан­ном случае ткань одного человека (кровь) вводится другому, то есть имеет место гомологическая трансплантация.

    Основные положения теории трансплантационного иммунитета разработал наш соотечественник И.И.Мечников.

    В 1929 году видный русский ученый С.С.Брюхоненко на съезде патофизиологов впервые в мире демонстрировал аппарат («автожектор»), предназначенный для оксигенации и нагнетания крови. При этом изолированная от туловища голова собаки, перфузируемая согре­той и оксигенированной кровью сохраняла рефлексы, лакала воду и пыталась лаять. Для того времени это был гигантский скачок вперед, позволивший создать в скором времени аппараты для искусственного кровообращения и по сути дела открыть этап операций на "сухом" сердце.

    Нельзя не вспомнить о великом исследователе и эксперимента­торе, нашем современнике В.П. Демихове, работы которого по пере­садке сердца, комплекса "сердце-легкие", создании банка органов, аортокоронарном шунтировании, а также гемикорпорэктомии с после­дующей трансплантацией туловища являются классикой в трансплан­тологии. Полученные отечественным ученым результаты послужили путеводной вехой клинической пересадки указанных органов. В.П. Демиховым еще в 1960 г показана принципиальная возможность под­держания кровообращения в организме животного с помощью механического устройства, имплантированного на место удаленного собст­венного сердца. После такой операции собака жила в течение 2,5 ча­сов. Хирург Барнард (ЮАР), впервые выполнивший клиническую пе­ресадку сердца, и другие видные исследователи считали В.П. Демихова своим учителем.

    Первую в мире клиническую пересадку почки выполнил в Кие­ве в апреле 1933 года отечественный хирург Ю.Ю.Вороной. Почку от трупа в 1965 году первым в Союзе пересадил академик Б.В.Петровский.

    Все изложенное выше свидетельствует о большом пути, прой­денном экспериментальной и клинической трансплантологией, о вкла­де многих и многих исследователей и о существенной роли отечест­венных ученых в развитие науки о методах пересадки органов и тка­ней.

    К настоящему времени уже сделано большое число самых раз­ных трансплантаций, позволивших спасти жизнь и улучшить ее каче­ство многим тысячам больных. В таблицах 1 и 2 приведена сводная статистика о числе и результатах данных операций.

    Рекорды международной выживаемости трансплантатов (1992 г)

    Приведенные в таблицах 1 и 2 данные убедительно свидетель­ствуют о возрастающем интересе хирургов к трансплантологиии о су­щественном позитивном вкладе данной науки в сохранении жизни и здоровья населения планеты.

    Забор органов, проблема "смерти мозга", иммуносупрессия.

    В числе ведущих медико-биологических "нехирургических" проблем в трансплантологии находятся проблемы, связанные со смер­тью мозга, сроками и способами забора органов и тканей, иммуноло­гическим подбором пары "донор-рецепиент" и последующей иммуно­логической супрессией.

    Необходимо отметить, что имеются определенные ограничения забора органов со стороны доноров. При отсутствии таковых донорами могут быть люди, в возрасте от 5 до 50 лет. К ним относятся:

    Изолированная черепно-мозговая травма.

    Разрыв аневризмы сосудов головного мозга.

    Некоторые заболевания головного мозга.

    Суицидные попытки.

    Отравление барбитуратами.

    При этом доноры не должны страдать хроническими органиче­скими заболеваниями жизненно важных органов или инфекционной патологией.

    Не вдаваясь глубоко в данные проблемы, отметим, что термин "смерть мозга" является не только медицинским, но и общефилософ­ским понятием. Вплоть до недавнего времени (до 1993 г) советские трансплантологи не имели юридической базы для изъятия органов у больных при гибели коры головного мозга и работающем сердце. Это создавало целый ряд серьезных препятствий для пересадки сердца, легкого, почки и печени. В самом деле, ранее считали, что если бьется сердце, то человек жив и изымать его органы - это преступление. В настоящее время в большинстве развитых стран мира принято, что в тех ситуациях, когда зафиксирована гибель коры головного мозга и неблагоприятный прогноз становится ясным, возможно использовать функционирующие органы больного для спасения жизни других лю­дей.

    В настоящее время критериями смерти мозга счи­тают прямую линию на энцефалограмме; отрицательные атропиновый тест и тест с насыщением крови кислородом; отсутствие нистагма при раздражении слухового канала водой. Данные положения совпадают с международными требованиями и защищены соответствующим зако­нодательством. В России органное донорство регулируется двумя законами - Законом «О трансплантации органов и (или) тканей челове­ка», принятом 22 декабря 1992 г.. и Законом «О погребении и похо­ронном деле», принятом 8 декабря 1995 г. В совокупности они допус­кают изъятие органов у трупов при согласии родственников или их законных представителей или при их отсутствии, как это бывает при гибели неизвестных лиц.

    В специализированных учреждениях имеются функциональные подразделения, ответственные за выявление, типирование и забор ор­ганов - так называемые центры забора. Центры являются ко­ординационной структурой, определяющей и реализующей тактику получения донорских трансплантатов с их иммунологической селек­цией и распределением на основе "листа ожидания". Такие центры обладают опытом обмена донорскими органами подобными структу­рами в США, Израиле, Германии, Англии и других странах. Вся рабо­та в них ведется в режиме круглосуточного дежурства, а сами трансплантологические операции носят характер экстренных, ввиду ограни­ченных временных сроков хранения донорских органов.

    Современная схема забора органов предусматривает следую­щее: оповещение о больном со смертью мозга; экспресс обследование на месте бригадой трансплантологов и изъятие на месте (почка) или транспортировку донора в трансплантологический центр (сердце, лег­кие и др). Как правило, стараются применить схему полиорганного забора (рис.1) с последующим типированием иммунологических пока­зателей и оповещением нескольких подходящих рецепиентов, находя­щихся в листе ожидания.

    ßРис. 1. Схема мультиорганного забора органов.

    При отсутствии таких больных в известность ставят другие трансплантологические центры у нас в стране и за рубежом. При этом очень важен фактор времени, так как результаты пересадок сущест­венно зависят от сроков ишемии и консервации донорских органов.

    В настоящее время подбор донора осуществляется по двум ос­новным системам антигенов: АВО (антигены эритроцитов) и HLA (ан­тигены лейкоцитов или антигены гистосовместимости).

    Иммуносупрессивная терапия после трансплан­тации - это основа консервативного лечения. При подавлении трансплантологического иммунитета длительное время использовали гор­моны - преднизолон и стероидные препараты. Разработки последних 20 лет позволили внедрить новые фармакологические средства, су­прессивное действие которых существенно выше, а побочные эффекты (цитотоксичность, гормональные язвы, артериальная гипертензия, сеп­сис) ниже. Таким препаратом, например, является циклоспорин "А", созданный фирмой "Сандос" (Швейцария). По структуре - это метабо­лит некоторых низших грибов, обладающий иммунодепрессивным действием без миелотоксичных реакций. Циклоспорин "А" предот­вращает распознавание антигена лимфоцитами, которые не превраща­ются в цитотоксичные киллеры. Введение в 80-х годах в клиническую практику данного препарата имело революционный характер и почти повсеместно увеличило выживаемость трансплантатов на 15-20%. Од­нако к настоящему времени выявлены и отрицательные побочные дей­ствия циклоспорина "А" - гепато- и нефротоксичность, а также увели­чение частоты вирусных инфекций у рецепиентов.

    Следует отметить, что применение циклоспорина "А " мало по­влияло на лечение кризов отторжения - самых опасных иммунологиче­ских состояний, обусловленных несовместимостью антигенных струк­тур пары "донор-рецепиент". В данном случае применяют моноклональные антитела, стероидные гормоны, антимоноцитарный глобулин и обменный плазмаферез. К другим фармакологическим препаратам, подавляющим трансплантационный иммунитет являются азатиоприн, ортоклон и антилимфоцитарные сыворотки.

    Изложенное свидетельствует о значительной специфике лече­ния трансплантологических больных, что требует специальных много­профильных знаний.

    Помимо чисто хирургических причин неблагоприятных исходов (кровотечения; несостоятельность соустий, интраоперационная эмбо­лия, сердечная слабость, травматический шок и другие) в трансплан­тологии, наиболее частыми осложнениями являются острое отторже­ние органа; нежизнеспособность трансплантата; сепсис; сердечно-сосудистая недостаточность и синдром взаимного отягощения с нару­шением функции нескольких жизненноважных органов.

    Частная трансплантология

    С е р д ц е. В эксперименте первую пересадку сердца, как указывалось ранее, осуществил отечественный ученый, хирург-трансплантолог В.П.Демихов в 50-х годах.

    Пересадка сердца у больного впервые выполнена К.Барнардом из ЮАР (1967 г). Пациент после операции прожил 16 суток. С этой поры открыта новая важная веха лечения больных с необратимыми и несовместимыми с жизнью нарушениями структуры и функции серд­ца.

    В СССР первая трансплантация сердца сделана А.В.Вишневским (больной после операции прожил 33 часа). Успешная пересадка сердца осуществлена академиком РАН профессором В.И.Шумаковым в 1986 году. Всего за период с 1986 по 2001 год толь­ко в НИИ трансплантологии и искусственных органов РАМН выпол­нено 99 пересадок этого органа. Данные операции проведены также в ВНЦХ РАМН, а также в Вильнюсе. Таким образом, можно уже гово­рить о завершении этапа отработок и о запуске их "на поток".

    Показаниями к ортотопической трансплантации сердца считают тяжелую хроническую недостаточность кровообращения, ре­зистентную к медикаментозной терапии (дилатационная кардиомиопатия; ИБС и др.).

    Противопоказаниями к данной операции считают ле­гочную гипертензию выше 50 мм рт.ст.; хронические заболевания по­чек; печени; желудочно-кишечные заболевания; болезни перифериче­ских сосудов и крови, а также злокачественные опухоли.

    Забор сердца может быть дистанционный (в лечебном учрежде­нии, где находится донор) или в учреждении, где планируется опера­ция пересадки. В ряде ситуаций перед пересадкой сердца используют разные варианты подключения вспомогательного кровообращения или искусственного имплантируемого сердца в целях продления жизни рецепиенту и для поиска необходимого донорского сердца.

    Основными осложнениями после пересадки сердца являются острая (чаще правожелудочковая) сердечная недостаточность и острые кризы отторжения. Частота инфекционных осложнений достигает 12-16%. Пересадка сердца осуществляется в ортотопическую позицию.

    В нашей стране к настоящему времени успешных пересадок комплекса "сердце-легкие" в настоящее время нет. Показаниями к данной операции служат грубые, несовместимые с жизнью сочетанные поражения сердца и легких.

    Почка. Пересадку почки на заре развития метода начинали осуществлять от живых родственников. В последующем (и по настоя­щее время) применять стали пересадку трупной почки с давностью тепловой ишемии не более суток.

    Из истории вопроса о пересадке почки известно, что первую пе­ресадку этого органа в эксперименте выполнена Каррелем и Ульманом (1902). В 1934 году отечественным хирургом Вороным сделана первая попытка трансплантации почки больной при острой почечной недоста­точности. В 1953 г Хьюм сделал первую в мире успешную клиниче­скую трансплантацию почки от родственного донора.

    В настоящее время в России ежегодно почку пересаживают около 700 пациентов (в странах Европы - около 10000).

    К настоящему времени наиболее перспективна пересадка почки, которую забрали в процессе мультиорганного забора при смерти моз­га. Пересадка почки - наиболее разработанный аспект проблемы кли­нической трансплантологии. Как свидетельствует табл. 1 и табл.2 сей­час имеются тысячи больных с пересаженными почками, у которых сроки выживания трансплантатов вполне удовлетворительны. В тех­ническом отношении современное решение места пересадки почки - это пересадка к внутренним подвздошным сосудам с анастомозом мо­четочника и мочевого пузыря. По числу реимплантаций к настоящему времени есть пациенты с 3-5 пересадками почек. Следует помнить, что до 40-50% почечных трансплантатов гибнет в течение 1-го года после операции.

    Показаниями к пересадке почки в настоящее время счи­тают терминальную стадию хронической почечной недостаточности (ХПН) разной причины (хронический гломерулонефрит, хронический пиелонефрит, поликистоз почек, мочекаменную болезнь с исходом в гидронефроз и др.). Следует отметить, что трансплантацию почки осуществляют в гетеротопическую позицию на подвздошные сосуды.

    Печень. Первая ортотопическая пересадка печени осуще­ствлена профессором Старлзом в 1963 году. В СССР первую ортотопическую трансплантацию печени выполнили в 1990 году больной с гепатоцеллюлярным раком печени. Из показаний к пересадке данного органа наибольшую группу составляют пациенты с циррозом и раком печени. Операция по срокам составляет 12-16 часов. Объем гемотрансфузий за время операции и после нее может достигать 12-15 лит­ров крови при общем объеме трансфузий - до 30 литров. В периоде операции, наряду с чисто хирургическими задачами, решаются проблемы вено-венозного перфузионного обхода печени (рис.2), трансфузиологии и анестезиологического пособия.

    ß Рис.2. Схема перфузионного обхода печение при ее пересадке.

    Показаниями к пересадке печени являются цирроз, пер­вичный рак печени, склерозирующии холангит, атрезия желчевыводящих путей и другие заболевания.

    Абсолютным противопоказанием к пересадке пече­ни считают сепсис вне билиарной системы; метастатические пораже­ния вне печени; активный алкоголизм; выраженную гипоксию; несо­гласие больного или родственников на операцию; прогрессирующие сердечно-легочные заболевания; СПИД. При этом основную группу рецепиентов составляют больные с циррозом и с раком печени.

    Поджелудочная железа . Если хирургические аспекты пересад­ки сердца, комплекса сердце-легкие; почки и печени уже решены, то нельзя сказать то же самое о пересадке поджелудочной железы. Пер­вую пересадку этого органы выполнили в 1966 году Келли и Лиллехай. К настоящему времени в мире осуществлено свыше 10000 трансплан­таций.

    При этом возможны как ортотопическая (с сохранением экзокринной функции), так и гетеротопическая (с прекращением экзокринной функции) железы. В ряде случаев используют пломбировку про­токов полимеризующимися смесями. Наиболее перспективна пересад­ка железы с анастомозом площадки 12-перстной кишки с большим дуоденальным сосочком - с одной стороны, и кишечником или моче­вым пузырем - с другой.

    Достаточно перспективным считают трансплантации клеточных структур и тканей (костного мозга, островкового аппарата поджелу­дочной железы, печени, надпочечников, селезенки и др.).

    ИСКУССТВЕННЫЕ ОРГАНЫ

    Полимеры медицинского назначения. В конце 70-х го­дов, в связи с широким внедрением в практику здравоохранения аппа­ратов для искусственного кровообращения и гемодиализа, а также им­плантируемых устройств, резко возросло число публикаций, посвя­щенных разработке и исследованию гемосовместимых полимеров и заданным комплексом физико-химических и медико-биологических свойств.

    Необходимость в полимерных материалах медицинского назна­чения подтверждается данными долгосрочного прогнозирования ис­пользования искусственных органов в мире в 1990 г, по сравнению с 1980 г, сделанном департаментом науки и техники Японии. Так, по­требность в биоматериалах возрасла для изготовления костей и суста­вов - в 1,3 раза; кровеносных сосудов - в 3,2; аппаратов "сердце-легкие" - в 2,3; клапанов сердца - в 3,0; водителей ритма сердца - в 1,5; искусственных почек - в 2,2; аппаратов вспомогательного кровообра­щения (искусственный желудочек сердца) - в 3,3 раза. В среднем предполагаемый ежегодный прирост производства изделий для сер­дечно-сосудистой хирургии до 1990 года составит 10-15%.

    Таким образом, важность данного аспекта и его перспектива в трансплантологии сомнению не подлежит.

    Искусственное сердце. Концепция замещения функ­ции сердца механическим аналогом не нова. Еще в 1812 году la Gallois заметил, что если удастся заместить сердце каким-либо насосом крови, то можно успешно сохранить живой любую часть тела. Первые успешные экспериментальные исследования по имплантируемому сердцу выпонены W.Kolff (1980). Полученные результаты позволили считать, что метод замены собственного сердца искусственным, как временная мера, может быть применен в клинике. К настоящему времени в мире проведено свыше 50 операций в клинике, где имплантация искусственного сердца явилась временной мерой для сохранения жизни пациенту. В 1/3 клинических наблюдений имплан­тация искусственного сердца была первым этапом операции с после­дующей заменой насоса трансплантатом.

    Вспомогательное кровообращение. В лече­нии острой сердечной недостаточности различного генеза, которая резистента к применению фармакологических препаратов большое значение придают методам вспомогательного кровообращения.

    Поскольку основным воздействием вспомогательного кровооб­ращения является влияние его на метаболизм сердечной мышцы, этот показатель и положен в основу классификации методов вспомогатель­ного кровообращения:

    1- методы, улучшающие метаболизм миокарда за счет снижения постнагрузки - методы контрпульсации;

    2- методы, улучшающие метаболизм за счет уменьшения преднагрузки - методы шунтирования;

    3- методы, улучшающие метаболизм за счет уменьшения конечно-диастолического объема - кардиомассаж и внутрижелудочковое вспомогательное кровообращение;

    4 - методы, улучшающие непосредственно коронарную перфу­зию - ретроградная перфузия и окклюзия коронарного синуса, перфу­зия коронарных артерий.

    Для использования вспомогательного кровообращения приме­няют различные устройства - насосы (мембранные, роликовые, желу­дочковые; турбинные) (рис.3.4,5); баллончик Брегмана (рис.6.) с датаскопом - синхронизатором пневмопривода с фазами работы сердца; пластиковые приспособления на конечности и грудную клетку при наружней контрпульсации; различные катетеры с окклюзионными манжетками и устройством для оксигенации крови и т.д.

    ßРис.3. Вспомогательное кровообращение с применением искусственного желудочка сердца.

    Рис.4. Возможные локализации подключения искусственных желу­дочков сердца для вспомогательного кровообращения.

    ß Рис.5. Разрез искусственного желудочка сердца:1-клапан входа крови; 2-клапан выхода крови; 3-пневмопривод; 4-камера крови; 5-воздушная камера.

    Рис.6. Места введения баллончика Брегмана для вспомогательного кровообращения.

    Для вспомогательного кровообращения могут использоваться также имплантируемые системы как полностью автономные, так и частично автономные.

    Применение искусственной оксигенации крови при гипоксиях, в частности при критических состояниях различного генеза, является чрезвычайно важной проблемой медици­ны. Лечение острой гипоксии чаще всего связывают с различными режимами искусственной вентиляции (ИВЛ) легких (собственно гово­ря их протезированием), реже - с применением гипербарической окси­генации. Однако, в ряде клинических ситуаций использование указан­ных методов явно недостаточно. В случае острой дыхательной недос­таточности применяют внелегочные пути и устройства для экстра­корпоральной оксигенации крови - чаще речь идет о м е м б р энной оксигенации. Принцип действия данных приборов заключается в использовании полунепроницаемых мембран, с одной стороны которых протекает кровь, с другой - подается газ под давле­нием. При этом кислород диффундирует в кровь, а из крови элимини­руется углекислая кислота. Оксигенация не менее 1/3 минутного вы­броса сердца с помощью этого экстракорпорального устройства, под­ключенного к периферическим сосудам, позволяет заместить на время до 3-х суток оксигенирующую функцию легких. В этом периоде воз­можно провести ряд мер интенсивного лечения больных и добиться успеха.

    Мембранные оксигенаторы могут быть применены также при операциях на открытом сердце в сочетании с искусственным кровооб­ращением. В данном случае они более предпочтительтны (особенно при длительных перфузиях) перед другими конструкциями оксигена­торов - пузырьковыми; пено-пленочными и др.

    Важным направлением клинического применения мембранных оксиненаторов служат гибридные перфузионные системы и изолиро­ванные перфузии цельных органов, например селезенки.

    В случае поражения функции печени и почек применяют искус­ственные перфузионные системы, временно замещающие функцию жизненноважных органов типа гибридных систем (с применением жи­вых изолированных гепатоцитов) (Рис.7,8); гемосорбции и обменного плазмафереза; гемодиализа. Принцип действия этих устройств разли­чен, тем не менее из организма при помощи указанных устройств уда­ется вывести токсичные и балластные субстанции и тем самым обес­печить условия жизни пациенту.

    При наличии у больного некорригируемого инсулином сахарно­го диабета могут быть использованы: подсадка клеток инсулярного аппарата, выделенных или полученных при культивации; аппарат типа "Биостатор" с обратной связью для коррекции в реальном режиме вре­мени уровня сахара в крови; паракорпоральные и имплантируемые дозаторы инсулина.

    Таким образом, приведенные данные о результатах многих ме­дикотехнических и клинических проблем науки о трансплантологии и искусственных органах убедительно свидетельствуют о успехах лече­ния самых тяжелых больных различного профиля, а также о множест­ве имеющихся нерешенных проблем. Все это диктует необходимость поиска решений и развития данной науки.




  • Самое обсуждаемое
    Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
    Сонник и толкование снов Сонник и толкование снов
    К чему увидеть кошку во сне? К чему увидеть кошку во сне?


    top