К чему приводит полиплоидия. Полиплоидия, раздел «Биолог

К чему приводит полиплоидия. Полиплоидия, раздел «Биолог

Определение 1

Поверхностное натяжение – порыв жидкости уменьшить собственную свободную поверхность, то есть сократить избыток потенциальной энергии на границе разъединения с газообразной фазой.

Упругими характеристиками оснащены не только твердые физические тела, но и поверхность самой жидкости. Каждый в своей жизни видел, как растягивается мыльная пленка при небольшом выдувании пузырей. Силы поверхностного натяжения, которые возникают в мыльной пленке, удерживают на определенный период времени воздух, аналогичному тому, как резиновая растянувшаяся камера сохраняет воздух в футбольном мяче.

Поверхностное натяжение появляется на границе раздела основных фаз, например, газообразной и жидкой, или жидкой и твердой. Это непосредственно обусловлено тем, что элементарные частицы поверхностного слоя жидкости всегда испытывают различную силу притяжения изнутри и снаружи.

Указанный физический процесс возможно рассматривать на примере капли воды, где жидкость движется себя так, как будто она находится в эластичной оболочке. Здесь атомы поверхностного слоя жидкого вещества притягиваются к собственным внутренним соседям сильнее, чем к внешним частицам воздуха.

В целом поверхностное натяжение можно объяснить, как бесконечно малую или элементарную работу $\sigma A$, которую необходимо совершить для увеличения общей площади поверхности жидкости на бесконечно малую величину $dS$ при неизменной температуре $dt$.

Механизм возникновения поверхностного натяжения в жидкостях

Рисунок 2. Скалярная положительная величина. Автор24 - интернет-биржа студенческих работ

Жидкость, в отличие от твердых тел и газов, не способна заполнить весь объем сосуда, в который она была помещена. Между паром и жидким веществом формируется определенная граница раздела, которая действует в особых условиях по сравнению с другой массой жидкости. Рассмотрим для более наглядного примера две молекулы $A$ и $B$. Частица $A$ находится внутри самой жидкости, молекула $B$ – непосредственно на ее поверхности. Первый элемент окружен другими атомами жидкости равномерно, поэтому действующие на молекулу силы со стороны попадающих в сферу межмолекулярного взаимодействия частиц всегда скомпенсированы, или, иными словами, их равнодействующая мощность равна нулю.

Молекула $B$ с одной стороны обрамлена молекулами жидкости, а с другой стороны –атомами газа, итоговая концентрация которых в значительной степени ниже, чем объединение элементарных частиц жидкости. Так как со стороны жидкости на молекулу $B$ воздействует гораздо больше молекул, чем со стороны идеального газа, равнодействующую всех межмолекулярных сил уже невозможно приравнять нулю, так как этот параметр направлен внутрь объема вещества. Таким образом, для того чтобы молекула из глубины жидкости оказалась в поверхностном слое, следует выполнить работу против нескомпенсированных сил. А это означает, что атомы приповерхностного уровня, по сравнению с частицами внутри жидкости, оснащены избыточной потенциальной энергией, которая носит название поверхностной энергии.

Коэффициент поверхностного натяжения

Рисунок 3. Поверхностное напряжение. Автор24 - интернет-биржа студенческих работ

Определение 2

Коэффициент поверхностного натяжения – это физический показатель, характеризующий определенную жидкость и численно равный соотношению поверхностной энергии к общей площади свободной среды жидкости.

В физике основной единицей измерения коэффициента поверхностного натяжения в концепции СИ является {N}/{m}.

Указанная величина напрямую зависит от:

  • природы жидкости (у «летучих элементах таких, как спирт, эфир, бензин, коэффициент поверхностного натяжения значительно меньше, чем у «нелетучих – ртути, воды);
  • температуры жидкого вещества (чем выше температура, тем меньше итоговое поверхностное натяжение);
  • свойств идеального газа, граничащий с данной жидкостью;
  • наличия стабильных поверхностно-активных элементов таких, как стиральный порошок или мыло, которые способны уменьшить поверхностное натяжение.

Замечание 1

Также следует отметить, что параметр поверхностного натяжения не зависит от начальной площади свободной среды жидкости.

Из механики также известно, что неизменным состояниям системы всегда соответствует минимальное значение ее внутренней энергии. Вследствие такого физического процесса жидкое тело часто принимает форму с минимальной поверхностью. Если на жидкость не влияют посторонние силы или их действие крайне мало, ее элементы к форме сферы в виде капли воды или мыльного пузыря. Аналогичным образом начинают вести себя вода находясь в невесомости. Жидкость движется так, как будто по касательной к ее основной поверхности действуют факторы, сокращающие данную среду. Эти силы называются силами поверхностного натяжения.

Следовательно, коэффициент поверхностного натяжения возможно также определить, как основной модуль силы поверхностного натяжения, который в общем действует на единицу длины начального контура, ограничивающего свободную среду жидкости. Наличие указанных параметров делает поверхность жидкого вещества похожей на растянутую упругую пленку, с единственной разницей, что неизменные силы в пленке непосредственно зависят от площади ее системы, а сами силы поверхностного натяжения способны самостоятельно работать. Если положить небольшую швейную иглу на поверхность воды, гладь прогнется и не даст ей утонуть.

Действием внешнего фактора можно описать скольжение легких насекомых таких, как водомерки, по всей поверхности водоемов. Лапка этих членистоногих деформирует водную поверхность, тем самым увеличивая ее площадь. В результате этого возникает сила поверхностного натяжения, стремящаяся уменьшить подобное изменение площади. Равнодействующая сила будет всегда направлена исключительно вверх, компенсируя при этом действие тяжести.

Результат действия поверхностного натяжения

Под воздействием поверхностного натяжения небольшие количества жидких сред стремятся принять шарообразную форму, которая будет идеально соответствовать наименьшей величине окружающей среды. Приближение к шаровой конфигурации достигается тем больше, чем слабее начальные силы тяжести, так как у малых капель показатель силы поверхностного натяжения гораздо превосходит влияние тяжести.

Поверхностное натяжение считается одной из важнейших характеристик поверхностей раздела фаз. Оно непосредственно воздействует на формирование мелкодисперсных частиц физических тел и жидкостей при их разделении, а также на слияние элементов или пузырьков в туманах, эмульсиях, пенах, на процессы адгезии.

Замечание 2

Поверхностное натяжение устанавливает форму будущих биологических клеток и их основных частей.

Изменение сил данного физического процесса влияет на фагоцитоз и на процессы альвеолярного дыхания. Благодаря этому явлению пористые вещества могут в течение длительного времени удерживать огромное количество жидкости даже из паров воздуха, Капиллярные явления, предполагающие изменения высоты уровня жидкости в капиллярах по сравнению с уровнем жидкости в более широком сосуде, весьма распространены. Посредством данных процессов обусловлено поднятие воды в почве, по корневой системе растений, движение биологических жидкостей по системе мелких канальцев и сосудов.

На этом уроке пойдет речь о жидкостях и их свойствах. С точки зрения современной физики, жидкости являются наиболее сложным предметом исследований, потому что по сравнению с газами уже нельзя говорить о пренебрежимо малой энергии взаимодействия между молекулами, а по сравнению с твердыми телами нельзя говорить об упорядоченном расположении молекул жидкости (в жидкости отсутствует дальний порядок). Это приводит к тому, что жидкости обладают рядом интереснейших свойств и их проявлений. Об одном таком свойстве и пойдет речь на этом уроке.

Для начала, обсудим особые свойства, которыми обладают молекулы приповерхностного слоя жидкости по сравнению с молекулами, находящимися в объеме.

Рис. 1. Отличие молекул приповерхностного слоя от молекул, находящихся в объеме жидкости

Рассмотрим две молекулы А и Б. Молекула А находится внутри жидкости, молекула Б - на ее поверхности (Рис. 1). Молекула А окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу А со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, или их равнодействующая равна нулю.

Что же происходит с молекулой Б, которая находится у поверхности жидкости? Напомним, что концентрация молекул газа, который находится над жидкостью, значительно меньше, чем концентрация молекул жидкости. Молекула Б с одной стороны окружена молекулами жидкости, а с другой стороны - сильно разреженными молекулами газа. Поскольку со стороны жидкости на нее действует гораздо больше молекул, то равнодействующая всех межмолекулярных сил будет направлена внутрь жидкости.

Таким образом, для того чтобы молекула из глубины жидкости попала в поверхностный слой, нужно совершить работу против не скомпенсированных межмолекулярных сил.

Вспомним, что работа - это изменение потенциальной энергии, взятое со знаком минус.

Значит, молекулы приповерхностного слоя, по сравнению с молекулами внутри жидкости, обладают избыточной потенциальной энергией.

Эта избыточная энергия является составляющей внутренней энергии жидкости и называется поверхностной энергией . Обозначается она, как , и измеряется, как и любая другая энергия, в джоулях.

Очевидно, что чем больше площадь поверхности жидкости, тем больше таких молекул, которые обладают избыточной потенциальной энергией, а значит тем больше поверхностная энергия. Этот факт можно записать в виде следующего соотношения:

,

где - площадь поверхности, а - коэффициент пропорциональности, который мы назовем коэффициентом поверхностного натяжения , этот коэффициент характеризует ту, или иную жидкость. Запишем строгое определение этой величины.

Поверхностное натяжение жидкости (коэффициент поверхностного натяжения жидкости) - это физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости

Измеряется коэффициент поверхностного натяжения в ньютонах, деленных на метр.

Обсудим, от чего зависит коэффициент поверхностного натяжения жидкости. Для начала, вспомним, что коэффициент поверхностного натяжения характеризует удельную энергию взаимодействия молекул, а значит факторы, изменяющие эту энергию, изменят и коэффициент поверхностного натяжения жидкости.

Итак, коэффициент поверхностного натяжения зависит от:

1. Природы жидкости (у «летучих» жидкостей, таких как эфир, спирт и бензин, поверхностное натяжение меньше, чем у «нелетучих» - воды, ртути и жидких металлов).

2. Температуры (чем выше температура, тем меньше поверхностное натяжение).

3. Наличие поверхностно активных веществ, уменьшающих поверхностное натяжение (ПАВ), например мыла или стирального порошка.

4. Свойства газа, граничащего с жидкостью.

Отметим, что коэффициент поверхностного натяжения не зависит от площади поверхности, так как для одной отдельно взятой приповерхностной молекулы абсолютно неважно, сколько таких же молекул вокруг. Обратите внимание на таблицу, в которой приведены коэффициенты поверхностного натяжения различных веществ, при температуре :

Таблица 1. Коэффициенты поверхностного натяжения жидкостей на границе с воздухом, при

Итак, молекулы приповерхностного слоя обладают избыточной потенциальной энергией по сравнению с молекулами в объеме жидкости. В курсе механики было показано, что любая система стремится к минимуму потенциальной энергии. Например, тело, брошенное с некоторой высоты, будет стремиться упасть вниз. Кроме того, вы чувствуете себя намного комфортнее лёжа, поскольку в этом случае максимально низко расположен центр масс вашего тела. К чему приводит стремление уменьшить свою потенциальную энергию в случае жидкости? Поскольку поверхностная энергия зависит от площади поверхности, значит, любой жидкости энергетически невыгодно иметь большую площадь поверхности. Иными словами, в свободном состоянии жидкость будет стремиться сделать свою поверхность минимальной.

В этом легко убедиться, экспериментируя с мыльной пленкой. Если окунуть в мыльный раствор некий проволочный каркас, то на нем образуется мыльная пленка, при чем пленка приобретет такую форму, чтобы площадь ее поверхности была минимальной (Рис. 2).

Рис. 2. Фигуры из мыльного раствора

Убедиться в существовании сил поверхностного натяжения можно при помощи простого эксперимента. Если к проволочному кольцу в двух местах привязана нить, причем так, чтобы длина нити была несколько больше длины хорды, соединяющей точки крепления нити, и обмакнуть проволочное кольцо в мыльный раствор (Рис. 3а), мыльная пленка затянет всю поверхность кольца и нить будет лежать на мыльной пленке. Если теперь порвать пленку с одной стороны нити, мыльная пленка, оставшаяся с другой стороны нити, сократится и натянет нить (Рис. 3б).

Рис. 3. Эксперимент по обнаружению сил поверхностного натяжения

Почему же так произошло? Дело в том, что оставшийся сверху мыльный раствор, то есть жидкость, стремится сократить площадь своей поверхности. Таким образом, нить вытягивается вверх.

Итак, в существовании силы поверхностного натяжения мы убедились. Теперь научимся ее рассчитывать. Для этого проведем мысленный эксперимент. Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна (Рис. 4). Будем растягивать мыльную пленку, действуя на подвижную сторону рамки силой . Таким образом, на перекладину действуют три силы - внешняя сила и две силы поверхностного натяжения , действующие вдоль каждой поверхности пленки. Воспользовавшись вторым законом Ньютона, можем записать, что

Рис. 4. Вычисление силы поверхностного натяжения

Если под действием внешней силы перекладина переместится на расстояние , то эта внешняя сила совершит работу

Естественно, что за счет совершения этой работы площадь поверхности пленки увеличится, а значит, увеличится и поверхностная энергия, которую мы можем определить через коэффициент поверхностного натяжения:

Изменение площади, в свою очередь можно определить следующим образом:

где - длина подвижной части проволочной рамки. Учитывая это, можно записать, что работа внешней силы равна

Приравнивая правые части в (*) и (**), получим выражение для силы поверхностного натяжения:

Таким образом, коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, которая действует на единицу длины линии, ограничивающей поверхность

Итак, мы еще раз убедились в том, что жидкость стремится принять такую форму, чтобы площадь ее поверхности была минимальной. Можно показать, что при заданном объеме площадь поверхности будет минимальной у шара. Таким образом, если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать сферическую форму. Так, например, будет вести себя вода в невесомости (Рис. 5) или мыльные пузыри (Рис. 6).

Рис. 5. Вода в невесомости

Рис. 6. Мыльные пузыри

Наличием сил поверхностного натяжения также можно объяснить то, почему металлическая иголка «лежит» на поверхности воды (Рис. 7). Иголка, которую аккуратно положили на поверхность, деформирует ее, увеличивая тем самым площадь этой поверхности. Таким образом, возникает сила поверхностного натяжения, которая стремится уменьшить подобное изменение площади. Равнодействующая сил поверхностного натяжения будет направлена вверх, и она скомпенсирует силу тяжести.


Рис. 7. Иголка на поверхности воды

Таким же образом можно объяснить принцип действия пипетки. Капелька, на которую действует сила тяжести, вытягивается вниз, тем самым увеличивая площадь своей поверхности. Естественно, возникают силы поверхностного натяжения, равнодействующая которых противоположна направлению силы тяжести, и которые не дают капельке растягиваться (Рис. 8). Когда вы нажимаете на резиновый колпачок пипетки, вы тем самым создаете дополнительное давление, которое помогает силе тяжести, и в результате, капля падает вниз.

Рис. 8. Принцип работы пипетки

Приведем еще один пример из повседневной жизни. Если опустить кисточку для рисования в стакан с водой, то ее волоски распушатся. Если теперь вынуть эту кисточку из воды, то вы заметите, что все волоски прилипли друг к другу. Это связано с тем, что площадь поверхности воды, налипшей на кисточку, в таком случае будет минимальной.

И еще один пример. Если вы захотите построить замок из сухого песка, это у вас вряд ли получится, поскольку песок будет рассыпаться под действием силы тяжести. Однако если вы намочите песок, то он будет сохранять свою форму благодаря силам поверхностного натяжения воды между песчинками.

Наконец, отметим, что теория поверхностного натяжения помогает найти красивые и простые аналогии при решении более сложных физических задач. Например, когда нужно построить лёгкую и в то же время прочную конструкцию, на помощь приходит физика того, что происходит в мыльных пузырях. А построить первую адекватную модель атомного ядра удалось, уподобив это атомное ядро капле заряженной жидкости.

Список литературы

  1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. «Физика 10». - М.: Просвещение, 2008.
  2. Я. Е. Гегузин «Пузыри», Библиотека Квант. - М.: Наука, 1985.
  3. Б. М. Яворский, А. А. Пинский «Основы физики» т. 1.
  4. Г. С. Ландсберг «Элементарный учебник физики» т. 1.
  1. Nkj.ru ().
  2. Youtube.com ().
  3. Youtube.com ().
  4. Youtube.com ().

Домашнее задание

  1. Решив задачи к данному уроку, вы сможете подготовиться к вопросам 7,8,9 ГИА и вопросам А8, А9, A10 ЕГЭ.
  2. Гельфгат И.М., Ненашев И.Ю. «Физика. Сборник задач 10 класс» 5.34, 5.43, 5.44, 5.47 ()
  3. Опираясь на задачу 5.47, определите коэффициент поверхностного натяжения воды и мыльного раствора.

Список вопросов-ответов

Вопрос: Почему поверхностное натяжение меняется с изменением температуры?

Ответ: При увеличении температуры, молекулы жидкости начинают двигаться быстрее, и следовательно, молекулы легче преодолевают потенциальные силы притяжения. Что и приводит к уменьшению сил поверхностного натяжения, являющихся потенциальными силами, которыми связываются молекулы приповерхностного слоя жидкости.

Вопрос: Зависит ли коэффициент поверхностного натяжения от плотности жидкости?

Ответ: Да, зависит, поскольку от плотности жидкости зависит энергия молекул приповерхностного слоя жидкости.

Вопрос: Какие существуют способы определения коэффициента поверхностного натяжения жидкости?

Ответ: В школьном курсе изучаютдва способа определениякоэффициента поверхностного натяжения жидкости. Первый - это метод отрыва проволочки, его принцип описан в задаче 5.44 из домашнего задания, второй - метод счета капель, описанный в задаче 5.47.

Вопрос: Почему через некоторое время мыльные пузыри разрушаются?

Ответ: Дело в том, что через некоторое время, под действием силы тяжести пузырь становится толще внизу, чем вверху, и затем под влиянием испарения разрушается в какой-либо точке. Это приводит к тому, что весь пузырь, подобно воздушному шарику, схлопывается под действием не скомпенсированных сил поверхностного натяжения.

Полиплоидия (от греч. polyploos - многократно повторяющийся и eidos - вид) - это кратное увеличение числа наборов хромосом. Одиночный, или гаплоидный (и), набор у высших растений и животных представлен в половых клетках (см.).

При половом процессе после оплодотворения яйцеклетки, т. е. слияния двух гамет (см.), возникает новое состояние с двойным, или диплоидным (2n), набором хромосом (см.), передающимся большинству соматических клеток многоклеточного организма и представляющим для них норму.

По-существу, уже сам половой процесс дает при слиянии двух наборов первую ступень полиплоидии, однако в случае высших организмов полиплоидией принято называть более высокие степени умножения, т. е. наборы: триплоидный (Зn), тетраплоидный (4n), гексаплоидный (6n) и т. д.

Полиплоидии принадлежит особая роль в процессах нормальной дифференцировки некоторых клеток в индивидуальном развитии (онтогенезе) высших растений и животных, включая человека. Помимо этого, полиплоидия имеет значение и в процессах регенерации.

Особо надо отметить полиплоидию, наблюдаемую в патологических условиях (рост злокачественных новообразований).

Чрезвычайно велико значение полиплоидии в становлении новых видов растений. Близкородственные виды растений одного рода часто укладываются в так называемые полиплоидные ряды (пшеницы с 14 или 28, или 42 хромосомами и др.). Морфологические и физиологические преимущества полиплоидных видов позволяют им иногда заселять новые ареалы, недоступные из-за суровых условий для других видов. Установлено, что и в селекции сельскохозяйственных растений человек, не подозревая того, веками вел искусственный отбор полиплоидных форм, от которых ныне получают основную массу пищевых и кормовых белков, жиров и углеводов. Освоение метода экспериментального создания полиплоидов уже привело к внедрению некоторых из них в сельскохозяйственную практику (триплоидные сахарная свекла, перечная мята и др.).

Перспективный метод получения полиплоидных форм часто сочетают с искусственной гибридизацией. Полиплоидия - единственный метод преодоления бесплодия гибридов, полученных в результате скрещивания отдаленных видов.

В эволюции животных полиплоидия не получила такого значения, как у растений. Этому, по-видимому, препятствовал сложный механизм определения пола (см.) у животных. Однако там, где этот барьер снят, где имеет место партеногенетическое размножение, возникли полиплоидные виды, завоевавшие более или менее обширные ареалы.

Случаи возникновения спонтанной полиплоидии у животных наблюдаются так же, как и у растений; освоено и их получение в эксперименте. Это ставит вопрос и об их практическом использовании. Первые шаги уже сделаны в нашей стране В. Л. Астауровым, получившим размножающиеся полиплоиды шелкопряда. Отдельные случаи полиплоидии обнаружены и у человека.

Словарь медицинских терминов

полиплоидия (греч. polyploos многократный + eidos вид)

кратное увеличение числа наборов хромосом в клетках организма; у животных встречается редко.

Энциклопедический словарь, 1998 г.

полиплоидия

ПОЛИПЛОИДИЯ (от греч. polyploos - многократный и eidos - вид) наследственное изменение, заключающееся в кратном увеличении числа наборов хромосом в клетках организма. Широко распространена у растений (большинство культурных растений - полиплоиды), среди раздельнополых животных встречается редко. Полиплоидия может быть вызвана искусственно (напр., алкалоидом колхицином). У многих полиплоидных форм растений более крупные размеры, повышенное содержание ряда веществ, отличные от исходных форм сроки цветения и плодоношения. На основе полиплоидии созданы высокоурожайные сорта сельскохозяйственных растений (напр., сахарной свеклы).

Полиплоидия

(от греч. polýploos ≈ многопутный, здесь ≈ многократный и éidos ≈ вид), кратное увеличение числа хромосом в клетках растений или животных. П. широко распространена в мире растений. Среди раздельнополых животных встречается редко, главным образом у аскарид и некоторых земноводных.

Соматические клетки растений и животных, как правило, содержат двойное (диплоидное) число хромосом (2 n); одна из каждой пары гомологичных хромосом происходит от материнского, а другая ≈ от отцовского организмов. В отличие от соматических, половые клетки имеют уменьшенное исходное (гаплоидное) число хромосом (n). В гаплоидных клетках каждая хромосома единична, не имеет парной себе гомологичной. Гаплоидное число хромосом в клетках организмов одного вида называется основным, или базовым, а совокупность генов , заключённую в таком гаплоидном наборе, ≈ геномом. Гаплоидное число хромосом в половых клетках возникает вследствие редукции (уменьшения) вдвое числа хромосом в мейозе, а диплоидное число восстанавливается при оплодотворении. (Довольно часто у растений в диплоидной клетке бывают т. н. В-хромосомы, добавочные к какой-либо из хромосом. Роль их мало изучена, хотя у кукурузы, например, всегда имеются такие хромосомы.) Число хромосом у различных видов растений весьма разнообразно. Так, один из видов папоротника (Ophioglosum reticulata) имеет в диплоидном наборе 1260 хромосом, а у самого филогенетически развитого семейства сложноцветных вид Haplopappus gracilis имеет всего 2 хромосомы в гаплоидном наборе.

При П. наблюдаются отклонения от диплоидного числа хромосом в соматических клетках и от гаплоидного ≈ в половых. При П. могут возникать клетки, в которых каждая хромосома представлена трижды (3 n) ≈ триплоидные, четырежды (4 n) ≈ тетраплоидные, пять раз (5 n) ≈ пентаплоидные и т.д. Организмы с соответственным кратным увеличением наборов хромосом ≈ плоидности ≈ в клетках называются триплоидами, тетраплоидами, пентаплоидами и т.д. или в целом ≈ полиплоидами.

Кратное увеличение числа хромосом в клетках может возникать под действием высокой или низкой температуры, ионизирующих излучений, химических веществ, а также в результате изменения физиологического состояния клетки. Механизм действия этих факторов сводится к нарушению расхождения хромосом в митозе или мейозе и образованию клеток с кратно увеличенным числом хромосом по сравнению с исходной клеткой. Из химических агентов, вызывающих нарушение правильного расхождения хромосом, наиболее эффективен алкалоид колхицин, препятствующий образованию нитей веретена деления клетки. (Воздействуя разбавленным раствором колхицина на семена и почки, легко получают экспериментальные полиплоиды у растений.) П. может возникать и вследствие эндомитоза ≈ удвоения хромосом без деления ядра клетки. В случае нерасхождения хромосом в митозе (митотическая П.) образуются полиплоидные соматические клетки, при нерасхождении хромосом в мейозе (мейотическая П.) ≈ половые клетки с измененным, чаще диплоидным, числом хромосом (т. н. нередуцированные гаметы). Слияние таких гамет даёт полиплоидную зиготу: тетраплоидную (4 n) ≈ при слиянии двух диплоидных гамет, триплоидную (3 n) ≈ при слиянии нередуцированной гаметы с нормальной гаплоидной и т.д.

Возникновение клеток с числом хромосом 3-, 4-, 5-кратным (и более) гаплоидному набору, называется геномными мутациями, а получаемые формы ≈ эуплоидными. Наряду с эуплоидией часто встречается анеуплоидия , когда появляются клетки с изменением числа отдельных хромосом в геноме (например, у сахарного тростника, пшенично-ржаных гибридов и др.). Различают автополиплоидию ≈ кратное увеличение числа хромосом одного и того же вида, и аллополиплоидию ≈ кратное увеличение числа хромосом у гибридов при скрещивании разных видов (межвидовая и межродовая гибридизация).

У полиплоидных форм растений нередко наблюдается гигантизм ≈ увеличение размеров клеток и органов (листьев, цветков, плодов), а также повышение содержания ряда химических веществ, изменение сроков цветения и плодоношения. Эти особенности чаще наблюдаются у перекрёстноопыляющихся форм, чем у самоопылителей. Хозяйственно-полезные качества полиплоидов издавна привлекали внимание селекционеров, что привело к развёртыванию работ по искусственному получению полиплоидов, которые представляют важный источник изменчивости и могут быть использованы как исходный материал для селекции (например,. триплоидная сахарная свёкла, тетраплоидный клевер, редис и др.). Обычный недостаток автополиплоидов ≈ низкая плодовитость. Однако после длительного отбора можно получить линии с достаточно высокой плодовитостью. Неплохие результаты даёт создание искусственных синтетических популяций, составленных из наиболее плодовитых линий автополиплоидов некоторых перекрёстноопыляющихся растений, например ржи.

Не меньшее значение в селекции имеют и аллополиплоиды. Хромосомные наборы, входящие в состав аллополиплоидов, не одинаковы; они различаются набором содержащихся в них генов, а иногда формой и числом хромосом. При скрещивании растений разных родов, например ржи и пшеницы, возникает гибрид с гаплоидным набором ржи и гаплоидным набором пшеницы. Такой гибрид стерилен и лишь удвоение числа хромосом каждого растения, т. е. получение амфидиплоидов, может нормализовать мейоз и восстановить плодовитость. Аллополиплоидия может быть методом синтеза новых форм на основе гибридизации. Классический пример такого синтеза ≈ получение Г. Д. Карпеченко рафанобрассики ≈ гибрида редьки и капусты с 36 хромосомами (18 от редьки и 18 от капусты). Селекционерами (в СССР ≈ В. Е. Писаревым, Н. В. Цициным, А. И. Державиным, А. Р. Жебраком и др.) аллополиплоиды получены у значительного числа видов растений. Большинство культурных растений, возделываемых человеком, ≈ полиплоиды.

П. имела огромное значение в эволюции дикорастущих и культурных растений (полагают, что около трети всех видов растений возникли за счёт П., хотя в некоторых группах, например у хвойных, грибов, это явление наблюдается редко), а также некоторых (преимущественно партеногенетических) групп животных. Доказательством роли П. в эволюции служат т. н. полиплоидные ряды, когда виды одного рода или семейства образуют эуплоидный ряд с увеличением числа хромосом, кратным основному гаплоидному (например, пшеница Triticum monococcum имеет 2n = 14 хромосом, Tr. turgidum и др. ≈ 4n = 28, Tr. aestivum и др. ≈6n = 42). Полиплоидный ряд видов рода паслён (Solanum) представлен рядом форм с 12, 24, 36, 48, 60, 72 хромосомами. Среди партеногенетически размножающихся животных полиплоидные виды не менее часты, чем среди апомиктических растений (см. Апомиксис, Партеногенез). Советскому учёному Б. Л. Астаурову впервые удалось искусственно получить плодовитую полиплоидную форму (тетраплоид) из гибридов двух видов шелкопряда: Bombyx mori и В. mandarina. На основании этих работ им предложена гипотеза непрямого (через партеногенез и гибридизацию) происхождения раздельнополых полиплоидных видов животных в природе. См. также Видообразование.

Лит.: Бреславец Л. П., Полиплоидия в природе и опыте, М., 1963; Экспериментальная полиплоидия в селекции растений. Сб. ст., Новосиб., 1966; Майр Э., Зоологический вид и эволюция, пер. с англ., М., 1968; Астауров Б. Л., Экспериментальная полиплоидия и гипотеза непрямого (опосредованного партеногенезом) происхождения естественной полиплоидии у бисексуальных животных, «Генетика», 1969, т. 5, ╧ 7; его же, Experimental polyploidy in animals, «Annual Review of Genetics», 1969, v. 3; его же, Партеногенез и полиплоидия в эволюции животных, «Природа», 1971, ╧ 6; Жуковский П. М., Эволюционные аспекты полиплоидии растений, там же; Карпеченко Г. Д., Избр. труды, М., 1971.

М. Е. Лобашев.

Примеры употребления слова полиплоидия в литературе.

Больше того, Министерство сельского хозяйства открыло для работы по вопросам полиплоидии специальное учреждение во главе с А.

Метод искусственной полиплоидии , который мы обывательски называем колхицинным методом и с помощью которого достигается удвоение единиц наследственности, нами тоже недостаточно использован.

Мы обязаны использовать метод полиплоидии и метод межсортовых скрещиваний кукурузы, который дал огромные богатства Соединенным Штатам Америки.

Я утверждаю по своему личному опыту советского биолога-большевика, что методы полиплоидии , которые применили Сахаров при создании новых сортов гречихи или М.

Никто не мог доказать на практике, что методы полиплоидии не оправдали себя.

Надо знать, что ни одного сорта ни по одной культуре, который был бы выведен методом полиплоидии , в производстве нет.

Их и не будет до тех пор, пока к создаваемым методом полиплоидии гибридам не будут применены методы воспитания, основанные на правильном понимании взаимоотношений организма с факторами внешней среды.

Товарищи, так как на настоящей сессии был проявлен некоторый интерес к фактическому материалу по экспериментальной полиплоидии и амфидиплоидии культурных растений, то я решил изложить ряд данных, которые получены коллективом моей кафедры.

Мы начали работу по экспериментальной полиплоидии культурных растений, исходя из тех фактических данных, которые имеются в современной науке.

Мы поставили своей целью получить 42-хромосомный тип пшеницы методом экспериментальной полиплоидии и отдаленной гибридизации.

Я считаю, что эти факты по экспериментальной полиплоидии у культурных и диких растений являются существенным доказательством правильности современной хромосомной теории наследственности.

Мы ведем работу с пшеницей не только методом отдаленной гибридизации и экспериментальной полиплоидии , но и методом чистых линий, методом индивидуального отбора.

Надо сказать, что практический успех в работе этим методом у нас выше, чем методом экспериментальной полиплоидии , потому что мы свой материал по отдаленной гибридизации и экспериментальной полиплоидии довели только до пятого поколения.

В работах по полиплоидии культурных растений важно то, что полиплоиды получены в результате воздействий на наследственную основу таким внешним фактором, как колхицин.

Работы по экспериментальной полиплоидии культурных растений показывают, что внешние факторы -- колхицин, аценафтен, температура и прочие факторы внешней среды специфически действуют на наследственную основу, на хромосомный комплекс клетки.




Самое обсуждаемое
К чему увидеть кошку во сне? К чему увидеть кошку во сне?
Яркая и мечтательная женщина-Овен: как завоевать ее? Яркая и мечтательная женщина-Овен: как завоевать ее?
Печень индейки рецепт приготовления в сметане Печень индейки рецепт приготовления в сметане


top