Какое строение имеет головной мозг млекопитающих. Млекопитающие

Какое строение имеет головной мозг млекопитающих. Млекопитающие

Продолговатый мозг . Как и у представителей нижестоящих классов, от дна промежуточного мозга отходят зрительные нервы, образующие перекрест, и позади них находится воронка, к которой прикрепляется гипофиз, тогда как над промежуточным мозгом располагается на длинной ножке эпифиз.

Полость промежуточного мозга, или третий желудочек, по бокам имеет мощные скопления мозгового вещества, носящие название зрительных бугров (thalami optici). Таким образом, промежуточный мозг имеет сходное строение с соответствующим мозгом пресмыкающихся и птиц.

Средний мозг , наоборот, отличается сравнительно очень небольшими размерами и крыша его, кроме продольной борозды, имеет еще поперечную борозду. Благодаря этому у кролика, как и у всех млекопитающих, вместо двухолмия, свойственного представителям прочих классов, крыша среднего мозга представлена четверохолмием (corpus quadrigeminum). Передние холмики несут зрительную функцию, а задние — слуховую. Полость среднего мозга, или сильвиев водопровод, представляет собой лишь узкую щель.

Мозжечок состоит из средней непарной части — червячка — и двух боковых частей, которые очень велики и обозначаются как полушария мозжечка (hemisphaerae cerebelli). От них отходят в стороны боковые придатки (flocculi).

Продолговатый мозг отличается от такового у представителей нижестоящих классов тем, что по бокам четвертого желудочка обособ ляются продольные пучки нервных волокон, идущие к мозжечку и носящие название задних ножек мозжечка (crura medullo-cerebellaria), на нижней поверхности продолговатого мозга обособляются парные продольные валики — пирамиды (pyramis), а впереди них лежит поперечное возвышение, состоящее из нервных волокон, которые связывают под продолговатым мозгом правое и левое полушария мозжечка. Возвышение это характерно для млекопитающих и носит название еаролиева моста (pons varolii).

. I— сверху; II — снизу; III — сбоку; IV — продольный разрез (по Паркеру):

1 — большие полушария, 2 — обонятельные доли, 3 — зрительный нерв, 4 — эпифиз, 5 — средний мозг— четверохолмие, 6 — мозжечок, 7 — продолговатый мозг, S — гипофиз, 9 — варолиев мост, 10 — мозговая воронка, 11 — мозолистое тело, 12 — зрительные бугры

Головные нервы . У кролика уже 12 пар головных нервов, так как XI пара — добавочный нерв (nervus accessorius), не вполне дифференцированный у птиц и пресмыкающихся, получает у млекопитающих полное развитие. Он отходит от боков продолговатого мозга приблизительно на уровне XII пары. Прочие головные нервы имеют типичные места отхождения.

Органы чувств . Для кролика, как и для, грызунов, характерно сильное развитие осязательных волос — вибрисс — на голове в виде так называемых усов, на верхней и нижней губах, подбородке, на щеках и бровях. Среди органов чувств, как и у большинства млекопитающих, ведущую роль играют органы обоняния; в обонятельной полости, как сказано выше, имеется сложный лабиринт обонятельных раковин. Высокой степени совершенства достигают также органы слуха, имеющие сложно извитую улитку, звукопроводящий аппарат в среднем ухе из трех слуховых косточек, костные слуховые барабаны и большие подвижные наружные уши.

Еще интересные статьи

§ 49. Возникновение мозга млекопитающих

Небольшие рептилийные предки млекопитающих вышли из древесных завалов карбона с развитым обонянием, вестибулярным аппаратом, неважным зрением и ассоциативными центрами в среднем мозге. Эти существа начали загадочный эволюционный путь, который не отмечен внятными палеонтологическими следами на протяжении почти 60 млн лет. Только в позднем триасе появляются триконодонты (Megazostrodon), которых можно считать древними, но вполне сложившимися млекопитающими. За несколько десятков миллионов лет произошли события, приведшие к формированию совершенной ассоциативной системы переднего мозга, теплокровности, плацентарному развитию и кормлению детёнышей молоком (Kemp, 1982; Tyndale-Biscoe, Rentree, 1987).

Попробуем оценить изменения нервной системы, предварившие появление триконодонтов. Карбоновые предки млекопитающих обладали набором качеств, свойственных большинству рептилий того периода. Для того чтобы стать млекопитающими, им надо было оказаться в такой среде, где их морфофункциональные особенности дали бы максимальные биологические преимущества.

Большинство современных млекопитающих обладают развитым обонянием. Оно вторично утрачено у зубатых китов и относительно мало используется хоботными, летучими мышами и приматами. В остальных случаях млекопитающие широко используют как основной орган обоняния, так и вомероназальную систему. Для наиболее примитивных млекопитающих обоняние играет ведущую роль, а представительство хеморецепторных центров в переднем мозге может превышать все остальные структуры вместе взятые (см. рис. III-19, а). Очевидно, что на первых этапах эволюции млекопитающих обоняние играло основную роль. Это послужило причиной преимущественного развития полушарий переднего мозга. Следствием развития обонятельной системы стали переднемозговые полушария, которые доминируют над остальными отделами головного мозга. Объём парных полушарий млекопитающих всегда больше объёма других структур нервной системы, какой бы специализацией ни обладал конкретный вид (см. рис. III-18; III-19; III-21; III-25).

Развитие обоняния и переднего мозга стало первым крупным неврологическим событием в истории этой группы. Можно допустить, что предки млекопитающих использовали обоняние в качестве ведущей системы афферентации. В каких условиях это могло произойти? Очевидная ситуация - ночная активность архаичных млекопитающих, но для ночной охоты можно успешно применять слух, зрение, осязание и терморецепторы. Млекопитающие предпочли использовать обоняние, хотя остальные органы чувств не подверглись существенной редукции.

На заре эволюции млекопитающих строение переднего мозга было сходно со строением мозга современных лиссэнцефальных представителей грызунов и зайцеобразных (см. рис. III-18, б; III-19, а, б; III-24, а). Архаичные млекопитающие занимались поиском пищи, половых партнёров и ориентировались в пространстве при помощи обоняния. С этой точкой зрения согласно большинство авторов, занимавшихся проблемами их эволюции (UIinski, 1986). На этом этапе эволюции рептилийные предки млекопитающих были лишены возможности использовать другие органы чувств с той же эффективностью, как обоняние. По- видимому, они обитали в темноте нижних ярусов карбоновых завалов, где обоняние было наиболее эффективным дистантным рецептором. Кроме обоняния, там можно было также использовать слух и тактильную чувствительность. Зрительная система и цветовое зрение были практически бесполезны и постепенно утратили свои исходные характеристики.

В этом состоянии архаичные млекопитающие пребывали долго. Времени хватило для создания интегративных связей между половыми корковыми центрами вомероназальной системы и сенсомоторными системами других отделов мозга. На базе скромного коркового зачатка рептилийной системы полового обоняния возник новый центр принятия решений. В него явно первоначально входили вомероназальные, моторные и вкусовые центры.

Слуховая система на первом этапе эволюции млекопитающих совершенствовалась за счёт задних бугорков четверохолмия. Они у млекопитающих развиты больше, чем у рептилий и птиц (см. рис. III-22, г). Таким образом, к моменту выхода из карбоновых лабиринтов потенциальный предок млекопитающих обладал развитым обонянием, слуховыми бугорками в крыше среднего мозга и зачатком коры, интегрировавшим обонятельные половые, моторные и вкусовые центры (рис. III-27, а, б).

Возникает вполне естественный вопрос о дальнейшей судьбе этих существ. Обычно предполагается, что мелкие предки млекопитающих по ночам вынюхивали свою добычу в подстилке лесов, а днём скрывались в норах или среди корней деревьев. Это вполне справедливое предположение, хотя объясняет только возможность развития обоняния. Однако при таком образе жизни никаких дополнительных стимулов для развития неокортекса и тем более полушарий мозжечка обнаружить невозможно. Наоборот, сумеречные норные животные обладают более чем скромным мозжечком. Для быстротечной эволюции сенсомоторных корковых центров и мозжечка требовалась невероятно сложная трёхмерная среда, которая ранее позвоночным никогда не встречалась. Следует допустить, что не почва, а иная среда была причиной появления развитой соматической чувствительности.

В поисках среды эволюционирования млекопитающих значительную помощь может оказать анализ ещё одной рецепторной системы, которую трудно переоценить - соматической чувствительности. Покровы млекопитающих приобрели удивительный набор механорецепторов различных типов. Они специализированы для восприятия различных видов вибраций, давления, прикосновения, нагревания и охлаждения. Почвенным обитателям столь разнообразный набор кожных рецепторов абсолютно не нужен, тем более что у современных почвенных млекопитающих (голые землекопы) редуцируется даже волосяной покров. Маловероятно, что развитая соматосенсорная система и волосяной покров могли возникнуть у животных, ведущих полуподземный образ жизни.

По-видимому, рептилийные предки млекопитающих, покинув карбоновые завалы, переместились в кроны деревьев (см. рис. III-27, в, г). Вертикальная «миграция» из плохо освещённых растительных буреломов в сумеречный мир крон деревьев выглядит вполне естественной. Этот переход не был радикальным изменением биологии рептилийных предков млекопитающих. Сохранились аналогичная трёхмерная жизненная среда и значение уже хорошо развитого вестибулярного аппарата. Вполне вероятно, что переход из нижних уровней карбоновых лесных завалов в крону деревьев происходил неоднократно, но с разными результатами. Только после появления первичной специализации головного мозга рептилий по обонятельному типу смогли сложиться необходимые предпосылки для формирования «древесной» группы архаичных млекопитающих. В сумеречных кронах деревьев необходим именно тот набор нейросенсорных, аналитических и репродуктивных приобретений, который известен у современных млекопитающих.

Жизнь макросматиков в кронах деревьев практически исключала размножение в гнёздах или дуплах. Для небольших животных с развитым обонянием чужая кладка яиц была и остаётся идеальной и доступной пищей, поэтому доставшееся от рептилийных предков живорождение получило дальнейшее развитие. Было необходимо максимально продлить внутриутробное развитие эмбриона. Это позволяло избежать формирования гнезда и привязки к конкретной территории. Мать перемещалась за пищей вместе с детёнышем, что повышало вероятность их выживания.

Наиболее простой способ увеличения продолжительности внутриутробного развития связан с отказом от питания эмбриона за счёт желтка. Запасы желтка нельзя бесконечно увеличивать в материнской матке. Намного эффективнее использовать простой диффузионный обмен кислорода, воды и метаболитов между стенкой желточного мешка и маткой. По-видимому, этим способом и была решена проблема внутриутробного развития архаичных млекопитающих. Древесные предки млекопитающих были весьма некрупными животными. Это позволяло им при помощи желтковой плаценты доращивать эмбрионы до вполне жизнеспособных размеров. Похожую репродуктивную стратегию используют современные сумчатые. Однако их желтковая плацента позволяет вырастить только небольшой эмбрион, который надо переводить в сумку с молочными железами. Поскольку архаичные млекопитающие были небольшими, необходимость в сумочном доращивании эмбрионов, наверное, отсутствовала. Только с увеличением размеров животных могли возникнуть трудности с выращиванием крупных зародышей. Низшие звери решили этот вопрос при помощи сумки, а высшие млекопитающие - при помощи плаценты (Jameson, 1988).

Вместе с развитием эффективных репродуктивных стратегий у архаичных млекопитающих наиболее заметным изменениям должна была подвергнуться сенсомоторная система. В кронах деревьев нагрузка на вестибулярный аппарат в несколько раз выше, чем даже в водной трёхмерной среде. Если рыба и совершает ошибочное движение при плавании, то это не приводит к фатальным последствиям. Опора на воду сохраняется в любой ситуации и позволяет исправить моторную ошибку. Для первичноводных позвоночных требования к сенсомоторной системе намного менее критичны, чем для животных, обитающих на ветвях деревьев и не умеющих летать. Сенсомоторные ошибки на ветвях деревьев могут приводить к фатальным последствиям. Гравитация планеты стала жестоким экзаменатором для рептилий, переместившихся из карбоновых завалов в верхний ярус леса. Она наложила ограничение и на размер тела предков млекопитающих. Большие животные просто не могли бы пережить ошибок становления совершенного вестибулярного аппарата и сенсомоторной системы. Падение крупных животных со значительной высоты почти всегда приводит к гибели или некомпенсируемым повреждениям, поэтому линейный размер предков млекопитающих не мог превышать нескольких десятков сантиметров. Небольшое и подвижное животное должно было быстро приобрести не только совершенный вестибулярный аппарат, но и развитую соматическую чувствительность. Этот сенсорный комплекс широко представлен в полушариях мозжечка и неокортексе млекопитающих.

Среди рецепторов покровов выделяются рецепторы, адаптированные к различны типам вибрации. Специальные системы с различным временем адаптации возникли для того, чтобы воспринимать колебания. Столь разнообразные и специализированные вибрационные рецепторы кожи были бы абсолютно не нужны, если бы предки позвоночных искали добычу на земле и в подстилке из опавших листьев. Наоборот, ветви и стволы деревьев идеально передают любые колебания. Эти колебания могут содержать информацию о добыче, животном противоположного пола или о приближении опасного хищника. Такие сигналы надо было дифференцировать с безопасными, но разнообразными колебаниями самих деревьев, поэтому развитие соматической чувствительности древесных рептилий было биологически вполне оправдано. На первом этапе эволюции рептилийных предков млекопитающих чувствительность механорецепторов покровов могла быть далеко не столь совершенной, как у современных животных. Этот недостаток мог быть компенсирован развитием специализированных чувствительных образований. Однако такие сложные капсулированные рецепторы, как тельца Руффини, Пачини, Мейсснера или концевые колбы Краузе, не могли возникнуть мгновенно для выполнения своих специализированных функций.

По-видимому, на первом этапе развития соматической чувствительности были использованы свободные нервные окончания, которые хорошо развиты у всех позвоночных. Сложность состоит в том, что свободные нервные окончания обладают ограниченными сенсорными возможностями. Простое увеличение их количества в дерме не смогло бы решить сложных соматосенсорных проблем древесных предков млекопитающих.

Повышение соматической механочувствительности было обеспечено с помощью волос (Spearman, Riley, 1980). Волосы стали своеобразным усилителем механического сигнала. Действительно, проще всего усилить механический сигнал, создав неравноплечий архимедов рычаг. Длинное плечо станет механическим детектором, а короткое - ассоциированным со свободным нервным окончанием рецептором. Понятно, что чувствительность такой системы будет определяться формой, размером и массой рычага, его жёсткостью и чувствительностью нервного окончания. Если таких рецепторов много, то дифференцированность соматической информации по направлению, силе и частоте будет гарантирована. Вполне возможно, что развитие такой специализированной соматической рецепторной системы привело к возникновению рецепторного волосяного покрова (Hudspeth, 1985). Впоследствии он стал использоваться для сохранения тепла, что замаскировало его первичную функцию. На рецепторное происхождение волос указывает и развитие их мышечного аппарата. Тонкая регуляция теплообмена может осуществляться и другими физиологическими способами, но для динамического изменения чувствительности механорецепторов, оплетающих волосяную сумку, другого способа нет, поэтому в случае опасности волосы многих животных рефлекторно поднимаются дыбом. Так увеличивается механочувствительность волосяного покрова в результате напряжения рецепторного «рычага».

В далёком прошлом напряжение рецепторных волосков предков млекопитающих повышало точность соматосенсорной информации. Это позволяло выбрать адекватную форму поведения в ответ на возникшую ситуацию. Судя по неврологическому обеспечению, этот механизм повышения соматической чувствительности возник ещё на заре эволюции млекопитающих. Он сохранился до настоящего времени как непроизвольная реакция на любое неожиданное возбуждение. Следовательно, первичная соматическая чувствительность рептилийных предков млекопитающих сложилась на основе свободных нервных окончаний, ассоциированных с рецепторным волосяным покровом. Косвенным свидетельством в пользу этой точки зрения является высокая иннервация стержней волос и волосяных фолликулов. У некоторых животных вокруг основания волоса может группироваться до 20 сенсорных нервных волокон. Эта механорецепторная система обладает самым низким порогом возбуждения и чувствительна к вибрациям частотой около 35 Гц.

Самым примитивным способом обеспечив повышение соматической чувствительности, предки млекопитающих заложили фундамент для долговременной эволюции совершенных капсулированных рецепторов. Они станут эффективнее свободных нервных и ассоциированных окончаний только спустя миллионы лет. Побочным результатом становления первичной соматосенсорной системы стал примитивный волосяной покров. Его дальнейшее развитие уже как термоизоляционного слоя, по-видимому, произошло значительно позднее формирования механосенсорных функций.

Параллельно с периферическим чувствительным аппаратом развивались центральные механизмы анализа соматических и проприоцептивных сигналов. Именно соматическая чувствительность и моторная система представлены обширными полями в неокортексе лиссэнцефальных млекопитающих (см. рис. III-24). По- видимому, необходимость развития коркового контроля за этими двумя системами стала одной из основных причин эволюции переднего мозга. На это указывает параллельное развитие неостриатума (базальных ядер) млекопитающих. Таких крупных специализированных новообразований в вентральной части переднего мозга у других позвоночных ранее не возникало (Reiner, Brauth, Karten, 1984). Интересно отметить, что эти огромные ядерные центры обеспечивают обработку сенсомоторной и кинестетической информации, которая поступает от других отделов головного мозга. Они избавляют сенсомоторную кору от контроля за непроизвольными движениями.

Надо подчеркнуть, что параллельно с расширением представительства соматических рецепторов в неокортексе формировались аналогичные связи кожных рецепторов с полушариями мозжечка. Парные полушария мозжечка встречаются только у млекопитающих в связи с развитием феноменальной соматической чувствительности и координации сложных движений. Такое развитие мозжечка не может быть связано ни с какими стандартными условиями в истории позвоночных до млекопитающих. Даже трёхмерная водная среда, в которой сотни миллионов лет эволюционировали первичноводные позвоночные, не смогла привести их сенсомоторные системы к столь же высокому развитию, как у млекопитающих.

«Маммальный» мозжечок триконодонтов сформировался всего за 30–40 млн лет. Причину его появления следует искать в кронах высоких деревьев, где от эффективности анализа соматических сигналов и координации движений всего тела зависит жизнь любого животного. У млекопитающих вся поверхность мозжечка занята сложноорганизованной корой, которая состоит из специализированных нейронов. Каждая рецепторная поверхность тела представлена строго определённым участком коры полушарий мозжечка. Это привело к тому, что площадь поверхности корковых структур мозжечка млекопитающих возросла в тысячи раз по сравнению с мозжечком рептилий. Собственно говоря, в результате латерального расширения и появились парные полушария мозжечка. Следствием развития межполушарных мозжечковых связей стало формирование моста заднего мозга млекопитающих, которого нет у рептилий и птиц. Причиной формирования моста стали необходимость постоянного оперативного сравнения соматической информации, поступающей от правой и левой половины тела, и моторная коррекция положения тела. Выживание архаичных млекопитающих в кронах деревьев непосредственно зависело от развития аналитического аппарата соматической и сенсомоторной чувствительности. Мозжечок стал своеобразным кинестетическим автоматом, который интегрировал соматические, сенсомоторные и вестибулярные сигналы. Выполняя эти функции, он позволял предкам млекопитающих неосознанно решать проблемы перемещения в сложной трёхмерной среде.

Эволюция архаичных млекопитающих в кронах деревьев позволяет объяснить специфическое развитие других органов чувств и их мозгового представительства. Сложная трёхмерная среда потребовала от упрощённого зрения предков млекопитающих совершенно новых способов оценки окружающего пространства. Надо было не просто увидеть предмет, а предельно точно определить расстояние до него и оценить его свойства. Ошибочная оценка расстояния до ветки в кроне деревьев обычно стоит жизни. Бинокулярное зрение и корковое представительство этой системы в переднем мозге вполне оправданны.

Надо подчеркнуть, что зрение, соматическая чувствительность, проприоцепция и вестибулярный аппарат внутреннего уха являются основными сенсорными входами в вестибулярные ядра ствола мозга. Интеграция этих сигналов позволяет млекопитающим позиционировать своё тело в пространстве и контролировать точность движений. Вестибулярные ядра млекопитающих являются уникальным образованием. Они намного более развиты, чем у рептилий и птиц. По-видимому, такая многофункциональная система вестибулярного и кинестетического контроля могла сложиться только в жёстких условиях крон деревьев. В такой среде были все условия для формирования своеобразной слуховой системы млекопитающих. Наружное ухо, которое можно ориентировать на источник звука, могло возникнуть в сложной акустической среде крон деревьев. Современные древесные млекопитающие обладают именно такими наружными слуховыми раковинами. Приобретя перечисленные особенности строения нервной системы в кронах деревьев, млекопитающие неоднократно «спускались» на землю. К неземному существованию первыми вернулись однопроходные (см. рис. 111-27, в-е), затем сумчатые и позднее всех плацентарные млекопитающие (см. рис. III-27, д-м). По- видимому, рукокрылые и приматы полностью сформировались в кронах деревьев. Переход приматов к наземному существованию стал первым шагом к появлению человека.

Важнейшим приобретением мозга млекопитающих, обитавших в кронах деревьев, стала способность к прогнозированию событий. Умение предугадать событие, результат движения, последствия охоты или внутривидового конфликта отличает и современных млекопитающих. Способность нервной системы предсказывать результат ещё не совершённого действия отсутствовала у других позвоночных. Млекопитающие дорого заплатили за такую способность ошибками, совершёнными вдалеке от земли. Вторично спустившись на землю, млекопитающие обладали не только ассоциативными центрами рептилийного типа, но и скромной возможностью оценивать результаты ближайших действий. Это функциональное приобретение млекопитающих основано на переизбытке нейронов и связей, которые сформировались в неокортексе. Только избыточная память и индивидуальный опыт позволили млекопитающим занять доминирующее положение в животном мире.

Теория переходных сред

В основе эволюции нервной системы позвоночных лежат общие морфологические закономерности. Они сводятся к количественным и качественным изменениям в центральной и периферической нервной системе. Однако в отличие от других систем организма, любые структурные изменения вызывают глубокую перестройку поведения. Результатом становится изменение форм взаимодействия организма с внешней средой. Новые морфофункциональные свойства нервной системы не всегда приводят к положительным результатам. Одни из этих свойств становились основой для кратковременного процветания группы или тупиковой специализации, другие давали позвоночным возможность освоить бескрайние ресурсы и открывали перспективные пути эволюции. В естественной истории нервной системы были и остаются морфологические решения, обрекающие своих владельцев как на неизбежное вымирание, так и на процветание. Большинство современных животных представляют собой образцы более или менее удачных, но тупиковых адаптаций. Их исчезновение было предопределено в момент начала структурной специализации нервной системы.

Нервная система обладает одним примечательным свойством: она может практически мгновенно изменить поведение животного и физиологическую активность его органов, а затем столь же быстро восстановить исходную ситуацию. Обратимость быстротечных и абсолютно необходимых изменений делает её бесценным инструментом в биологическом мире. Однако диапазон возможных перестроек нервной системы ограничен её структурой. Мозг может предоставить только тот набор инстинктивных или ассоциативных решений, который обеспечен сенсомоторными системами организма. Медведь не станет махать лапами, даже если реально сможет взлететь. На такие поступки легко решается только цивилизованный человек, поскольку его мозг почти утратил связь с реальным миром планеты. Иначе говоря, все позвоночные животные оказываются пленниками эволюционного прошлого своей нервной системы. Позволяя животным быстро приспосабливаться к сиюминутным изменениям окружающей среды, мозг формирует своеобразные скрытые рамки предельно возможных изменений. Именно эти рамки и предопределяют пределы обратимых адаптивных изменений поведения конкретного вида.

Морфологическая эволюция нервной системы необходима как инструмент по расширению границ адаптивных возможностей. Структурные изменения мозга снимают ограничения с одних поведенческих реакций и формируют другие. Этот процесс может продолжаться до тех пор, пока не возникнет слишком специализированный для дальнейших перестроек мозг. Тем не менее количественные или качественные изменения нервной системы остаются единственным выходом за пределы стандартных возможностей. Надо подчеркнуть, что количественные изменения в нервной системе могут происходить намного быстрее, чем качественные. Именно они являются первичным ресурсом для структурных адаптаций нервной ткани. Качественные морфологические перестройки мозга крайне затруднены и обычно требуют специальных условий или продолжительного времени. Эта разница между количественными и качественными изменениями нейральных структур опосредована особым положением головного и спинного мозга в системе органов и тканей позвоночных.

Центральная нервная система не участвует в биомеханических взаимодействиях организма с внешней средой. Это не значит, что при сокращении мускулатуры, движении суставов, деформациях кожи или при движении пищи по кишечнику нервы не подвергаются механическим нагрузкам. Они обладают известной прочностью и пластичностью и могут выдерживать небольшие и краткосрочные нагрузки. Однако речь идёт не о механических свойствах нервной системы. Наоборот, для эволюционной морфологии наиболее интересно, что нервная система предельно защищена от любых нагрузок, за исключением специализированных механорецепторов. Вся эволюция головного и спинного мозга проходит внутри черепа и под защитой невральных дужек позвонков. От элементов скелета они отделены тремя мозговыми оболочками и спинномозговой жидкостью. Однако форма центральной нервной системы незначительно зависит от скелета. Достаточно упомянуть, что в эмбриональном периоде развития головной и спинной мозг является индуктором дифференцировки скелета, а не наоборот. Справедливее сказать о том, что форма черепа и невральных дужек позвонков вторична по отношению к анатомии центральной нервной системы. Следовательно, головной и спинной мозг изменяет свою форму независимо от каких-либо биомеханических преобразований в организме животного.

В этом особом положении мозга заключён огромный потенциал любых структурных преобразований. Реальным источником количественных изменений является стабильная индивидуальная изменчивость нервной системы. Специальные исследования, проведённые на амфибиях, рептилиях и млекопитающих, показали, что у жизнеспособных личинок или молодых животных, полученных от одной пары родителей, стандартной является 20–22 % количественная изменчивость головного мозга. Нейроны подсчитывали как во всех отделах мозга, так и в основных периферических анализаторах. Был обнаружен некоторый разброс значений изменчивости в зависимости от отдела головного мозга. Наиболее древним структурам (задний и продолговатый мозг) была свойственна 7-13 % изменчивость, а для эволюционно новых - 18–25 %. Тем не менее количественной вариабельностью были охвачены практически все отделы головного мозга. Выявленные пределы изменчивости установлены в генетически однородной группе животных - потомков только одной пары родителей.

Если использовать человека для оценки изменчивости нервной системы, то двукратная разница по массе мозга далеко не исчерпает все встречающиеся и жизнеспособные варианты (Савельев, 1996), поэтому наиболее объективным будет вывод о нормальной внутривидовой 15–25 % изменчивости головного мозга. Это означает постоянное отличие одного животного от другого на некоторое количество нервной ткани. Для анамний этот ресурс может составлять от нескольких тысяч до десятков миллионов нейронов, а для амниот от сотен тысяч до нескольких миллиардов клеток. Учитывая, что каждый нейрон обладает множеством контактов с другими клетками и может быть носителем памяти, мы можем предполагать заметную разницу в поведении отдельных особей даже в самой однородной популяции. Этологические подтверждения индивидуализации поведения многочисленны и охватывают практически все группы позвоночных. Это означает, что в любой популяции существуют особи, которые могут решать определённые задачи лучше или хуже, чем другие. Если биологическая ситуация стабильна, то указанной разницей в потенциальных возможностях мозга никто и никогда не воспользуется.

Количественные различия мозга становятся значимыми при нестабильности окружающей среды, высокой половой конкуренции или явном, но малодоступном пищевом ресурсе. Они оказываются решающим резервом при полной исчерпанности инстинктивно-ассоциативных наборов видоспецифических форм поведения. Если индивидуализированная форма поведения даёт заметный выигрыш в доступе к пище, то она и закрепляется последующими репродуктивными преимуществами, вероятность сохранения количественных особенностей мозга данной особи возрастает. По-видимому, именно этот механизм лежит в основе масштабных приспособительных изменений головного мозга большинства первичноводных позвоночных. В зависимости от типа питания и развития органов чувств их мозг дифференциально увеличивается в размерах (см. § 27). Этот путь в эволюции нервной системы эффективен для решения частных адаптивных проблем в рамках существующей конструкции нервной системы. Крупные эволюционные события, приводящие к смене среды обитания и возникновению новых систематических таксонов высоких порядков, требуют качественных изменений в нервной системе.

Появление в нервной системе качественно новых структур требует продолжительного времени и совершенно особых условий. Эти условия должны отличаться от традиционной среды обитания и обладать непреодолимой притягательностью для позвоночных. Гарантиями такой привлекательности остаются обильная пища и успешное размножение. Если столь биологически выгодная среда долго сохраняется, то у животных появляется шанс обретения качественно новой нейроморфологической структуры.

Таких экологических условий в истории позвоночных возникало немного, и все они отмечены появлением животных с качественно новыми структурами нервной системы. Первым событием такого рода стало возникновение хордовых. Как описано выше, появление хордовых было довольно случайным событием, а не фатальной эволюционной закономерностью (см. § 26). Группа похожих на турбеллярий небольших плоских червей продолжала обитать на мелководьях, богатых пищей. Будучи фильтраторами и ведя пассивный образ жизни, эти плоские червеобразные существа пытались закрепиться на максимально выгодных пищевых территориях. Для этого они погрузили заднюю часть своего тела в придонные отложения. Такое заякоривание широко распространено среди современных придонных беспозвоночных. Отдалёнными последствиями этих несложных адаптивных действий древних червей стали дорсальный нервный тяж и мышечная хорда, предотвращающая его деформацию. Сутью качественных изменений двух- или четырёхцепочечной нервной системы червеобразных предков хордовых стали несколько последовательных событий. При двухцепочечном варианте произошёл 90-градусный поворот червя на одну из боковых поверхностей тела. При четырёхцепочечной схеме строения нервной системы отмечено слияние парных дорсальных и вентральных нервных цепочек. В обоих случаях качественная перестройка нервной системы завершилась рострокаудальным слиянием сегментарных ганглиев дорсальной нервной цепочки с последующим образованием центрального желудочка. Параллельно произошло разделение узлов вентральной нервной цепочки до уровня соматических ганглиев (см. § 26). Они стали основой для иннервации внутренних органов. Хордовые не появились бы без специфической переходной среды. Небольшая глубина воды, обилие пищи и подходящие для размножения условия гарантировали процветание любых придонных фильтраторов. Среди множества вариантов адаптации к столь благоприятной среде возникновение морфотипа хордовых было только одним из успешных вариантов. В этой ситуации решающую роль играла богатая пищей среда, которая стала стимулом для морфологических изменений многих видов. Дальнейшая эволюция хордовых протекала в более разнообразных условиях и привела к возникновению всего многообразия первичноводных позвоночных (см. § 29).

Вторым принципиальным качественным изменениям мозг подвергся после выхода позвоночных на сушу. Это событие привело к крупным морфологическим перестройкам как в нервной системе, так и других органах. Сформировались конечности, лёгочное дыхание, специализированные покровы и ряд других признаков, позволивших архаичным тетраподам перейти к наземному существованию. Столь обширные морфофункциональные перестройки анализаторного и эффекторного аппаратов нервной системы не могли произойти за короткий промежуток времени и вне особой переходной среды. Они были особенно необходимы для качественных изменений в нервной системе, поскольку в количественном отношении мозг амфибий явно проигрывает специализированным первичноводным животным. При выходе на сушу в нервной системе древних амфибий возникли вомероназальная обонятельная система, контроль за дыханием и комплекс стволовых центров управления конечностями. Изменениям подверглась зрительная, слуховая и вестибулярная системы. Переходной экосистемой между водной и наземной средой обитания могли быть своеобразные почвенные лабиринты или карбоновые лесные завалы (см. § 31). В такой переходной среде можно было долго использовать как плавательные движения, так и опору на плавники. При высокой влажности лабиринтов одновременно функционировали кожное дыхание, жабры и зачатки лёгких. Развитие водно-воздушных органов чувств и моторных систем в переходной среде было оправдано биологическими преимуществами, которые давало освоение богатых пищей и хорошо защищённых территорий (см. § 33). По- видимому, и почвенные лабиринты, и карбоновые завалы из стволов деревьев создали уникальную переходную среду для постепенной эволюции нервной системы древних амфибий. Только при длительном развитии морфологических изменений могли бы появиться спинномозговые центры и красное ядро для управления конечностями, вомероназальный орган и дополнительная обонятельная луковица, вторичные слуховые и вестибулярные центры.

Третьим историческим периодом развития нервной системы можно считать формирование мозга архаичных рептилий. Рептилийный период стал самым плодотворным в истории позвоночных. Рептилии заложили основные принципы структурной эволюции мозга амниот. У рептилий в нервной системе впервые сформировался ассоциативный отдел. Он возник на базе среднего мозга и оказался настолько успешным приобретением, что рептилии на миллионы лет стали самой доминирующей группой позвоночных. Ассоциативный средне-мозговой центр никогда не сформировался бы без серьёзной биологической необходимости. Она возникла ещё в начале эволюции рептилий как способ адаптации к агрессивной среде. Архаичным рептилиям требовалось постоянно сравнивать информацию, приходящую от различных органов чувств, и принимать сложные решения. Решения были вызваны постоянной адаптацией поведения к быстро меняющейся ситуации. Этими свойствами мозг первичноводных позвоночных и амфибий не обладал. Они выбирали одну из инстинктивных форм поведения по совершенно другим принципам. Выбор амфибий был построен на конкуренции между мозговыми центрами представительства анализаторов (рис. III-28). Простое сравнение уровня возбуждений было достаточным условием для реализации одной из инстинктивных программ. Рептилии впервые стали обладателями аналитического устройства совершенно нового типа (см. рис. III-28). Оно действовало по принципу сравнения информации, поступающей от каждого органа чувств. Решающую роль стало играть содержание анализаторного сигнала, а не сам факт возбуждения (см. § 37). Собственно говоря, у рептилий появились основы ассоциативного принципа поиска решений. Понятно, что мы видим самые зачаточные признаки этого губительного свойства мозга, но они возникли именно у рептилий. История рептилий, наверное, была намного богаче неврологическими экспериментами, чем мы можем себе представить. Достаточно упоминания о ещё одном историческом приобретении рептилий - кортикальных структурах переднего мозга (см. § 39). Половая конкуренция в сочетании с невероятным развитием обоняния и вомероназальной системы рептилий стала основой для появления кортикальных структур. Кортикальные структуры переднего мозга сформировались на основе нового центра, обеспечивающего интеграцию половых сигналов с остальными органами чувств. Этот половой интегративный центр непродолжительное время конкурировал с ассоциативной крышей среднего мозга, но его активность проявлялась только в период размножения. По-видимому, для успешного размножения архаичным рептилиям нужно было подчинять все системы организма этой задаче, а любые побочные занятия вплоть до поиска пищи должны были игнорироваться (рис. III-29).

Ассоциативные и кортикальные центры мозга рептилий не могли бы появиться без весьма своеобразных условий. Однако допустим, что архаичные рептилии просто расселились по поверхности Земли. Без серьёзной конкуренции со стороны амфибий, насекомых и растений они быстро стали бы доминирующей группой без глубоких перестроек нервной системы. В таких условиях для её совершенствования нельзя представить никаких реальных оснований. Тем более невозможно отыскать внешние причины для формирования настолько гипертрофированного обоняния, что это привело к возникновению кортикальных структур переднего мозга. Следовательно, реальные события развивались по совершенно иному сценарию и к идиллическому разбреданию рептилий по поверхности планеты отношения не имели.

Наиболее вероятна довольно длительная эволюция архаичных рептилий в специализированной переходной среде. Эта экологическая ниша, очевидно, была не приспособлена для безмятежного процветания молодой группы позвоночных. Скорее всего все неврологические приобретения рептилий возникли как адаптивные приспособления к крайне сложной среде обитания и агрессивному конкурентному окружению. Такой средой вполне могли быть карбоновые древесные завалы из стволов растений (см. § 38). Эту среду отчасти использовали ещё амфибии, но они явно пришли туда за обильной и гарантированной пищей. Пищей скорее всего были первичноводные позвоночные, которые использовали карбоновые завалы в качестве удобных мест для размножения. Со временем они сменили места размножения или отступила вода. Когда источник пищи по тем или иным причинам иссяк, амфибии стали использовать в пищу себе подобных. Это привело к невиданной конкуренции и быстрому отбору по свойствам и ассоциативным возможностям мозга.

Переходной средой для формирования рептилий стали карбоновые растительные завалы, где трёхмерная среда предъявляла повышенные требования к вестибулярной системе и дистантным анализаторам. Отсутствие света выводило обоняние на качественно иной уровень морфофункционального развития. Он использовался как важнейший дистантный анализатор и система контроля полового поведения. Активно эволюционировала слуховая система, которая не менее эффективна для ориентации в темноте.

За несколько десятков миллионов лет жесточайшей конкуренции в карбоновых растительных лабиринтах сложился уникальный рептилийный мозг с довольно совершенным набором неврологических структур и эффективным ассоциативным центром. С его помощью решались проблемы поиска пищи, конкуренции, избегания опасности и др. Когда наступал период размножения, весь мозг подчинялся новой корковой структуре в стенке переднего мозга. Она стала специализированным центром управления половым поведением, которого не было ни у кого из позвоночных до рептилий. Таким образом, мозг архаичных рептилий стал совершеннейшей системой для решения самых главных биологических задач любого вида - выживания и размножения. Для каждой задачи появилась собственная интегративная система, которая в состоянии перенацелить весь организм рептилий на её решение. С таким поведенческим ресурсом рептилии вышли из своей агрессивной колыбели и очень быстро стали доминирующей группой на планете.

Возникновение мозга птиц нельзя считать принципиальным эволюционным событием, связанным с качественной перестройкой мозга. Птицы, вероятно, должны были исчезнуть вскоре после своего появления. Это была тупиковая адаптивная специализация, которую спасла утрата обоняния. Огромный неврологический субстрат обонятельной системы достался архаичным птицам из-за смены пищевых пристрастий. Перейдя к питанию в мелководных заводях или с плавника, они перестали использовать обоняние в качестве ведущей системы афферентации. Основной анализаторной системой стало зрение, а дополнительной - слух (см. § 43). Добывая пищу в воде, архаичные птицы передвигаться на задних конечностях, что постепенно привело к значительному снижению нагрузки на передние конечности и частичной рудиментации кисти. Роль переходной среды в этом случае играло богатое пищей прибрежное мелководье, которое сохранило притягательность для птиц до настоящего времени.

Хотя узкая специализация птиц гарантировала им быстрое вымирание, переход к плаванию и нырянию за пищей привёл к развитию крылоподобных передних конечностей. На этом этапе эволюции птиц, по-видимому, появились пингвины, которые никогда не летали. Ныряние и плавание с использованием передних конечностей создали физические условия для развития полых костей, мощных грудных мышц, системы воздушных мешков лёгких и перьевого покрова. Судя по всему, добывание пищи в холодных водах стало одним из основных стимулов к обретению теплокровности. Крылоподобные плавательные конечности использовались не только для плавания. Древние птицы применили машущие движения передних конечностей для своеобразного «бега по воде», который стал переходной фазой к активному полёту (см. § 44).

Крылья и перьевой покров сформировались для охоты в водной среде, но были адаптированы и использованы для полёта. В этой ситуации переходной средой стала вода. Она создала все необходимые условия для постепенного накопления изменений в нервной системе птиц, поэтому появление крыльев и переход к полёту не вызвали радикальных перестроек в центральной нервной системе (см. § 43). В связи с редукцией обоняния у птиц на основе базальных структур переднего мозга сформировались ассоциативные центры. Эти центры представлены нео- и гиперстриатумом, которые стали основой становления сложного поведения птиц, памяти и индивидуализации поведения.

Млекопитающие представляют собой довольно странную в неврологическом отношении группу. Преимущества их мозга возникли на основе развития интегративных функций половой системы. Как сказано выше, основной причиной появления кортикальных структур мозга рептилий было развитие вомероназального (якобсонова) органа. Его центральное представительство сформировалось вне древних обонятельных ядер переднего мозга. Основными вторичными центрами вомероназального обоняния стали скромные кортикальные структуры рептилий (см. § 39). На этом морфологическом субстрате сложилась

интеграция полового поведения всего организма рептилий. Такое централизованное управление позволяло подчинять весь организм одной задаче и эффективнее достигать успеха в размножении.

Млекопитающие пошли намного дальше рептилий. На этой репродуктивно-интегративной морфологической структуре переднего мозга сформировался ассоциативный центр совершенно нового типа. Он стал выполнять функции контроля за работой уже сложившихся сенсорных систем. Автономные механизмы мозга остались на уровне древних центров, а все сложные благоприобретённые функции складывались на уровне коры переднего мозга. Кроме обоняния и половых интегративных центров, для мозга млекопитающих характерно развитие сенсомоторной системы и механизмов кинестетического контроля. Только у млекопитающих мозжечок сформировал парные полушария. Он достиг столь гигантских размеров, что его поверхность зачастую превосходит размеры неокортекса. Более того, значительная, а иногда и большая, часть самого неокортекса обеспечивает соматические, сенсомоторные и моторные функции.

Для появления столь странной специализации нужна весьма оригинальная среда. Сами карбоновые растительные завалы были сложной трёхмерной средой для рептилий, но их мозжечок не достиг даже развития мозжечка птиц. Переходная среда возникновения млекопитающих должна была предъявить необычно высокие требования к анализу положения тела и координации движений. На поверхности земли только в ветвях деревьев могут оказаться столь жёсткие требования к кинестетическому контролю. По-видимому, в кронах деревьев сформировались все основные сенсомоторные, обонятельные и слуховые преимущества млекопитающих. Этой переходной средой можно объяснить как появление неокортекса, так и развитие соматической чувствительности, которая стала одним из основных органов чувств (см. § 48).

Результатом становления соматической чувствительности стали рецепторные образования дермы - волосы. Волосы, иннервированные свободными нервными окончаниями, эффективно повысили соматическую чувствительность и затем стали причиной появления волосяного покрова. Дальнейшее использование волос для терморегуляции замаскировало их первичное предназначение. В кронах деревьев впервые возникло совершенно новое требование к нервной системе (см. § 49). Для архаичных древесных млекопитающих было недостаточно сравнительного анализа информации, поступающей от различных органов чувств. Этот способ работы ассоциативных систем не позволял сделать прогноза событий. В кронах деревьев предвидение развития событий стало решающим условием как для добывания пищи, так и для элементарного сохранения жизни. Только полёт мог бы избавить млекопитающих от этих проблем. Однако к нему прибегли лишь рукокрылые после формирования основных принципов строения мозга млекопитающих. Основными структурными последствиями обитания в кронах деревьев стали неокортекс, двухполушарный мозжечок и небольшая способность прогнозирования развития событий. Эта особенность млекопитающих после их переселения на почву и в водную среду создала им значительные поведенческие преимущества. Способность к оценке возможных событий стала для млекопитающих инструментом доминирования на планете.

Все перечисленные глубокие изменения в строении нервной системы позвоночных вызваны приспособлением мозга к обитанию животных в специфической среде. Без длительно существующей переходной среды не будет достаточного времени для изменения структурной организации нервной системы. Она слишком качественно консервативна и количественно пластична для быстрых и радикальных морфологических преобразований. Предположение о существовании переходных сред может объяснить причины возникновения мозга современных позвоночных.

Из книги Муравей, семья, колония автора Захаров Анатолий Александрович

ВОЗНИКНОВЕНИЕ КОЛОНИИ Образование отводка происходит обычно в определенные для каждого вида сроки. Вот как происходил начальный этап выделения нового муравейника у волосистого лесного муравья в 1967 г. в подмосковном ельнике (Солнечногорский лесокомбинат). В течение

Из книги Десять великих идей науки. Как устроен наш мир. автора Эткинз Питер

Пролог Возникновение понимания Галилей указал точку поворота, в которой научные усилия приняли новое направление, в которой ученые - анахронический, конечно, для того времени термин - поднялись со своих кресел, поставили под вопрос состоятельность прошлых попыток

Из книги Недостающее звено автора Иди Мейтленд

Мейтленд Иди Недостающее звено (Возникновение человека - 2) Вторая книга из серии "Возникновение человека" рассказывает о поисках фактов, относящихся к недостающему звену преемственной эволюции человека. Она посвящена австралопитековым - по убеждению подавляющего

Из книги Эмбрионы, гены и эволюция автора Рэфф Рудольф А

Возникновение сегментов Сегментация зародыша дрозофилы в своей основе выглядит как ряд латеральных впячиваний зародышевой полоски, образующихся почти одновременно на стадии гаструляции. Несмотря на кажущийся мозаичный характер этого процесса, можно показать, что

Из книги Теория адекватного питания и трофология [таблицы текстом] автора

Из книги Теория адекватного питания и трофология [таблицы картинками] автора Уголев Александр Михайлович

9.3. Возникновение клеток Предполагается, что этапом возникновения жизни на Земле следует считать период, когда сформировались простейшие клеточные системы, ставшие элементарной ячейкой живого. Сведения, касающиеся этой проблемы, освещены в обзорах, посвященных

Из книги Как возникла и развилась жизнь на Земле автора Гремяцкий Михаил Антонович

VI. Возникновение жизни на Земле Из опытов Спалланцани и Пастера мы уже знаем, что при высокой температуре жизнь прекращается. Большинство организмов погибает уже при 70–80 градусах тепла. Значит, для их жизни требуются определенные условия температуры. Требуются для

Из книги Мозг, разум и поведение автора Блум Флойд Э

Пейсмейкеры мозга млекопитающих - супрахиазменные ядра В конце 60-х годов физиолог Курт Рихтер провел ряд экспериментов на крысах, пытаясь найти участки мозга, ответственные за ритмичность. Он разрушал отдельные области мозга - всего более чем в 200 различных местах - у

Из книги Жизнь в глубинах веков автора Трофимов Борис Александрович

ВОЗНИКНОВЕНИЕ ЖИЗНИ Происхождение жизни, ее сущность - одна из наиболее трудных загадок науки, ибо жизнь - это самое сложное из известных нам явлений природы. Никто не видел и не наблюдал ее возникновения; более того, в природе не сохранилось никаких прямых или косвенных

Из книги Происхождение мозга автора Савельев Сергей Вячеславович

Глава II. Возникновение нервных клеток и мозга Причиной возникновения нервной системы стала низкая скорость получения информации о внешнем и внутреннем мире организма с донервной организацией. Его ткани состояли из клеток со сходной химической, электромагнитной и

Из книги Рождение сложности [Эволюционная биология сегодня: неожиданные открытия и новые вопросы] автора Марков Александр Владимирович

§ 28. Возникновение отделов головного мозга Ранний период истории возникновения предков позвоночных, до формирования хорошо структурированного скелета, довольно туманен. Если допустить, что предковые формы хордовых были мягкотелыми существами размером около 10–15 см,

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

Возникновение и наследование модификаций на примере Metazoon Еще один важный теоретический вопрос, который можно рассмотреть на нашем примере с Metazoon, - это вопрос о возникновении адаптивных модификаций. Так называют способность организма более или менее осмысленно (то

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

4.2. Возникновение клеточной организации Учеными было доказано, что после испарения воды из реакционного объема в амфифильных липидоподобных и липидных молекулах формируются жидкокристаллические агрегаты, в которых молекулы расположены периодическими слоями, как в

Из книги автора

Возникновение рода Homo Поскольку эволюция гоминид происходила неравномерно, имела «мозаичный» характер, граница между древними представителями рода Homo и австралопитеками весьма размыта. Условными критериями отнесения к роду Homo принимаются объем мозга (не менее

Из книги автора

Возникновение и эволюция человека современного типа Происхождение современного человека – наиболее интригующая загадка антропогенеза. В антропологии все формы человека современного типа получили рабочее наименование «сапиенсы». Большинство их представителей были

Из книги автора

Особенности эволюции мозга млекопитающих и человека Исключительно высокие темпы эволюции мозга млекопитающих, и особенно человека, до сих пор не имеют единого объяснения. Тем более, что для носителей крупного мозга обычно характерны значительные размеры тела, большая

Остановимся на вопросе об изменении относительного размера мозга млекопитающих.

Этот размер часто характеризуют коэффициентом энцефализации, который равен отношению объема мозга к условному объему, определяемому как произведение среднего эмпирического параметра на объем тела, возведенный в степень 2/3. Коэффициент энцефализации млекопитающих изменяется примерно от 0,1-0,2 для наиболее примитивных животных до значения около 6, относящегося к современному человеку.

Хотя коэффициент энцефализации или другие показатели, характеризующие объем мозга, по ряду причин могут служить только очень приближенной характеристикой уровня высшей

нервной деятельности животного, существуют возможности использования соответствующих материалов для получения важной информации о развитии интеллекта ископаемых животных.

Развитие головного мозга млекопитающих было длительным процессом, который происходил на протяжении всего третичного периода. Данные таблицы следует дополнить сведениями об эволюции размера мозга у мезозойских млекопитающих. Хотя получить такие сведения трудно из-за ограниченности материалов о сравнительно малочисленных млекопитающих мезозойской эры, Джерисон сделал вывод, что уже первые наиболее примитивные группы млекопитающих обладали мозгом, относительные размеры которого были больше мозга рептилий. Затем, на протяжении свыше ста миллионов лет относительный размер мозга млекопитающих существенно не изменялся и только в третичном периоде размер их головного мозга начал возрастать.

Джерисон считает, что средний коэффициент энцефализации Для архаических млекопитающих эоцена равнялся 0,25, для животных олигоцена 0,50, для современных 1,00. Наряду с этим он отмечает, что на протяжении третичного периода эволюция головного мозга сопровождалась возрастанием «дивертификации», т. е. диапазона изменений относительных величин мозга у различных групп животных.

Можно думать, что эволюция мозга млекопитающих существенно зависела от условий окружающей их среды. Дотретичные млекопитающие были небольшими по размеру ночными животными, которые активизировались в условиях более низкой температуры темного времени суток. Они, по-видимому, в малой степени конкурировали с господствовавшими тогда разнообразными пресмыкающимися. Быстрая эволюция млекопитающих, начавшаяся после произошедшего в конце мелового периода вымирания большинства групп рептилий, в начале третичного периода не сопровождалась заметным увеличением относительного размера мозга животных, так как млекопитающие могли без острой конкуренции с другими животными заполнять различные экологические ниши, освобожденные ранее вымершими пресмыкающимися.

Как отмечает Джерисон, значительные изменения в строении мозга млекопитающих произошли в позднем эоцене, когда структура головного мозга у многих млекопитающих существенно усложнилась. В позднем эоцене число семейств млекопитающих впервые приблизилось к максимуму, соответствующему «экологической емкости» биосферы. В этих условиях возможность появления новых семейств была ограничена необходимостью вытеснения ранее существовавших сходных в экологическом отношении групп, что могло осуществиться только при значительном прогрессе новых организмов. В такой ситуации появление новых семейств должно было сопровождаться вымиранием занимавших те же экологические ниши старых групп.

Это подтверждается данными таблицы, из которой видно, что в позднем эоцене скорости появления новых и вымирания старых семейств были высокими и почти одинаковыми по величине. Возрастание среднего объема головного мозга в олигоцене, о котором говорит Джерисон, вероятно, объясняется резким изменением природных условий, что, в частности, ускорило вымирание архаических форм, обладавших меньшим размером мозга.

Хотя изменения климата в миоцене и плиоцене были меньшими олигоценового похолодания, они усложняли задачу приспособления животных к меняющимся природным условиям, что способствовало выживанию животных с более высоким уровнем высшей нервной деятельности.

Из приведенных выше соображений следует, что развитие головного мозга ускоряется: а) при высоком уровне заполнения «экологической емкости» биосферы прогрессивными группами животных; б) при существенных изменениях природных условий.

Это заключение можно подтвердить, кроме приведенных выше данных, материалами об эволюции третичных животных на двух изолированных континентах - Южной Америке и Австралии.

Оба эти континента в третичном периоде размещались в основном в зоне низких широт, где климатические колебания были наименьшими. Как Южная Америка, так и Австралия в это время были изолированы от других континентов.

В Южной Америке основными группами плацентарных млекопитающих были разнообразные копытные. Джерисон отмечает, что на протяжении 50 млн. лет размер мозга этих животных практически не увеличился. Нечто подобное произошло в Австралии, населенной в основном сумчатыми животными.

Можно думать, что медленное развитие мозга животных на этих континентах объяснялось, с одной стороны, сравнительным постоянством природных условий, с другой - неполным использованием «экологического пространства», которое имелось для млекопитающих на этих континентах. В частности, в Южной Америке до конца третичного периода плацентарных хищников заменяли сумчатые, которые менее эффективно преследовали копытных животных. Внешнее сходство разнообразных сумчатых в Австралии с экологически аналогичными плацентарными животными других континентов отнюдь не означает, что сумчатые могли поддерживать характерный для плацентарных животных высокий уровень межвидовой конкуренции, способствующей значительной скорости эволюции.

К этому нужно добавить, что территории Южной Америки и Австралии были малы по сравнению с обширной системой связанных между собой континентов, которую составляли Африка, Евразия и Северная Америка. Так как возникновение новых групп животных основано на процессах, имеющих вероятностный характер, размер территории, на которой осуществляется соответствующий «эволюционный эксперимент», часто оказывается решающим фактором для его успешного завершения.

В заключение остановимся на эволюции мозга приматов.

Хотя низшие приматы имели сравнительно большой относительный размер мозга уже в палеогене, быстрое возрастание размера мозга началось с появлением высших приматов и в особенности человекообразных обезьян, ветвь которых отделилась от общего родословного дерева приматов в олигоцене. Тогда же или несколько позже образовалась ветвь обезьяноподобных предков человека.

У всех высших приматов относительный размер мозга заметно больше среднего для других современных групп млекопитающих, у австралопитеков и непосредственных предков человека этот размер был еще большим.

Можно думать, что скорость эволюции приматов существенно зависела от степени изменчивости окружающей их среды. Хотя приматы существовали на протяжении всего третичного периода, в течение его первой половины, когда условия окружающей среды были наиболее устойчивыми, прогресс этой группы млекопитающих был сравнительно невелик. Скорость эволюции приматов (в том числе скорость роста коэффициента энцефализации) резко возросла во второй половине третичного периода, в эпоху значительных колебаний природных условий, происходивших начиная с олигоцена.

Неоднократно высказывалось предположение о том, что происхождению современного человека способствовали резкие изменения природной среды, имевшие место в четвертичном периоде.

Представление о связи эволюции приматов с изменениями условий окружающей среды может быть использовано для ответа на вопрос о месте исходного центра антропогенеза. Как известно, по этому вопросу имеются две точки зрения. Соглашаясь, что первые этапы этого процесса происходили в низких широтах, часть ученых (в том числе Дарвин и Уоллес) считали центром антропогенеза Африку, где до настоящего времени сохранились наиболее близкие к человеку виды обезьян. Другие, основываясь на ряде палеонтологических находок, предполагали, что первые прямые предки человека появились в Южной Азии. Экологические соображения позволяют поддержать первый из этих взглядов.

Как указано выше, даже при крупных изменениях глобального климата температура в тропиках менялась сравнительно мало. Главный результат колебаний климата в тропиках - изменение режима осадков, которое во многих случаях было значительным.

Так как в Южной Азии преобладают условия избыточного увлажнения, влияние некоторого изменения сумм осадков на растительный покров и другие компоненты природной среды для основной части этой территории было сравнительно малосущественным.

Совершенно другие последствия имели колебания глобального климата в Африке, большая часть территории которой находится сейчас и находилась в прошлом в условиях умеренного, недостаточного и крайне недостаточного увлажнения. Колебания режима осадков в Африке неизбежно приводили к значительным изменениям границ природных зон, что сопровождалось разрушением старых экологических систем и открывало условия для возникновения новых форм экологических взаимоотношений между организмами. В таких условиях скорость эволюции многих групп живых существ, включая приматов, должна быть более высокой.

Принимая во внимание соображения, приведенные в этом и предыдущих разделах, можно сделать вывод, что возникновение ноосферы стало возможным в результате двух различных форм изменений состояния среды, окружающей организмы.

Первая из них - сравнительно медленные колебания газового состава атмосферы, в ходе которых заметно увеличивалось количество атмосферного кислорода. В эпохи повышения количества кислорода возникли многие прогрессивные группы животных, включая основные классы позвоночных. Вторая форма изменений окружающей среды - кратковременные резкие изменения термического режима, которые неоднократно приводили к вымиранию многочисленных групп животных, создавая возможность для широкого распространения более прогрессивных форм, сохранившихся в эпохи вымирания.

Можно высказать предположение, что при постоянных условиях окружающей среды эволюция была бы слишком медленной не только для создания ноосферы, но и для возникновения сколько-нибудь сложных организмов за время существования биосферы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Млекопитающие – наиболее высокоорганизованный класс позвоночных животных с высокоразвитой центральной нервной системой. В связи с этим приспособительные реакции млекопитающих на условия среды сложны и весьма совершенны.

Передний (конечный) мозг крупный, он значительно превосходит все остальные отделы головного мозга. Его полушария разрастаются во всех направлениях, скрывая промежуточный мозг. Средний мозг виден снаружи только у бесплацентарных и низших плацентарных, а у копытных, хищных, китообразных и приматов он покрыт задней частью больших полушарий. У антропоидов и человека затылочные доли переднего мозга надвинуты и на мозжечок.

Если первоначально в ходе эволюции основную массу конечного мозга составляли обонятельные доли, то у млекопитающих развитые обонятельные доли имеют только низшие, а у высших обонятельные доли имеют вид небольших придатков, разделенных на обонятельную луковицу и обонятельный тракт.

Увеличение относительных размеров переднего мозга млекопитающих связано, прежде всего, с разрастанием его крыши, а не полосатых тел, как у птиц. Мозговой свод (крыша) образован серым веществом, именуемым корой. Последняя представляет собой комплекс, состоящий из древнего плаща (paleopalium), старого (archipallium) и нового плаща (neopalium). Новый плащ занимает промежуточное положение, располагаясь между старым и древним плащами. Старый плащ, или старая кора, располагается медиально и в прошлом его называли гиппокампом или аммоновым рогом. Древний плащ, или древняя кора, занимает латеральное положение.

Рис. 10. Мозг кролика.

I – вид сверху.
II – вид снизу.
III – вид сбоку.
IV – продольный разрез.

1 – большие полушария; 2 - обонятельные доли; 3 – зрительный нерв; 4 - эпифиз; 5 – средний мозг; 6 – мозжечок; 7 – продолговатый мозг; 8 – гипофиз; 9 - варолиев мост; 10 – мозговая воронка; 11 – мозолистое тело.

Новый плащ обычно называют неокортексом (новая кора) и именно из него в основном и состоят полушария переднего мозга. При этом поверхность полушарий может быть гладкой (лисэнцефальной) или складчатой (с бороздами и извилинами). Кроме того, независимо от этого в полушариях выделяют от 4 до 5 долей. Принцип разделения переднего мозга на доли основывается на топографии определенных борозд и извилин. Разделение на доли в лисэнцефаьном (гладком) мозге носит условный характер. Обычно выделяют теменные доли, височные, затылочные и лобные, а у высших приматов и человека еще и пятую долю, которая называется островком. Он образуется в эмбриональном периоде за счет разрастания височной доли на вентральную сторону полушарий.

Принимая за исходный тип больших полушарий лисэнцфальный мозг, выделяют три варианта развития рисунка борозд: продольный, дугообразный и «приматный тип». В варианте приматного типа борозда в лобных долях направленны рострально, а в височных – вентро-дорсально

На расположение борозд и извилин может значительно влиять форма мозга. У большинства млекопитающих мозг вытянут в ростро-каудальном направлении. Однако у многих дельфинов мозг расширен латерально и относительно укорочен в длину.

Для характеристики переднего мозга млекопитающих большое значение, кроме борозд и извилин, имеет характер распределения в коре нейронов (цитоархитектоника). Неокортекс млекопитающих имеет шестислойное строение и характеризуется наличием пирамидных клеток, которые отсутствуют в мозге других позвоночных. Особенно крупные пирамидные клетки (клетки Беца) находятся в двигательной зоне коры. Их аксоны передают нервные импульсы двигательным нейронам спинного мозга и мотонейронам двигательных ядер черепно-мозговых нервов.

Различные участки коры больших полушарий являются специализированными зонами обработки информации, поступающей от различных органов чувств. Различаются сенсорные и моторные зоны. Последние формируют нисходящие пути нервных волокон к стволу головного мозга и спинномозговым двигательным ядрам. Между чувствительными и двигательными зонами коры располагаются интегративные участки, которые объединяют входы сенсорных и моторных областей коры и предопределяют выполнение специализированных видоспецифических функций. Кроме этого, имеются ассоциативные зоны коры, не связанные с конкретными анализаторами. Они представляют собой надстройку над остальными участками коры, обеспечивая мыслительные процессы и хранение видовой и индивидуальной памяти.

Весь комплекс распределенных в коре зон сопряжен с функциональной специализацией полей. При этом морфологические и функциональные границы полей довольно точно совпадают. Критерием выделения того или иного поля является изменение в распределении клеточных элементов в коре или возникновение в ней нового подслоя.

Особенности архитектоники тех или иных полей являются морфологическим выражением их функциональной специализации. Причиной изменения цитоархитектоники в полях служит увеличение количества восходящих и нисходящих нервных волокон. Сейчас созданы топологические карты полей для человека и для многих лабораторных животных.

Поля коры головного мозга входят в состав определенных долей и при этом сами подразделяются на функциональные зоны, связанные с конкретными органами или их частями и имеют упорядоченное внутреннее строение. В каждом поле или зоне выделяют так называемые модули вертикальной упорядоченности организации коры. Модуль имеет либо вид колонки либо клубочка, в который включаются нейроны, расположенные по всей толще коры. В колонку входит группа из 110 нейронов, расположенных между парой капилляров, проходящих через поперечник коры.

На стадии формировании мозга древнейших гоминид областью, куда было направленно действие естественного отбора, явилась кора и, прежде всего, следующие ее отделы: нижнетеменная, нижняя лобная и височно-теменная области. Преимущество выживания получили те индивиды, а затем и те популяции формирующихся людей которые оказались продвинутыми в отношении развития каких-то элементов частей коры (большей площадью полей более разнообразными и лобильными связями, улучшенными условиями кровообращения и т.д.). развитие новых связей и структур в коре давали новые возможности в отношении изготовления орудий труда и сплочения коллектива. В свою очередь новый уровень техники зачатки культуры, искусства через естественный отбор способствовали развитию мозга.

К настоящему времени сформировалось представление о специфическом системокомплексе коры переднего мозга человека, включающем нижнетеменную, заднюю верхневисочную и нижнюю лобную доли коры. Этот комплекс связан с высшими функциями – речью, трудовой деятельностью и абстрактным мышлением. В целом он является морфологическим субстратом второй сигнальной системы. Эта система не имеет собственных переферических рецепторов, а использует старые рецепторные аппараты различных органов чувств. Так,например, установлено, что на языке имеется особая часть тактильного аппарата, развитие которого определяет последовательность звукообразования на начальных этапах формирования членораздельной речи ребенка.

К подплащевым структурам переднего мозга относят базальные ядра, полосатые тела (древнее, старое и новое) и септальное поле.

В различных отделах переднего и промежуточного мозга располагается комплекс морфофункциональных структур, названных лимбической системой. Последняя имеет многочисленные связи с неокортексом и вегетативной нервной системой. Она интегрирует такие функции мозга, как эмоции и память. Удаление части лимбической системы приводит к эмоциональной пассивности животного, а ее стимуляция к гиперактивности. Важнейшей функцией лимбической системы является взаимодействие с механизмами памяти. Краткосрочная память связана с гиппокампом, а долгосрочная – с неокортексом. Через лимбическую систему происходит и извлечение индивидуального опыта животного из неокортекса, и управление моторикой внутренних органов, и гормональная стимуляция животного. При этом чем ниже уровень развития неокортекса, тем больше поведение животного зависит от лимбической системы, что приводит к доминированию эмоционально-гормонального контроля за принятием решений.

У млекопитающих нисходящие связи неокортекса с лимбической системой обеспечивают интеграцию самых разнообразных сенсорных сигналов.

С появлением первых зачатков коры у рептилий от плащевой комиссуры отделился небольшой пучок нервных волокон, соединяющих левое и правое полушарие. У плацентарных млекопитающих такой пучок волокон развит значительно больше и называется мозолистым телом (corpus collosum). Последнее обеспечивает функцию межполушарных коммуникаций.

Промежуточный мозг, как и у других позвоночных, состоит из эпиталамуса, таламуса и гипоталамуса.

Развитие неокортекса у млекопитающих привело к резкому увеличению таламуса, и, прежде всего, дорсального. В таламусе содержится около 40 ядер, в которых происходит переключение восходящих путей на последние нейроны, аксоны которых достигают коры больших полушарий, где обрабатывается информация, поступающая от всех сенсорных систем. При этом передние и латеральные ядра обрабатывают и проводят зрительные, слуховые, тактильные, вкусовые и интероцептивные сигналы в соответствующие проекционные зоны коры. Есть мнение, что болевая чувствительность не проецируется в кору полушарий переднего мозга, а ее центральные механизмы находятся в таламусе. Это предположение основывается на том, что раздражение разных областей коры не вызывает боли, в то время как при раздражении таламуса ощущается сильная боль. Часть ядер таламуса являются переключательными, а другая часть ассоциативными (от них идут пути в ассоциативные зоны коры). В медиальной части таламуса находятся ядра, которые при низкочастотной электрической стимуляции вызывают в коре больших полушарий развитие тормозных процессов, приводящих ко сну. Высокочастотная стимуляция этих ядер вызывает частичную активацию корковых механизмов. Таким образом таламокортикальная регулирующая система, контролируя потоки восходящих импульсов, участвует в организации смены сна и бодрствования.

Если у низших позвоночных высшие сенсорные и ассоциативные центры находятся в среднем мозге, а дорсальный таламус является скромным интегратором между средним мозгом и обонятельной системой, то у млекопитающих он является важнейшим центром переключения слуховых и соматосенсорных сигналов. При этом соматосенсорная область превратилась в наиболее заметное образование промежуточного мозга и играет огромную роль в координации движений.

Следует заметить, что комплекс ядер таламуса формируется как за счет зачатка промежуточного мозга, так и за счет миграции из среднего мозга.

Гипоталамус образует развитые латеральные выпячивания и полый стебелек - воронку. Последний в заднем направлении заканчивается нейрогипофизом плотно соединенным с аденогипофизом.

Гипоталамус является высшим центром регуляции эндокринных функций организма. Он объединяет эндокринные механизмы регуляции с нервными. Кроме того, он является высшим центром симпатического и парасимпатического отделов вегетативной нервной системы.

Эпиталамус служит нейрогуморальным регулятором суточной и сезонной активности, что сочетается с контролем за половым созреванием животных.

Средний мозг образует четверохолмие, передние бугры которого связаны со зрительным анализатором, а задние – со слуховым. По соотношению относительных размеров передних и задних бугров можно судить о том, какая из систем, слуховая или зрительная, является превалирующей. Если лучше развиты передние бугры, значит, зрительная афферентация (копытные, многие хищники и приматы), если задние – то слуховая (дельфины, летучие мыши и др.).

Тегмент подразделяется на чувствительную и моторную зоны. В моторной зоне располагаются двигательные ядра черепно-мозговых нервов и нисходящие и восходящие спинноцеребральные волокна.

В связи с развитием у млекопитающих неокортекса как высшего интегративного центра врожденные реакции среднего мозга позволили коре «не заниматься» примитивными формами видоспецифичных реакций на внешние сигналы, в то время как сложные ассоциативные функции принимают на себя специализированные поля коры.

Мозжечок у млекопитающих приобретает наиболее сложное строение. Анатомически в нем можно выделить среднюю часть – червь, расположенные по обе стороны от него полушария и флоккулонодулярные доли. Последние представляют филогенетически древнюю часть – архицеребеллум. Полушария в свою очередь делятся на переднюю и заднюю доли. Передние доли полушарий и задняя часть червя мозжечка представляют филогенетически старый мозжечок – палеоцеребеллум. Филогенетически самая молодая часть мозжечка - неоцеребеллум включает в себя переднюю часть задних долей полушарий мозжечка.

Рис. 11. Головной мозг позвоночных (вид сбоку).

А – рыбы (треска).
Б – амфибии (лягушка).
В – рептилии (аллигатор).
Г – птицы (гусь).
Д – млекопитающие (кошка).
Е – человек (по Р. Трюксу, Р. Карпентеру, 1964).

1 – зрительная доля; 2 – передний мозг; 3 – обонятельная луковица; 4 – мозжечок; 5 – обонятельный тракт; 6 – гипофиз; 7 – нижняя доля; 8 – промежуточный мозг; 9 – воронка; 10 – обонятельные доли; 11 – зрительный тракт; 12 – эпифиз; 13 – IX и X пары черепно-мозговых нервов (остальные указаны римскими цифрами).

В полушариях мозжечка выделяют верхнюю поверхность, образующую кору мозжечка, и скопления нервных клеток – ядра мозжечка. Кора мозжечка построена по единому принципу и состоит из 3 слоев. Мозжечок связан с другими отделами центральной нервной системы тремя парами ножек, образованных пучками нервных волокон. Задние ножки состоят преимущественно из проприоцептивных волокон, которые приходят из спинного мозга. Средние ножки состоят из волокон, соединяющих мозжечок и кору переднего мозга, а передние ножки сформированы нисходящими волокнами, соединяющими мозжечок и средний мозг.

Вестибуломозжечковые связи определяют способность животных координировать движения тела, что является основной функцией архицеребеллума. Кроме этого, у млекопитающих сформировались новые более мощные мозжечковые пути за счет возникновения зубчатого ядра мозжечка. Оно получает волокна от различных участков полушарий мозжечка и передает сигналы в таламус, где происходит интеграция сенсомоторных сигналов с активностью корковых центров переднего мозга.

Эволюция мозжечка приводит не только к дублированию его древних связей, но и к формированию новых путей. Так, возникает связь через зубчатое ядро с вентролатеральным ядром таламуса и ретикулярными ядрами ствола мозга позволяют поддерживать мышечный тонус и осуществлять рефлекторные реакции. Связи с вестибулярным центром позволяют осуществлять контроль за положением тела в пространстве, а таламические связи предопределяют тонкие сенсомоторные координации. Все эти процессы осуществляются за счет сложной системы межклеточных взаимодействий на уровне коры мозжечка.

И других живых существ, поэтому его принято выделять в отдельный тип.

Различные млекопитающих отвечают за определенные процессы жизнедеятельности организма. Так, именно в промежуточном отделе головного мозга обрабатывается зрительная информация, поступающая к особи. Кроме того, процесс терморегуляции происходит именно благодаря контролю со стороны данного органа.

Бесперебойная работа эндокринной системы контролируется гипофизом, а вся полученная информация анализируется в среднем отделе мозга.

Для того чтобы сохранялось равновесие млекопитающего, а также баланс двигательной системы в общем, необходима работа мозжечка. А основные системы жизнедеятельности имеют свои центры управления, расположенные в продолговатом мозге.

Организм животного достаточно сложен, и считается, что интеллект его занимает второе место после человеческого. Об этом говорит не только строение головного мозга млекопитающего, но и масса по отношению к массе спинного мозга. Например, у рептилий спинной и головной мозг весят примерно одинаково, тогда как у животного масса головного мозга превышает спинной в три, а то и в пятнадцать раз, в зависимости от вида.

Отдельные зоны головного мозга у одного вида развиваются сильнее, у другого слабее, в зависимости от среды обитания животного. Например, если основное время суток жизни млекопитающего - ночь, то наиболее развито у такого животного зрение. Если речь идет об обитателе водоема либо болота, отмечено, что у такого млекопитающего будут сильно развиты слух и обоняние. Исключением считается кит, у которого система обоняния довольно слаба.

В головном мозге животного расположено 12 пар черепных нервов. Головные нервы млекопитающего отвечают не только за слух, зрение и обоняние, они также принимают непосредственное участие в формировании вегетативной системы.

Учеными доказано, что строение головного мозга млекопитающего формировалось миллионы лет. А прародителями современных животных были зверьки, имеющие охотничий инстинкт, добывающие себе пищу в ночное время с помощью хорошо развитого нюха и зрения. Если сравнивать с современным животным миром, то развитие их находилось примерно в середине между современными млекопитающими и рептилиями. Каким образом происходило формирование головного мозга, исследователям так до конца и не известно. Но именно благодаря такой степени развития, древним животным удалось, значительно видоизменившись, дожить до современных времен, а некоторым - стать незаменимыми помощниками человека.




Самое обсуждаемое
К чему увидеть кошку во сне? К чему увидеть кошку во сне?
Яркая и мечтательная женщина-Овен: как завоевать ее? Яркая и мечтательная женщина-Овен: как завоевать ее?
Печень индейки рецепт приготовления в сметане Печень индейки рецепт приготовления в сметане


top