Колесо с зубчиками как называется. Зубчатое колесо

Колесо с зубчиками как называется. Зубчатое колесо

ТИПЫ ЗУБЧАТЫХ ПЕРЕДАЧ

По сути, шестерни это устройства, которые передают вращательное движение от одной оси к другой. Некоторые типы передач могут осуществлять и поступательные движения. Существуют десятки различных типов передач в промышленности, лишь некоторые из которых показаны здесь.

ЦИЛИНДРИЧЕСКИЕ ШЕСТЕРНИ

Цилиндрические зубчатые колеса работают на валах оси которых параллельны

Одним из побочных эффектов пар цилиндрических зубчатых колес является то, что выходные оси вращается в противоположном направлении, от входной оси, эффект, который можно ясно увидеть в анимации

КОНИЧЕСКИЕ ЗУБЧАТЫЕ КОЛЕСА

Конические шестерни работают на осях, которые не являются параллельными. Конические шестерни могут быть сделаны специально для осей практически под любым углом

ЧЕРВЯЧНЫЕ ПЕРЕДАЧИ

Червячных передач (или винт) можно рассматривать как передачу одного зуба

Червячные передачи имеют некоторые особые свойства, которые делают их отличимых от других передач. Во-первых, они могут достичь очень высоких передач произведенных за одну движение. Потому что большинство червячных передач имеет только один нагруженный зуб, передаточное отношение это просто число зубьев на соединение передач. Например, червячных пара передач в паре с 40- зубый цилиндрический редуктор имеет соотношение 40:1. Во-вторых, червячные передачи имеют гораздо более высокие трения (и ниже эффективность), чем другие типы передач. Это потому, что профиль зуба червячных передач постоянно скользят по зубам сопряженных передач. Это трение становится выше, тем больше нагрузка на передачу. Наконец, червячая передача не может работать с обратным эффектом. В анимации ниже, червячные передачи на зеленой оси ведет синие зубчатое колесо на красной оси. Но если вы включите красную ось в качестве ведущей, то червячных передач не получится. Это свойство передачи может применяться для остановки -блокировки вещи на определенном месте, без скатывания назад, например ворота гаража.

ЛИНЕЙНЫЕ ПЕРЕДАЧИ

Это средство преобразования вращательного движения от оси вращения или шестерни в поступательное движение зубчатой рейки. Шестерня вращается, и толкает рейку вперед, поскольку в ней перемещаются зубы шестерни. Регулируется например меньшим количеством зубов на ведущей шестерни и большим на рейке. движение в рейки будет пропорционально количеству зубьев на шестерне

ДИФЕРЕНЦИАЛЬНАЯ ПЕРЕДАЧА

Дифференциал - это механическое устройство, которое передает крутящий момент с одного источника на два независимых потребителя таким образом, что угловые скорости вращения источника и обоих потребителей могут быть разными относительно друг друга. Такая передача момента возможна благодаря применению так называемого планетарного механизма. В автомобилестроении, дифференциал является одной из ключевых деталей трансмиссии. В первую очередь он служит для передачи момента от коробки передач к колёсам ведущего моста.

Почему для этого нужен дифференциал? В любом повороте, путь колеса оси, двигающегося по короткому (внутреннему) радиусу, меньше, чем путь другого колеса той же оси, которое проходит по длинному (внешнему) радиусу. В результате этого, угловая скорость вращения внутреннего колёса должна быть меньше угловой скорости вращения внешнего колеса. В случае с не ведущим мостом, выполнить это условие достаточно просто, так как оба колеса могут не быть связанными друг с другом и вращаться независимо. Но если мост ведущий, то необходимо передавать крутящий момент одновременно на оба колеса (если передавать момент только на одно колесо, то возможность управления автомобилем по современным понятиям будет очень плохой). При жесткой же связи колёс ведущего моста и передачи момента на единую ось обоих колёс, автомобиль не мог бы нормально поворачивать, так как колеса, имея равную угловую скорость, стремились бы пройти один и тот же путь в повороте. Дифференциал позволяет решить эту проблему: он передаёт крутящий момент на раздельные оси обоих колёс (полуоси) через свой планетарный механизм с любым соотношением угловых скоростей вращения полуосей. В результате этого, автомобиль может нормально двигаться и управляться как на прямом пути, так и в повороте.

ПЕРЕДАЧА С ПЕРЕКЛЮЧЕНИЕМ ШЕСТЕРЕН

Движущей кольцо, в сочетании с парой промежуточных шестерен, которые не зафиксированы на своей оси, обладают функцией, включать и выключать шестерни в работу.

Анимация показывает, работу шестерни, на отключение или или для того что бы обеспечить сцепление шетерен с помощью промежуточной шестерни. Движущееся кольца показаны красным цветом. , оси соединены с серой осью с белыми дисками которые скользит по пазам основной оси. Движущей белое кольцо вращается вместе с осями. Сначала , движущиеся кольцо отключено так как темно-серая и зеленая передача не зацеплены. Движущиеся кольцо, приходит в зацепление с зеленым и тем самым приводит в движение синюю передачу. Движущиеся кольцо не использует зубьев, а использует четыре конических пальца, существует значительный зазор между кольцом и пальцами. Что позволяет подключать кольцо на холостом ходу или когда шестерни вращаются с разными скоростями

РЕГУЛИРУЕМЫЙ РОТОР

Лекция № 16

Изложенного материала

Вопросы для самопроверки

1. Перечислите примеры деталей с поверхностями сложной кофигурации.

2. Какие виды поверхностей используются при проектировании деталей с поверхностями сложной конфигурации?

3. Приведите способы обработки поверхностей сложной конфигурации.

4. Что такое обработка по копиру ?

5. Какие виды копиров используются в производстве?

1. Изучите номенклатуру деталей сложной конфигурации, производимую (ремонтируемую) на выбранном Вами предприятии.

2. Составьте технологический маршрут их обработки.

3. Определите инструменты и способы обработки конкретных поверхностей сложной конфигурации.

ОБРАБОТКА ЗУБЧАТЫХ ПОВЕРХНОСТЕЙ

В передачах современных машин широко используются зубчатые колёса, разнообраз-ные по форме, размерам и профилям (рис. 16.1). Наиболее распространены цилиндрические зубчатые колёса с прямыми (рис. 16.1а) и косыми (рис. 16.1б) зубьями. Соединение двух косых зубьев с противоположными углами наклона на ободе цилиндрического колеса представляет собой зубчатую передачу с шевронными (ёлочными) зубьями.

Рис. 16.1. Типы зубчатых передач

На рис. 16.1в представлена коническая передача с пересекающимися осями, причём угол встречи осей может быть любым. Конические колёса могут иметь прямые, косые и криволинейные зубья.

На рис. 16.1г представлена зубчатая передача со скрещивающимися осями, состоящая из двух зубчатых колёс с винтовыми зубьями . На рис. 16.1д пре-дставлена ещё одна схема передачи со скрещивающимися осями – червячная передача , отличающаяся от перечисленных выше тем, что один элемент передачи представляет собой винт (червяк), а другой - зубчатое колесо с фасонным зубом, сцепляющимся с витками винта.

На рис. 16.1е изображена реечная передача, одним элементом которой является зубчатое колесо с прямым или косым зубом, а другим – зубчатая рейка, которую можно представить как зубчатое колесо с бесконечно большим чи-слом зубьев. Реечная пара передаёт движение как от зубчатого колеса к рейке,

так и наоборот.

На рис. 16.1ж представлена схема волновой передачи , основанной на передаче движения за счёт бегущей волновой деформации одного из зубчатых ко-лёс. Эта передача состоит из водила 3 с двумя роликами, свободно вращающимися на осях, закреплённых в водиле, неподвижного жесткого зубчатого колеса 1 с внутренними зубьями и вращающего гибкого колеса 2 с наружными зубьями. Жёсткое зубчатое колесо соединяется с корпусом передачи. Гибкое зубчатое колесо изготавливают либо в виде стакана с тонкой легко деформирующейся стенкой, либо в виде свободно деформирующегося кольца.



В современных механизмах применяют зубчатые колёса с профилем зуба, очерченным эвольвентной кривой. В ряде случаев используются передачи с зацеплением Новикова, основным отличием которых является выпуклый и вогнутый круговые профили зубьев.

Действующими ГОСТами установлено 12 степеней точности цилиндрических зубчатых колёс и передач, с обозначением степеней в порядке убывания точности. За основу принята 7-я степень точности, соответствующая 7-му квалитету. Для каждой степени точности установлены нормы: кинематическая точность колеса; плавность работы колеса; контакта зубьев; бокового зазора.

Показатели кинематической точности представлены на рис. 16.2.

Нормы кинематической точности определяют значение наибольшей погрешности угла поворота зубчатого колеса за оборот при зацеплении с точным колесом. Эта погрешность возникает при нарезании зубчатых колёс вследствие погрешностей взаимного расположения заготовки обрабатываемого колеса и режущего инструмента, а также вследствие кинематической погрешности зуборезного станка. Показателем кинематической точности является предельная кинематическая погрешность (рис. 16.2а).

Кинематическую погрешность можно оценить предельной накопленной погрешностью окружного шага , являющейся наибольшей погрешностью во взаимном расположении двух любых одноименных профилей зубьев по одной окружности колеса (рис. 16.2б).

Показателем кинематической погрешности, обозначаемым называемым колебанием длины общей нормали , т.е. размер между наибоьшей и наименьшей длинами общей нормали в одном и том же колеса (рис. 16.2в).

Норма плавности работы зубчатого колеса определяет составляющую полной погрешности углов поворота зубчатого колеса, многократно повторяющуюся за оборот колеса (рис. 16.2г). Показателем плавности работы колёс является циклическая погрешность , которая представляет собой среднее значение размаха колебаний кинематической погрешности зубчатого колеса по всем циклам за оборот колеса. Плавность работы зубчатого зацепления влияет на бесшумность и долговечность передач (рис. 16.2д).

Погрешность профиля характеризует расстояние расстояние по нормали между двумя теоретическими профилями зуба колеса, ограничивающими действительный профиль в пределах его рабочего участка (рис. 16.2е).

Рис. 16.2. Показатели кинематической точности зубчатой передачи

Нормы контакта зубьев определяют точность выполнения сопряжённых зубьев в передаче. Пятном контакт называется часть боковой поверхности зуба колеса, на которой располагаются следы прилегания его к зубьям парного колеса после вращения передачи при лёгком торможении (рис.16.2ж). Норма точности определяется относительными размерами пятна контакта (в процентах):

1) по длине зуба – отношением расстояния между крайними точками следов прилегания за вычетом разрывов с, превосходящих размер модуля, к полной длине В зуба (см. рис. 16.2ж):

2) по высоте зуба – отношение средней высоты пятна прилегания по всей длине зуба к рабочей высоте зуба:

Пример норм размеров пятна контакта приведен в табл. 16.1.

Боковым зазором называется зазор между зубьями сопряжённых колёс в передаче, обеспечивающий свободный поворот одного из колёс при неподвиж-ном втором колесе. Боковой зазор определяется в сечении, перпендикулярном направлению зубьев, в плоскости, касательной к основным цилиндрам.

Гарантированный боковой зазор обозначается .

Для зубчатых колёс в передаче установлены шесть видов сопряжений: А, В, С, D, E, H и восемь видов допуска на боковой зазор, обозначенных в порядке

Таблица 16.1

Нормы размера пятна контакта (%%) для цилиндрических колёс

его возрастания буквами: h, d, c, b, a, z, y, x.

Для конических колёс и червячных пар установлены особые нормы точности.

16.2. Основные методы обработки зубьев цилиндрических и конических колёс.

Выбор метода обработки зубчатых колёс находится в непосредственной зависимости от установленной нормы точности различных их элементов, а так-же от основных требований к передачам в процессе их эксплуатации. С этой точки зрения зубчатые передачи можно разделить на следующие группы: 1) силовые передачи больших мощностей и высоких скоростей; основное требование – обеспечение высоких КПД; 2) силовые промышленные и транспортные передачи при средних скоростях; основное требование – надёжность и плавнос-ть хода; 3) силовые передачи в станкостроении; основное требование – постоя-нство передаточного отношения и плавность хода; 4) передачи в автомобилестрении; основное требование – плавность и лёгкость хода; бесшумность; 5) кинематические передачи в точных приборах; основное требование – постоянство передаточных отношений, отсутствие мертвого хода. Установленные ГОСТом степени точности учитывают эти условия, допуская высокие технические показатели в одном направлении и низкие в другом.

Зубчатые колёса обрабатывают на разнообразных зубообрабатывающих станках. Зубья на колёсах нарезают двумя способами: копированием (рис.16.3а, б) и обкаткой (огибанием; рис. 16.3в). При копировании инструменту придают форму впадины между зубьями, а затем проводят обработку. При этом профиль инструмента копируется на обрабатываемой поверхности.

Зубонарезание способом способом копирования можно выполнять: последовательным нарезанием каждого зуба колеса модульной дисковой или па-льцевой фрезой на универсальном фрезерном станке; одновременным долблением всех зубьев колес; одновременным протягиванием всех зубьев колес; круговым протягиванием. Способ копирования применяется главным образом для изготовления зубчатых колёс невысокой точности.

Современным, точным и производительным способом изготовления зуб-чатых колёс является нарезание зубьев обкаткой червячной фрезой, круглым

Рис. 16.3. Схемы нарезания зубьев

долбяком, реечным долбяком (гребенкой), зубострогальными резцами, резцовой головкой, накатыванием зубчатыми валками.

Способ обкатки заключается в том, что зубья на заготовке формируются при согласованном совместном вращении (обкатке) режущего инструмента и заготовки. Так при зубофрезеровании (рис. 16.4) прямолинейные боковые режущие кромки зубьев фрезы, имеющую в осевом сечении трапецеидальную форму, поочередно касаются нарезаемого зуба. Рассматривая последовательные положения зубьев фрезы, видим, что профиль впадины формируется постепенно и состоит из множества прямолинейных участков, образованных зубьями фрезы. Эти прямолинейные участки накладываются один на другой и практически образуют не ломаный, а криволинейный (эвольвентный).

Рис. 16.4. Обкатка зубьев колёс

Применяются зубчатые колёса с несимметричным профилем зуба.

Параметры эвольвентного зубчатого колеса:

  • m - модуль колеса. Модулем зацепления называется линейная величина в π раз меньшая окружного шага P или отношение шага по любой концентрической окружности зубчатого колеса к π , то есть модуль - число миллиметров диаметра делительной окружности приходящееся на один зуб. Тёмное и светлое колёсо имеют одинаковый модуль. Самый главный параметр, стандартизирован , определяется из прочностного расчёта зубчатых передач. Чем больше нагружена передача, тем выше значение модуля. Через него выражаются все остальные параметры. Модуль измеряется в миллиметрах , вычисляется по формуле:
m = d z = p π {\displaystyle \mathbf {m={\frac {d}{z}}={\frac {p}{\pi }}} }
  • z - число зубьев колеса
  • p - шаг зубьев (отмечен сиреневым цветом)
  • d - диаметр делительной окружности (отмечена жёлтым цветом)
  • d a - диаметр окружности вершин тёмного колеса (отмечена красным цветом)
  • d b - диаметр основной окружности - эвольвенты (отмечена зелёным цветом)
  • d f - диаметр окружности впадин тёмного колеса (отмечена синим цветом)
  • h aP +h fP - высота зуба тёмного колеса, x+h aP +h fP - высота зуба светлого колеса

В машиностроении приняты определённые значение модуля зубчатого колеса m для удобства изготовления и замены зубчатых колёс, представляющие собой целые числа или числа с десятичной дробью: 0,5 ; 0,7 ; 1 ; 1,25 ; 1,5 ; 1,75 ; 2 ; 2,5 ; 3 ; 3,5 ; 4 ; 4,5 ; 5 и так далее до 50 . (подробнее см. ГОСТ 9563-60 Колеса зубчатые. Модули)

Высота головки зуба - h aP и высота ножки зуба - h fP - в случае т. н. нулевого зубчатого колеса (изготовленного без смещения, зубчатое колесо с «нулевыми» зубцами) (смещение режущей рейки, нарезающей зубцы, ближе или дальше к заготовке, причем смещение ближе к заготовке наз. отрицательным смещением , а смещение дальше от заготовки наз. положительным ) соотносятся с модулем m следующим образом: h aP = m; h fP = 1,25 m , то есть:

h f P h a P = 1 , 25 {\displaystyle \mathbf {{\frac {h_{fP}}{h_{aP}}}=1,25} }

Отсюда получаем, что высота зуба h (на рисунке не обозначена):

h = h f P + h a P = 2 , 25 m {\displaystyle \mathbf {h={h_{fP}}+{h_{aP}}=2,25m} }

Вообще из рисунка ясно, что диаметр окружности вершин d a больше диаметра окружности впадин d f на двойную высоту зуба h . Исходя из всего этого, если требуется практически определить модуль m зубчатого колеса, не имея нужных данных для вычислений (кроме числа зубьев z ), то необходимо точно измерить его наружный диаметр d a и результат разделить на число зубьев z плюс 2:

m = d a z + 2 {\displaystyle \mathbf {m={\frac {d_{a}}{z+2}}} }

Продольная линия зуба

Зубчатые колеса классифицируются в зависимости от формы продольной линии зуба на:

  • прямозубые
  • косозубые
  • шевронные

Прямозубые колёса

Прямозубые колёса - самый распространённый вид зубчатых колёс. Зубья расположены в радиальных плоскостях, а линия контакта зубьев обеих шестерён параллельна оси вращения. При этом оси обеих шестерён также должны располагаться строго параллельно. Прямозубые колеса имеют наименьшую стоимость, но, в то же время, предельный крутящий момент таких колес ниже, чем косозубых и шевронных.

Косозубые колёса

Косозубые колёса являются усовершенствованным вариантом прямозубых. Их зубья располагаются под углом к оси вращения, а по форме образуют часть винтовой линии.

  • Достоинства:
    • Зацепление таких колёс происходит плавнее, чем у прямозубых, и с меньшим шумом.
    • Площадь контакта увеличена по сравнению с прямозубой передачей, таким образом, предельный крутящий момент, передаваемый зубчатой парой, тоже больше.
  • Недостатками косозубых колёс можно считать следующие факторы:
    • При работе косозубого колеса возникает механическая сила, направленная вдоль оси, что вызывает необходимость применения для установки вала упорных подшипников ;
    • Увеличение площади трения зубьев (что вызывает дополнительные потери мощности на нагрев), которое компенсируется применением специальных смазок.

В целом, косозубые колёса применяются в механизмах, требующих передачи большого крутящего момента на высоких скоростях, либо имеющих жёсткие ограничения по шумности.

Шевронные колеса

Изобретение шевронной передачи часто приписывают Андре Ситроену , однако на самом деле он лишь выкупил патент на более совершенную схему, которую придумал польский механик-самоучка . Зубья таких колёс изготавливаются в виде буквы «V» (либо они получаются стыковкой двух косозубых колёс со встречным расположением зубьев). Передачи, основанные на таких зубчатых колёсах, обычно называют «шевронными».

Шевронные колёса решают проблему осевой силы. Осевые силы обеих половин такого колеса взаимно компенсируются, поэтому отпадает необходимость в установке валов на упорные подшипники. При этом передача является самоустанавливающейся в осевом направлении, по причине чего в редукторах с шевронными колесами один из валов устанавливают на плавающих опорах (как правило - на подшипниках с короткими цилиндрическими роликами).

Зубчатые колёса с внутренним зацеплением

При жёстких ограничениях на габариты, в планетарных механизмах, в шестерённых насосах с внутренним зацеплением, в приводе башни танка , применяют колёса с зубчатым венцом, нарезанным с внутренней стороны. Вращение ведущего и ведомого колеса совершается в одну сторону. В такой передаче меньше потери на трение, то есть выше КПД.

Секторные колёса

Секторное колесо представляет собой часть обычного колеса любого типа. Такие колёса применяются в тех случаях, когда не требуется вращение звена на полный оборот, и поэтому можно сэкономить на его габаритах.

Колёса с круговыми зубьями

Передача на основе колёс с круговыми зубьями (Передача Новикова) имеет ещё более высокие ходовые качества, чем косозубые - высокую нагрузочную способность зацепления, высокую плавность и бесшумность работы. Однако они ограничены в применении сниженными, при тех же условиях, КПД и ресурсом работы, такие колёса заметно сложнее в производстве. Линия зубьев у них представляет собой окружность радиуса, подбираемого под определённые требования. Контакт поверхностей зубьев происходит в одной точке на линии зацепления, расположенной параллельно осям колёс.

Понятия и термины, относящиеся к геометрии и кинематике зубчатых передач, стандартизованы. Стандарты устанавливают термины, определения и обозначения, а также методы расчета геометрических параметров.

Меньшее из пары зубчатых колес называют шестерней , а большееколесом. Параметрам шестерни приписывают индекс 1, а параметрам колеса – 2. (РИС 5.8).

В зубчатых колесах различают следующие поверхности или окружности: начальная, основная, вершин зубьев, впадин зубьев, делительная.

Начальными ( и ) называются такие окружности (поверхности), которые катятся друг по другу без скольжения, то есть являются центроидами в относительном движении колес. Параметры, относящиеся к начальным окружностям, обозначаются индексом w.

Делительная окружность (поверхность) – это окружность, для которой модуль является стандартным. В некоррегированных, нарезанных несмещенной зубчатой рейкой зубчатых колесах начальная и делительная окружности совпадают. Параметрам, относящимся к делительной окружности или поверхности, дополнительного индекса не приписывают.

Кроме того, различают индексы, относящиеся:

b- к основной поверхности или окружности;

а – к поверхности или окружности вершин (головок) зубьев;

f – ­к поверхности или окружности впадин (ножек) зубьев.

Зацепление зубчатых колес характеризуется:

И - числами зубьев шестерни и колеса;

Межосевым расстоянием (расстоянием между центрами начальных окружностей);

р – шагом зубьев по делительной окружности (часть делительной окружности, заключенной между одноименными точками двух соседних зубьев);

s– толщина зуба по делительной окружности (дуга делительной окружности вмещающая один зуб);

е – ширина впадины (дуга делительной окружности между двумя соседними зубьями);

Высота ножки зуба (часть профиля зуба внутри делительной окружности);

Высота головки зуба (часть профиля зуба, выступающая за делительную окружность);

b – ширина зуба;

Угол зацепления или профильный угол рейки;

Как видно из Рис 5.8, шаг зацепления равен

При передаче непрерывного движения сопряженными колесами шаг зацепления должен быть одинаков для обоих колес. Тогда соотношение между числами зубьев и диаметрами делительных окружностей колес будет:

Тогда (5.8)

При определении шага в формулу (5.8) входит трансцендентное число . Это затрудняет подбор размеров зубчатых колес при проектировании. Поэтому для определения размеров колес в качестве основного параметра, определяющего эти размеры, принят модуль зацепления , определяемый как отношение шага зацепления по делительной окружности к числу и округленный до стандартного значения.


Тогда диаметры делительных окружностей, выраженные через модуль, определяться как:

Высота головки зуба

Высота ножки

и, как видно из (5.12), будет больше высоты головки на величину осевого смещения, которое для стандартных колес определяется как

Диаметр окружности вершин зубьев

Диаметр окружности впадин

По делительной окружности толщина зуба равна ширине впадины тогда

Межосевое расстояние будет

Ульяновск


Введение

1.Зубчатое колесо, классификация…………………………………………………………4

2.Зубчатая передача, классификация……………………………………………………...8

3.Эвольвента и ее свойства………………………………………………………………………9

4.Способы нарезания зубчатых колес……………………………………………………11

5.Подрезание профиля зуба. Корригирование зубчатого колеса…………12

Заключение

Список использованной литературы


Введение

Бурное развитие науки и техники приводит к появлению новых материалов, новых технологических решений позволяющих создавать принципиально новые конструкции, однако фундаментальные методические положения остаются неизменными.

В XI веке особое внимание уделено машиностроительной и самолётостроительной отраслям, в связи с этим хотелось бы остановиться на элементах общего назначения используемых в данных отраслях, а именно зубчатых передачах.

В реферате дано определение зубчатой передаче, рассмотрены их классификации, методика расчета геометрических параметров зубчатых колес.

Также в данной работе описаны назначения зубчатой передачи, приведены характеристики передачи в механизмах.


Зубчатое колесо, классификация.

Зубча́тое колесо́, шестерня́ - основная деталь зубчатой передачи в виде диска с зубьями на цилиндрическойили конической поверхности, входящими в зацепление с зубьями другого зубчатого колеса. В машиностроении принято малое зубчатое колесо с меньшим числом зубьев называть шестернёй, а большое - колесом. Однако часто все зубчатые колёса называют шестерня́ми.

Рис.1. Зубчатое колесо.

Зубчатые колёса обычно используются па́рами с разным числом зубьев с целью преобразования вращающего момента и числа оборотов валов на входе и выходе. Колесо, к которому вращающий момент подводится извне, называется ведущим, а колесо, с которого момент снимается - ведомым. Если диаметр ведущего колеса меньше, то вращающий момент ведомого колеса увеличивается за счёт пропорционального уменьшения скорости вращения, и наоборот. В соответствии с передаточным отношением, увеличение крутящего момента будет вызывать пропорциональное уменьшение угловой скорости вращения ведомой шестерни, а их произведение -механическая мощность - останется неизменным. Данное соотношение справедливо лишь для идеального случая, не учитывающего потери на трение и другие эффекты, характерные для реальных устройств.

А) Поперечный профиль зуба

Профиль зубьев колёс как правило имеет эвольвентную боковую форму. Однако, существуют передачи с круговой формой профиля зубьев (передача Новикова с одной и двумя линиями зацепления) и с циклоидальной. Кроме того, в храповых механизмах применяются зубчатые колёса с несимметричным профилем зуба.

Параметры зубчатого колеса:

m - модуль колеса. Модулем зацепления называется линейная величина в π раз меньшая окружного шага P или отношение шага по любой концентрической окружности зубчатого колеса к π , то есть модуль - число миллиметров диаметра приходящееся на один зуб. Тёмное и светлое колёсо имеют одинаковый модуль. Самый главный параметр, стандартизирован, определяется из прочностного расчёта зубчатых передач. Чем больше нагружена передача, тем выше значение модуля.

Все геометрические параметры зубчатого зацепления выражаются через его модуль:

1. Модуль зубьев m= = .

2. Высот зубьев h = 2,25m.

3. Высота головки зуба h =m.

4. Высота ножки зуба h = 2,25m.

5. Диаметр делительной окружности d =mz.

6. Диаметр окружности выступов d = d + 2 h =d+ 2m=m (z + 2).

7. Диаметр окружности впадин d = d +2 h =d+2m=m(z +2).

8. Радиальный зазор между сопряженными кольцами с =0,25т .

9. Межосевое расстояние a = .

10.Шаг зубьев p=πm.

11.Толщина зуба S = 0,5p= .

12.Ширина впадин l= 0,5p= .

13. Ширина венца зубчатого колеса (длина зуба) b≈ (6…8).m

14. Диаметр ступицы d (1,6…2) d .

15.Длина ступицы l = 1,5 d .

16.Толщина обода δ ≈ (2,5…4)m.

17. Угол профиля, угол зацепления α = α = 20 .

18. Делительный диаметр, начальный диаметр d = d =mz.

19. Основной диаметр. d =d cos α

Рис.2 Параметры зубчатого колеса.

В машиностроении приняты определенные значение модуля зубчатого колеса m для удобства изготовления и замены зубчатых колёс, представляющие собой целые числа или числа с десятичной дробью: 0,5; 0,7; 1; 1,25; 1,5; 1,75; 2; 2,5; 3; 3,5; 4; 4,5; 5 и так далее до 50.

Б) Продольная линия зуба

Зубчатые колеса классифицируются в зависимости от формы продольной линии зуба на: прямозубые, косозубые, шевронные.

В) Прямозубые колёса

Прямозубые колёса - самый распространённый вид зубчатых колёс. Зубья расположены в радиальных плоскостях, а линия контакта зубьев обеих шестерён параллельна оси вращения. При этом оси обеих шестерён также должны располагаться строго параллельно. Прямозубые колеса имеют наименьшую стоимость, но, в то же время, предельный крутящий момент таких колес ниже, чем косозубых и шевронных.

С) Косозубые колёса

Косозубые колёса являются усовершенствованным вариантом прямозубых. Их зубья располагаются под углом к оси вращения, а по форме образуют часть спирали.

Достоинства:

Зацепление таких колёс происходит плавнее, чем у прямозубых, и с меньшим шумом;

Площадь контакта увеличена по сравнению с прямозубой передачей, таким образом, предельный крутящий момент, передаваемый зубчатой парой, тоже больше.

При работе косозубого колеса возникает механическая сила, направленная вдоль оси, что вызывает необходимость применения для установки вала упорных подшипников;

Увеличение площади трения зубьев (что вызывает дополнительные потери мощности на нагрев), которое компенсируется применением специальных смазок.

В целом, косозубые колёса применяются в механизмах, требующих передачи большого крутящего момента на высоких скоростях, либо имеющих жёсткие ограничения по шумности.

Г) Шевронные колеса

Зубья таких колёс изготавливаются в виде буквы «V» (либо они получаются стыковкой двух косозубых колёс со встречным расположением зубьев). Передачи, основанные на таких зубчатых колёсах, обычно называют «шевронными».

Шевронные колёса решают проблему осевой силы. Осевые силы обеих половин такого колеса взаимно компенсируются, поэтому отпадает необходимость в установке валов на упорные подшипники. При этом передача является самоустанавливающейся в осевом направлении, по причине чего в редукторах с шевронными колесами один из валов устанавливают на плавающих опорах (как правило - на подшипниках с короткими цилиндрическими роликами).

Д) Зубчатые колёса с внутренним зацеплением

При жёстких ограничениях на габариты, в планетарных механизмах, в шестерённых насосах с внутренним зацеплением, в приводе башни танка, применяют колёса с зубчатым венцом, нарезанным с внутренней стороны. Вращение ведущего и ведомого колеса совершается в одну сторону. В такой передаче меньше потери на трение, то есть выше КПД.

Е) Секторные колёса

Секторное колесо представляет собой часть обычного колеса любого типа. Такие колёса применяются в тех случаях, когда не требуется вращение звена на полный оборот, и поэтому можно сэкономить на его габаритах.

Ж) Колёса с круговыми зубьями

Передача на основе колёс с круговыми зубьями имеет ещё более высокие ходовые качества, чем косозубые - высокую нагрузочную способность зацепления, высокую плавность и бесшумность работы. Однако они ограничены в применении сниженными, при тех же условиях, КПД и ресурсом работы, такие колёса заметно сложнее в производстве. Линия зубьев у них представляет собой окружность радиуса, подбираемого под определённые требования. Контакт поверхностей зубьев происходит в одной точке на линии зацепления, расположенной параллельно осям колёс


Похожая информация.





Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top