Количественное определение витамина а. Количественное определение витамина В1

Количественное определение витамина а. Количественное определение витамина В1

Методы количественного определения витаминов основаны на их физико-химических свойствах, таких как окислительно-восстановительные свойства, способность флуоресцировать в УФ-свете. Применяют различные методы определения: титрометрические, фотоколориметрические, спектрофотометрические, флуорометрические и др.

Количественное определение витамина К

Витамин К в листьях крапивы определяют методом СФМ (таблица 3).

Таблица 3 . Количественное определение витамина K в листьях крапивы (авторский метод)

Количественное определение БАВ в плодах шиповника.

Аскорбиновую кислоту можно определять титрометрическим методом, который основан на восстановлении 2,6-дихлорфенолиндофенола. С этим же реактивом можно провести фотоколориметрическое определение аскорбиновой кислоты. Для этого проводят экстракцию сырья 2 % метафосфорной кислотой, добавляют раствор 2,6-дихлорфенолиндофенола. Через 35 сек. проводят фотоколориметрирование. Параллельно колориметрируют контрольный раствор 2 % метафосфорная кислота с 2,6-дихлорфенолиндофенолом. Интенсивность окраски пропорциональна количеству аскорбиновой кислоты.

Количественное определение аскорбиновой кислоты можно провести фотоколориметрическим методом с помощью гексацианоферрита калия. В кислой среде аскорбиновая кислота восстанавливает гексацианоферрит калия до гексацианоферрата калия, который в присутствии ионов железа (Ш) образует берлинскую лазурь, с последующим ее фотоколориметрированием.

Метод количественного определения аскорбиновой кислоты (по ГФ XI, вып. 2, стр. 294) основан на ее способности окисляться до дегидроформы раствором 2,6-дихлорфенолиндофенолята и восстанавливать последний до лейкоформы. Точка эквивалентности устанавливается появлением розового окрашивания, которое свидетельствует об отсутствии восстановителя, т. е кислоты аскорбиновой (2,6-дихлорфенолиндофенол имеет в щелочной среде синее окрашивание, в кислой - красное, а при восстановлении обесцвечивается):



1. Определение содержания аскорбиновой кислоты. (таблица 4). Из грубо измельченной аналитической пробы плодов берут навеску массой 20 г, помещают в фарфоровую ступку, где тщательно растирают со стеклянным порошком (около 5 г), постепенно добавляя 300 мл воды, и настаивают 10 мин. Затем смесь размешивают и извлечение фильтруют. В коническую колбу вместимостью 100 мл вносят 1 мл полученного фильтрата, 1 мл 2%раствора хлористоводородной кислоты, 13 мл воды, перемешивают и титруют из микробюретки раствором 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л) до появления розовой окраски, не исчезающей в течение 30-60 с. Титрование продолжают не более 2 мин. В случае интенсивного окрашивания фильтрата или высокого содержания в нем аскорбиновой кислоты [расход раствора 2,6-дихлорфенолиндофенолятанатрия (0,001 моль/л) более 2 мл], обнаруженного пробным титрованием, исходное извлечение разбавляют водой в 2 раза или более.

где 0,000088 - количество аскорбиновой кислоты, соответствующее 1мл раствора 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л), в граммах; V - объем раствора 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л), пошедшего на титрование, в миллилитрах; m - масса сырья в граммах; W - потеря в массе при высушивании сырья в процентах.

Примечания . Приготовление раствора 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л): 0,22 г 2,6-дихлорфенолиндофенолята натрия растворяют в 500 мл свежепрокипяченной и охлажденной воды при энергичном взбалтывании (для растворения навески раствор оставляют на ночь). Раствор фильтруют в мерную колбу вместимостью 1 л и доводят объем раствора водой до метки. Срок годности раствора не более 7 сут при условии хранения в холодном, темном месте.

Установка титра. Несколько кристаллов (3-5) аскорбиновой кислоты растворяют в 50 мл 2 % раствора серной кислоты; 5 мл полученного раствора титруют из микробюретки раствором 2,6-дихлорфенолиндофенолята натрия до появления розового окрашивания, исчезающего в течение 1-2 нед. Другие 5 мл этого же раствора аскорбиновой кислоты титруют раствором калия йодата (0,001 моль/л) в присутствии нескольких кристаллов (около 2 мг) калия йодида и 2-3 капель раствора крахмала до появления голубого окрашивания. Поправочный коэффициент вычисляют по формуле:

где V - объем раствора калий йодата (0,001 моль/л), пошедшего на титрование, в миллилитрах; V1-объем раствора 2,6-дихлорфенолиндофенолята натрия, пошедшего на титрование, в миллилитрах.

2. Определение содержания свободных органических кислот. Аналитическую пробу сырья измельчают до размера частиц, проходящих сквозь сито с отверстиями диаметром 2 мм. 25 г измельченных плодов шиповника помещают в колбу вместимостью 250 мл, заливают 200 мл воды и выдерживают в течение 2 ч на кипящей водяной бане, затем охлаждают, количественно переносят в мерную колбу вместимостью 250 мл, доводят объем извлечения водой до метки перемешивают. Отбирают 10 мл извлечения, помещают в колбу вместимостью 500 мл, прибавляют 200-300 мл свеже-прокипяченной воды, 1 мл 1% спиртового раствора фенолфталеина, 2 мл 0,1 % раствора метиленового синего и титруют раствором натра едкого (0,1 моль/л) до появления в пене лилово- красной окраски.

где 0,0067-количество яблочной кислоты, соответствующее 1 мл раствора натра едкого (0,1 моль/л), в граммах; V - объем раствора натра едкого (0,1 моль/л), пошедшего на титрование, в миллилитрах; m - масса сырья в граммах; W - потеря в массе при высушивании сырья в процентах.

Таблица 4. Количественное определение аскорбиновой кислоты в плодах шиповника (фармакопейный метод)

Количественное определение химических веществ в цветках календулы.

Каротиноиды определяют в лекарственном сырье фотоколориметрическим методом, основанном на измерении интенсивности их природной окраски. Разработан спектрофотометрический метод определения каротиноидов. Каротиноиды из сырья экстрагируют петролейным эфиром, затем хроматографируют на пластинке "Силуфол" в системе петролейный эфир-бензол-метанол (60:15:4), элюируют хлороформом и спектрофотометрируют при длине волны 464 нм (-каротин) при 456 нм (в-каротин).

  • 1. Около 1 г (точная навеска) измельченных цветков ноготков, просеянных сквозь сито с отверстиями размером 1 мм, помещают в коническую колбу вместимостью 250 мл, прибавляют 50 мл спирта 70 %, колбу закрывают пробкой, взвешивают (с погрешностью ± 0,01 г) и оставляют на 1 ч. Затем колбу соединяют с обратным холодильником, нагревают, поддерживая слабое кипение в течение 2 ч. После охлаждения колбу с содержимым вновь закрывают той же пробкой, взвешивают и потерю в массе восполняют растворителем. Содержимое колбы тщательно взбалтывают и фильтруют через сухой бумажный фильтр, отбрасывая первые 20 мл, в сухую колбу вместимостью 200 мл (раствор А).
  • 1 мл раствора А помещают в мерную колбу вместимостью 25 мл, прибавляют 5 мл раствора алюминия хлорида, 0,1 мл кислоты уксусной и доводят объем раствора спиртом 96 % до метки и оставляют на 40 минут (раствор Б).

Через 40 минут измеряют оптическую плотность испытуемого раствора Б и раствора стандартного образца Б 1 на спектрофотометре в максимуме поглощения при длине волны (408 + 2) нм в кювете с толщиной слоя 10 мм, используя растворы сравнения для испытуемого раствора и стандартного образцов.

где: А - оптическая плотность испытуемого раствора;

А о - оптическая плотность раствора стандартного образца рутина;

а - навеска сырья, г;

а о - навеска стандартного образца рутина, г;

W - влажность сырья, %;

Допускается проводить определение содержания суммы флавоноидов с использованием удельного показателя поглощения рутина.

Введение

Глава 1. Общая характеристика витамина С

1.1 Краткая историческая справка

2 Место витамина С в современной классификации витаминов

3 Химическое строение и свойства витамина С

4 Биологическая роль витамина С

1.4.2 Признаки гипо-, гипер- и авитоминоза

4.3 Суточная потребность в витамине С

Глава 2. Экспериментальное определение количественного содержания витамина С в пищевых продуктах и витаминных препаратах

1 Общая характеристика применяемых количественных методов анализа

1.1 Метод Тильманса

1.2 Метод Йодометрии

2 Химический анализ содержания витамина С по методу Тильманса в яблоках отечественных и импортных сортов

3 Йодометрическое определение содержания витамина С

3.1 Йодометрическое определение содержания витамина С в витаминных препаратах

3.2 Йодометрическое определение содержания витамина С во фруктовых соках

Заключение

Список литературы

Приложение

Введение

«Трудно найти такой раздел физиологии и биохимии, который бы не соприкасался с учением о витаминах; обмен веществ, деятельность органов чувств, функции нервной системы, явления роста и размножения - все эти и многие другие разнообразные и коренные по своей важности области биологической науки теснейшим образом связаны с витаминами»

А.Н. Бах

Актуальность темы. Рациональное питание человека складывается из пищи животного и растительного происхождения и одним из его условий является присутствие достаточного количества витаминов.

Витамины - низкомолекулярные органические соединения различной химической природы, которые необходимы человеку для нормальной жизнедеятельности. Одним из важнейших природных антиоксидантов является витамин С (аскорбиновая кислота), который, кроме того, принимает участие в целом ряде биохимических процессов. Каждому из нас необходимы витаминные и минеральные добавки каждый день для поддержания нормальной жизнедеятельности организма.

Во-первых, человеческий организм самостоятельно вырабатывает лишь очень немногие из витаминов, к тому же в малых количествах. А витамин С мы можем получать только с пищей или в качестве специальных препаратов.

Во-вторых, сложно получать витамин С в натуральном виде. Как отмечают специалисты, даже в самой здоровой и сбалансированной диете легко обнаружить дефицит витаминов - приблизительно 20-30% от рекомендуемой нормы. Лишь немногие люди и особенно дети едят достаточно фруктов и овощей, которые являются главными пищевыми источниками витамина С. Тепловая обработка, хранение и биохимическая переработка приводят к разрушению большей части витамина С, который мы в ином случае могли бы получать из пищи. Еще больше его сгорает в организме под влиянием стресса, курения и других источников повреждения клеток, наподобие дыма и смога. Повсеместно используемые медикаменты, такие как аспирин или противозачаточные средства, в огромной степени лишают наш организм тех количеств витамина, которые нам все-таки удалось получить.

В-третьих, в России только 20% населения принимают витаминные препараты. Цифра неутешительная, особенно если учесть, что недостаток витаминов наблюдается у 60-80% населения (по данным Института питания РАМН). Но в каких же продуктах и сколько содержится витамина С? Ответ на этот вопрос можно найти в различных справочниках. Однако там говорится о фруктах или овощах вообще, а сколько витамина С содержится в данном продукте? Ответ на этот вопрос может дать лишь количественное определение с помощью различных методов окислительно-восстановительного титрования.

Цель работы: изучить биохимическую природу витамина С и определить его количественное содержание в некоторых пищевых продуктах и витаминных препаратах.

Объект исследования - химическое строение и свойства витамина С, его биологическая и валеологическая роли.

Предмет исследования - пищевые продукты, содержащие витамин С и некоторые витаминные препараты.

Провести анализ научно-популярной и учебной литературы по выбранной теме;

Рассмотреть общую характеристику, химическое строение и свойства витамина С;

Изучить биологическую и валеологическую роли витамина С;

Овладеть методами качественного и количественного определения витамина С и экспериментально определить его содержание в некоторых пищевых продуктах и витаминных препаратах;

Обобщить результаты исследования и сформулировать выводы по работе.

Методы исследования: теоретические (анализ учебной и научно-популярной литературы по теме исследования, методический анализ, сравнение, теоретическое обобщение), экспериментальное (химический эксперимент), статистические (статистическая обработка результатов и их интерпретация).

Теоретическая значимость: изучены общая характеристика, химическое строение, свойства витамина С и его биологическая роль, определено место данного витамина в общей классификации.

Практическая значимость: проведен количественный анализ (йодометрия, метод Тильманса) содержания витамина С в яблоках, фруктовых соках и наиболее распространенных витаминных препаратах; возможность использования собранного материала и полученных данных при изучении биологических и химических дисциплин в школе и в вузе.

Глава 1. Общая характеристика витамина С

В данной главе остановимся на рассмотрении вопросов истории изучения, классификации, химическом строении, свойствах и биологической роли витамина С , .

1 Краткая историческая справка

Учение о витаминах начало развиваться сравнительно недавно и относится к концу XIX века и началу XX столетия. Однако заболевания, впоследствии названные авитаминозами, были известны давно. Так, 2500 лет назад китайцы описали заболевание бери-бери (авитаминоз B 1). Упоминание о гемеролопии (авитаминоз А) встречается в рукописях древних греков. Первые сведения о цинге (авитаминоз С) относят к XIII столетию. Когда римские легионы вторглись во владения своих северных соседей и надолго задержались за Рейном, им пришлось познакомиться с заболеванием, поразившим многих воинов и, судя по описанию древнеримского историка Плиния, весьма похожим на цингу. Интересно, что врачи, не имея истинного представления о природе бедствия, постигшего подопечное им воинство, быстро нашли спасительное средство. Им оказалось какое-то растение, названное римлянами «британская трава». К сожалению, более определенных сведений об этом целебном растении история не сохранила, и мы не можем сейчас точно указать, какой именно представитель европейской флоры оказал столь ценную услугу древнему Риму. Так римляне, возможно впервые, познакомились с авитаминозом. Картье в 1953 году очень живо описал эту болезнь, поразившую его спутников во время путешествия по реке Св. Лаврентия: «Они лишились всех своих сил и не могли стоять на ногах...Да к тому же появились на коже багровые пятна крови, которые покрывали голени, колени, бедра, ягодицы, плечи, руки, изо рта стал идти зловонный запах, десны так загнили, что было видно всё мясо до корней зубов, а сами зубы почти все выпали» .

В дальнейшем цинга, или скорбут, стала довольно частым гостем в странах Европы. Так, например, по подсчетам некоторых историков, с 1556 по 1856 г. в Европе имело место 114 эпидемий, унесших в могилу многие тысячи человеческих жизней. В России было зарегистрировано 101 тыс. случаев цинги. Большой вред цинга наносила экипажам флотов европейских стран, особенно в период открытия морских путей в Индию и Америку. В 1848 году Васко да Гама, прокладывая путь в страну душистого перца и корицы, потерял от цинги 100 из 160 членов своей команды.

Рис.1 Васко да Гама Рис. 2Морской путь в Индию (1497-1499)

В 1775 году английский врач Линд заявил, что цинга нанесла большой ущерб британскому морскому могуществу, чем флоты Франции и Испании вместе взятые. В конце концов, моряки нашли средство от этого «бича рода человеческого». Старые морские волки рассказывали, цинга - страшна только в море, но стоит кораблю пристать и пополнить запасы продовольствия свежими фруктами и овощами, как цинга покидала корабль. Они не могли толком объяснить, почему это происходит, но на всякий случай имели в своем рундуке бутылочку лимонного сока. Эти сведения заинтересовали английского врача Линда, и он решил провести сравнительное изучение противоцинготных свойств различных фруктов и овощей. Опытным путем Линд установил ежедневную дозу лимонного сока, предохраняющего человека от цинги, она оказалась равной 30т., т.е. двум столовым ложкам.

О причинах цинги высказывались самые различные предположения. Виновником этого заболевания считали вначале дурной запах, затем испорченную воду, солонину и даже каких-то не установленных наукой возбудителей из мира микробов. Ясность в этот вопрос внесли работы норвежских ученых Хольста и Фрелиха . Ученые пришли к выводу, что цинга у морских свинок вызывается особым фактором, который почти отсутствует в зернах злаков, солонине, но в большом количестве содержится в свежих овощах, фруктах и лимонном соке. Работы Хольста и Фрелиха были опубликованы в 1912 году, они оказали большое влияние на формирование теории Функа о витаминах и позволили ему причислить цингу к авитаминозным заболеваниям. Начались поиски способов выделения противоцинготного витамина, которые с переменным успехом продолжались до 1932 года. В 1932 г. витамин, предотвращающий цингу, был выделен из лимонного сока американскими исследователями С.Гленом, а также венгерским биохимиком Сент-Дьерди (рис.3).

Рис.3 Альберт Сент-Дьёрди

В опытах на морских свинках он показал, что гексуроновая кислота предохраняет животных от цинги. Но глубокое изучение химической природы гексуроновой кислоты показало, что она все-таки не является изомером глюкуроновой кислоты, а представляет собой вполне самостоятельное соединение, в связи с чем Сент-Дьерди в 1933 г. дал ему название - аскорбиновая (противоскорбутная) кислота. В 1933 году двумя учеными Хирстом и Эйлером независимо друг от друга была установлена структурная формула аскорбиновой кислоты .

2 Место витамина С в современной классификации витаминов

Современная классификация витаминов не является совершенной. Она может быть основана на их физико-химических свойствах (в частности, растворимости) и химической природе , .

В зависимости от растворимости все витамины делятся на две большие группы: водорастворимые (энзимовитамины) и жирорастворимые (гормоновитамины). Это позволяет выявить в каждой из этих групп свои особенности и определить присущие им индивидуальные свойства. Водорастворимые витамины участвуют в структуре и функции ферментов, жирорастворимые витамины входят в структуру мембранных систем, обеспечивая их функциональное состояние.

Помимо этих двух главных групп витаминов, различают группу разнообразных химических веществ, частично синтезирующихся в организме и обладающих витаминными свойствами. Для человека и ряда животных эти вещества принято объединять в группу - витаминоподобных (см. табл. 1).

Таблица 1 Общая классификация витаминов и витаминоподобных веществ

Жирорастворимые витамины

Водорастворимые витамины

Витаминоподобные вещества

Витамин А (ретинол)

Витамин B1 (тиамин)

Пангамовая кислота (витамин В12)

Провитамины А (каротины)

Витамин В2 (рибофлавин)

Парааминобензойная кислота (витамин H1)

Витамин Д (кальциферолы)

Витамин РР (никотиновая кислота)

Оротовая кислота (витамин В13)

Витамин Е (токоферолы)

Витамин В6 (пиридоксин)

Холин (витамин В4)

Витамин К (филлохиноны)

Витамин В12 (цианкобаламин)

Инозит (витамин В8)


Фолиевая кислота, фолацин (витамин Вс)

Карнитин (витамин Вт)


Пантотеновая кислота, (витамин В3)

Полиненасыщенные жирные кислоты (витамин F)


Биотин (витамин Н)

S - метилметионин- сульфоний-хлорид (витамин U)


Липоевая кислота, (витамин N)



Витамин С, (аскорбиновая кислота)



В основе так называемой химической классификации витаминов лежит их химическая природа . Однако витамины представляют собой сборную в химическом отношении группу органических соединений, поэтому с точки зрения химического строения им нельзя дать общего определения (см. табл. 2).

Таблица 2 Химическая классификация витаминов

Витамины алифатического ряда

Витамины алициклического ряда

Витамины ароматического ряда

Витамины гетероциклического ряда

Ненасыщенные алифатические кислоты (F)

Циклогексановые витамины (ипозит)

Аминозамещенные ароматические кислоты (витамин Н1)

Хромановые витамины (гр.Е)

Производные лактонов ненасыщенных полиоксикарбоновых кислот (аскорбиновая кислота)

Циклогексановые витамины с полиеновой цепью изопреноидного характера (ретинолы, витамины гр.А)

Производные нафтохиноинов (гр. К)

Фенолхромановые витамины (гр.Р)

Аминоспирты (холин)

Циклогексанолэтиленгидростериновые витамины гр.Д


Пиридинкарбоновые (гр. РР)

Пангамовые кислоты (В15)



Оксиметилен-пиридиновые (гр. В6)




Пиримидинотиазоловые (гр.В1)




Птериновые (гр. Фолиевой кислоты)




Изоаллксазиновые (гр. В2)

Итак, по двум приведенным классификациям витамин С является водорастворимым витамином, относящимся к группе производных лактонов ненасыщенных полиоксикарбоновых кислот.

3 Химическое строение и свойства витамина С

Аскорбиновая кислота (С 6 Н 8 О 6) имеет следующую химическую формулу , , :


По физическим свойствам является бесцветным кристаллическим веществом с приятным острым кислым вкусом, температура плавления 192ºС. Аскорбиновая кислота легко растворима в воде, плохо растворима в этаноле и почти нерастворима в других органических растворителях. Наличие двух асимметричных атомов углерода в 4-м и 5-м положениях, свидетельствует о возможности <#"605263.files/image006.gif">

Рис. 4. Этапы окисления аскорбиновой кислоты

На рис. 4 показано, что продукт окисления аскорбиновой кислоты - L-дегидроаскорбиновая кислота, которая является обратимо окисленной формой аскорбиновой кислоты и обладает сильными кислотными свойствами, дегидроаскорбиновая кислота утрачивает их вместе с двумя диенольными атомами водорода. Отсутствие двойной связи между атомами углерода делает молекулу дегидроаскорбиновой кислоты довольно неустойчивой к гидролизу, особенно в щелочной и даже слабокислой среде, лактонного кольца с образование 2,3-дикето-L-гулоновой кислоты, которая затем окисляется с разрывом углеродного скелета молекулы и образованием L-треоновой и щавелевой кислот. Ни 2,3- дикето-L-гулоновая кислота, ни продукты ее разложения не обладают свойствами витамина С.

Изучение процесса окисления аскорбиновой кислоты показало, что в водных растворах в присутствии кислорода воздуха этот процесс не идет без катализаторов-ионов меди и серебра. Однако в обычной водопроводной воде ионы этих металлов всегда присутствуют, во всяком случае ионы меди, в достаточном для каталитического действия количестве.

Растворенный в водопроводной воде хлор также оказывает окисляющее действие и приводит к разрушению витамина С.

Существует целый ряд веществ, предохраняющий аскорбиновую кислоту от окисления. К ним относятся различные сернистые соединения и некоторые производные пурина, такие, как ксантин, мочевина.

При хранении или сушке плодов и овощей для большей сохранности витамина С их подвергают обработке сернистым газом. Проникая в клетки и растворяясь в клеточном соке, сернистый газ образует с водой сернистую кислоту, которая подавляет активность фермента (аскорбиноксидазы), катализирующего процесс окисления аскорбиновой кислоты. Сахар также способствует большей сохранности витамина С.

4 Биологическая роль витамина С

Аскорбиновая кислота присутствует в тканях всех животных и высших растений. Только люди и некоторые другие позвоночные должны получать ее с пищей, большинство же животных и, вероятно, все растения могут синтезировать это соединение из глюкозы , . Микроорганизмы не содержат аскорбиновой кислоты и не нуждаются в ней. L-аскорбиновая кислота синтезируется в растениях и у тех животных, которые обеспечивают себя этим витамином в процессе превращения: Д- глюкоза - L -гулонат - L -гулолактан - L-аскорбат (см. рис. 5).

Рис. 5. Синтез аскорбиновой кислоты у животных и высших растений

У человека и других животных, не могущих синтезировать витамин С, отсутствует фермент гулонолактоноксидаза. Видимо, некогда все организмы располагали набором ферментов, необходимых для синтеза аскорбиновой кислоты, но затем какие-то виды утратили эту способность к синтезу вследствие мутации, которая однако не оказалась для них летальной, поскольку обычную пищу данного вида составляли богатые витамином С растения.

Биохимическая функция витамина С мало известна , . Аскорбиновая кислота, по-видимому, играет роль кофактора в реакции ферментативного гидроксилирования, при котором остатки пролина и лизина в коллагене соединительной ткани позвоночных превращаются в остатки 4-гидроксопролина и 5-гидроксолизина. Гидроксипролиновые и гидроксилизиновые остатки обнаружены только в коллагене и не встречаются ни в одном другом белке животных. Аскорбиновая кислота принимает обязательное участие в образовании основного компонента соединительной ткани высших животных, стимулирует заживление ран, но пока не ясно, является ли это ее единственной и даже главной функцией. По мнению ряда ученых витамин С принимает весьма активное участие в биохимических процессах, :

1) Аскорбиновая кислота является поставщиком водорода для образования ядерной ДНК.

) Аскорбиновая кислота принимает участие в биохимических превращениях других витаминов. Установлено, что аскорбиновая кислота снижает потребность животного организма в витаминах комплекса В.

) Витамин С оказывает влияние на синтез еще одного весьма важного белка, недостаток которого в организме приводит к нарушению эластичности и проницаемости кровеносных сосудов.

4) Аскорбиновая кислота необходима для образования и обмена гормона адреналина в мозговом слое надпочечников и норадреналина (предшественника адреналина).

5) Аскорбиновая кислота повышает устойчивость организма к различным инфекционным заболеваниям, т.к. недостаток витамина С приводит к снижению иммунобиологической сопротивляемости организма. В своей книге «Витамин С и здоровье» лауреат Нобелевской премии Л.Полинг предлагает принимать витамин С в больших дозах- до 10 г в день для профилактики и лечения простудных заболеваний. При первых же признаках простуды целесообразно принять 1-1,5 г аскорбиновой кислоты в виде таблеток или порошка, через 4 часа еще столько же - и так в течение первых суток (есть сведения о том, что аскорбиновая кислота активирует действие интерферона, который защищает нас от вирусов). Если эффект налицо, то лечение продолжают и в последующие сутки (1 г витамина С 4-5 раз в день), а затем в течение нескольких дней постепенно снижают дозы до обычных. Но если после первых суток лучше не стало, то это значит, что патологический процесс зашел слишком далеко, защитные барьеры дали «сбой» и физиологическое лекарство - витамин С тут уже бессилен. В таком случае принимают обычные лекарственные препараты и витамины в обычных дозах.

6) Установлено, что витамин С оказывает влияние на активность лейкоцитов.

7) Витамин С способствует лучшему усвоению железа и тем самым усиливает образование гемоглобина и созревание эритроцитов.

) Аскорбиновая кислота не только активизирует защитные силы организма, но и способствует обезвреживанию токсина, выделяемых патогенными микроорганизмами.

9) Витамин С применяется в медицине при лечении целого ряда заболеваний не только инфекционных, но и при туберкулезе, в хирургической практике как средство, ускоряющее заживление ран, срастание костей и послеоперационных швов.

1.4.1 Пищевые источники витамина С

При употреблении пищевых продуктов, богатых белками и другими витаминами, потребность в витамине С значительно снижается и наоборот. Усиленная трата витамина С наблюдается также при охлаждении организма и при потоотделении, так как вместе с потом и мочой выделяется некоторая часть витамина С.

Если человек полностью зависит от поступления витамина С извне, то многие животные в этом не нуждаются. И все же несмотря на то, что организм многих животных способен вырабатывать витамин С, животные продукты довольно бедны этим витамином. В мышцах, например, содержится всего 0,9 мг% витамина С, в надпочечниках его содержится 130-150 мг%. Коровье молоко значительно беднее витамином С, чем женское молоко. Пастеризованное, т.е. нагретое до 80-85°С молоко практически не содержит витамина С. Наиболее богатыми источниками витамина С являются растения. Аскорбиновая кислота обнаруживается во всех зеленых частях растений, но в разных количествах. Много витамина С в большинстве овощей и фруктов, и только семена растений, как правило, бедны этим витамином (см. прил.). Плоды облепихи, актинидии, шиповника и грецкого ореха, цитрусовые, помидоры, капуста содержат большое количество витамина С .

Плоды шиповника оказались настоящими фабриками витамина С, и не только витамина С. В них обнаружены витамины В 2 , Р, К и каротин. Плоды шиповника - настоящий поливитаминный препарат, созданный самой природой. Приведем несколько примеров: в черной смородине (100 мг) содержится 200 мг витамина С, в шиповнике -1200 мг, в клубнике-60 мг, в апельсинах-60 мг.

Хранение овощей и фруктов в холодильнике снижает скорость процесса окисления и тем самым способствует более длительной сохранности витамина С.

Замораживание растительных продуктов приводит к нарушению целостности оболочек растительных клеток кристалликами льда и более свободному доступу кислорода воздуха к содержимому клеток. Пока растительные ткани находятся в замороженном состоянии, низкая температура в значительной степени сдерживает окислительные процессы, но при размораживании тканей их скорость возрастает по мере повышения температуры, и витамин С при этом быстро разрушается. Если при размораживании прекратить доступ кислорода клетки, например, производить его в атмосфере инертного газа, то содержание в нем витамина С остается на том же уровне, что и в замороженных продуктах. Вот почему при приготовлении первых блюд замороженные овощи следует сразу класть в кипящую воду, так как она содержит значительно меньше растворенного кислорода, чем холодная вода. Кроме того, высокая температура кипящей воды активирует растительные ферменты, в том числе и аскорбиноксидазу, что также является фактором, способствующим лучшей сохранности витамина.

Первый сухой препарат витамина С был получен А.Н.Бессоновым из сока капусты в 1922 году. Путем довольно сложной обработки ученому удалось получить светло-желтый порошок, который наряду с массой балластных веществ содержал 1% витамина С. Метод выделения витамина С, что дало возможность более чем в 50 раз повысить биологическую активность получаемого продукта.

4.2 Признаки гипо-, гипер- и авитаминоза

Витаминная недостаточность возникает при дефиците витаминов в пище или если поступающие с пищей витамины не всасываются из кишечника, не усваиваются или разрушаются в организме. Витаминная недостаточность может проявляться в виде авитаминозов, гиповитаминозов и скрытых форм , . Под авитаминозами понимают полное истощение запасов витаминов в организме; при гиповитаминозах отмечается та или иная степень снижения обеспеченности организма одним или несколькими (полигиповитаминозы).

Недостаточность аскорбиновой кислоты развивается, как правило, на почве недостаточного поступления витамина С с пищей, однако может возникнуть и эндогенно, при нарушениях всасывания витамина, обусловленных заболеваниями желудочно-кишечного тракта, печени и поджелудочной железы.

Полное прекращение в течение длительного витамина С вызывает цингу, основными симптомами которой являются мелкие кожные и крупные полостные кровоизлияния (в плевральную и брюшную полости, суставы и др.) (см.рис.6). К ранним симптомам цинги относятся кровоизлияния в окружности волосяных фолликулов (85% в области нижних конечностей, кровоточивость десен, ороговение кожных покровов и др.). При цинге возможно развитие анемии, а также нарушение желудочной секреции. С-витаминная недостаточность сопровождается снижением содержания аскорбиновой кислоты в крови до 22,7 мкмоль/л (0,4 мг %) и резким уменьшением ее выделения с мочой.

Рис.6. Поражение десен и слизистой оболочки ротовой полости при скорбуте

В современных условиях массовое развитие цинги вряд ли возможно и появление выраженного авитаминоза возможно только при каком-либо народном бедствии - изнурительной войне, сопровождаемой продовольственной недостаточностью и голодом. Цинга, как правило, возникает и развивается на фоне общей и особенно белковой недостаточности питания.

В настоящее время более вероятна неполная, частичная недостаточность аскорбиновой кислоты (гиповитаминоз С), не имеющая выраженных клинических симптомов. Гиповитаминозные состояния развиваются медленно и длительное время могут протекать в скрытой форме.

Начальная форма недостаточности аскорбиновой кислоты проявляется рядом общих симптомов: пониженной работоспособностью, быстрой утомляемостью, снижением устойчивости организма к холоду, склонностью к «простудным» заболеваниям (насморк, катар верхних дыхательных путей, острые респираторные заболевания и др.).

Витаминная недостаточность, приняв скрытую форму, представляет собой благоприятный фон для формирования и развития ряда патологических состояний - атеросклероза, астенических состояний, пероксидации, неврозов, стрессовых состояний и др. Изучается роль скрытой витаминной недостаточности в развитии избыточной массы тела.

Витаминная недостаточность в современных условиях протекает не изолированно в виде самостоятельного, специфического, выраженного симптомокомплекса, а преимущественно в сочетании с какой-либо другой патологией, способствуя ее развитию и осложнению, отягощая процесс выздоровления. Так, витаминная недостаточность является фактором, осложняющим течение ишемической болезни сердца и реабилитацию после перенесенного инфаркта миокарда. Возможно, что все виды лечения, особенно у пожилых людей, а также у людей с избыточной массой тела, следует начинать с ликвидации витаминной недостаточности, используя для этого высокоэффективные поливитаминные комплексы и комбинированные гериатрические средства.

Сегодня все больше людей, задумываясь о правильном питании, стараются разнообразить свой рацион употреблением всевозможных витаминных комплексов. Однако последствия влияния таких добавок на организм изучено недостаточно, и переизбыток витаминов порой может оказаться гораздо более опасным, чем их недостаточное употребление.

Гипервитаминоз - это реакция на передозировку витаминов, проявляющаяся в различных расстройствах и дисфункциях организма человека. Существует ошибочное мнение, что переизбыток витаминов невозможен: организм возьмет то, что ему необходимо, а остальное выведет с мочой. Это не так. Только некоторые элементы выводятся самостоятельно (водорастворимые), но и они могут нанести определенный вред. Постоянная передозировка витаминов группы С <#"605263.files/image010.gif">

х = ,

где А - объем краски, пошедшей на титрование вытяжки, мл; В - объем краски, пошедшей на контрольное титрование, мл; Т кр/аск - титр краски по аскорбиновой кислоте, мг/мл (0,05 г аскорбиновой кислоты соответствует 1 мл краски Тильманса); V к - общий объем экстракта, мл; V п - объем экстракта, взятого для титрования, мл; m - масса исследуемого материала в г.

1.2 Метод йодометрии

Аскорбиновая кислота легко окисляется благодаря наличию ендиольной группировки, поэтому для ее определения можно использовать различные методы редоксиметрии, в том числе и такой относительно слабый окислитель, как йод. Метод йодометрии в данном случае также является наиболее простым и доступным при организации исследовательской работы со школьниками.

Количественное определение аскорбиновой кислоты основано на окисленни ее раствором йода:


Стандартный потенциал окисления аскорбиновой кислоты Е = -0,71В

С 6 Н 8 О 6 - 2е → С 6 Н 6 О 6 + 2Н +

Стандартный потенциал восстановления йода Е = 0,53В

2 + 2e → 2I -

Разность потенциалов аскорбиновой кислоты и йода будет достаточно большой ЭДС = 0,53 - (-0,71) = 1,24В, поэтому йод может быть использован для ее количественного определения.

Йодометрическое определение аскорбиновой кислоты представляет собой характерный пример способа прямого титрования анализируемого вещества стандартным раствором йода в иодиде калия.

Титрование проводят методом отдельных навесок, сущность которого заключается в следующем. Несколько (3-5) приблизительно равных навесок анализируемого вещества, взятых на аналитических весах, растворяют в произвольном минимальном (приблизительно 10 мл) объеме растворителя и полностью титруют.

Несколько навесок анализируемого материала помещают в пронумерованные конические колбы для титрования, в которые предварительно налито около 10 мл дистиллированной воды. Затем добавляют 1-2мл 6н раствора серной кислоты и титруют при комнатной температуре 0,1н раствором йода в иодиде калия в присутствии индикатора крахмала до появления синей окраски раствора.

где С э - нормальная концентрация рабочего раствора, моль/л; V - объем рабочего раствора, пошедшего на титрование, мл; М Э - эквивалентная масса аскорбиновой кислоты, г/моль; m - масса навески исследуемого материала, г.

2 Химический анализ содержания витамина С по методу Тильманса в яблоках отечественных и импортных сортов

Одним из главных источников витамина С являются свежие фрукты и овощи (см. прил.). В ходе работы было проведено исследование количественного содержания аскорбиновой кислоты в яблоках отечественных и импортных сортов. Выбор данного объекта обусловлен наибольшей доступностью яблок для российского потребителя по сравнению с другими фруктами. Методика данного определения описана в п. 2.1.1. Результаты исследования приведены в табл. 4 и рис. 7.

Таблица 4 Количественное содержание витамина С (мг/%) в яблоках различных сортов

Сорт яблок

Т краски/ аск. к-те

V кр. опыт.

V кр. контр.

Вит.С мг/%



Т кр/аск к-те




Звездочка (Россия)

Антоновка (Россия)

Айдаред (Польша)

Грени (ЮАР)

Фуджи (Япония)

Гала (Китай)

Джонаголд (Бельгия)

Брэберн (Новая Зеландия)

Гольден делишес (США)

Джонатан (США)


Рис.7 Количественное содержание витамина С (мг/%) в яблоках различных сортов

Анализируя полученные данные, можно констатировать, что в яблоках отечественных производителей содержание витамина С существенно больше, чем в импортных.

3 Йодометрическое определение содержания витамина С

3.1 Йодометрическое определение содержания витамина С в витаминных препаратах

Наиболее эффективным методом коррекции витаминной обеспеченности человека является регулярный прием поливитаминных препаратов профилактического назначения ("Ревит", "Гексавит", "Ундевит" и др.). Препараты этого типа содержат более или менее полный набор основных витаминов в дозах, близких к физиологической потребности или немного превышающих ее. Регулярный прием таких препаратов (по 1 драже или таблетке в день или через день), не создавая избытка, гарантирует оптимальное обеспечение организма витаминами. Для оптимизации витаминной обеспеченности детей дошкольного возраста можно рекомендовать "Ревит" или "Гексавит", для школьников младших классов - "Гексавит", для старшеклассников, студентов, взрослого населения - "Гексавит" или "Ундевит". Во время беременности и кормления грудью целесообразно принимать "Гендевит", "Ундевит" или "Глутамевит". Последний препарат, содержащий кроме витаминов медь и железо, препятствует развитию анемии и может быть рекомендован в этих целях женщинам детородного возраста, а также донорам крови. В пожилом возрасте обычно назначают "Ундевит" или "Декамевит", содержащий широкий спектр В. в дозах, превышающих физиологическую потребность практически здорового человека в 2-10 раз. Этот же препарат показан при нарушениях всасывания и утилизации витаминов, при подготовке к хирургическим операциям, в послеоперационном периоде, а также в течение длительного времени после выписки из стационара.

Для проведения анализа на количественное содержание витамина С были выбраны наиболее известные, часто применяемые и распространенные на потребительском рынке г. Арзамаса витаминные препараты средней стоимости. Методика исследования приведена в п. 2.1.2. Результаты показаны в табл. 5 и рис. 8.

Таблица 5 Количественное содержание витамина С (мг/%) в различных витаминных препаратах

Исследуемый препарат

V раб. раствора, мл.

Вит.С мг/%

Вит.С сред., мг/%

Другие витамины, входящие в состав витам. препарата

1. Драже кислоты аскорбиновой, ЗАО «Алтайвитамины», г.Бийск.









2. Аскорбиновая кислота, ОАО «Марбиофарм», г.Йошкар-Ола.









3. Аскорбиновая кислота с глюкозой, ОАО «Марбиофарм», г.Йошкар-Ола.









4. Аскорбиновая кислота, вкус - черная смородина, «Марбиофарм», г.Йошкар-Ола.

не указано









5. Аскорбиновая кислота, аптечный препарат, 2010г.









6. Аскорбиновая кислота, аптечный препарат, .2009г.









7. Ревит, ОАО «Марбиофарм», г. Йошкар-Ола.









8. Аэровит, ОАО «Фармстандарт - УфаВИТА»

А, В1, В2, В5, В6, В9, В12, Р









9. Гексавит, ОАО «Фармстандарт - УфаВИТА»

А, В1, В2, В5, В6










Таким образом, установлено, что наибольшее количество витамина С (мг%) содержит препарат - драже кислоты аскорбиновой, г.Бийск, а среди исследованных поливитаминных препаратов - аэровит, г.Уфа. Чаще всего, содержание витамина С, указанное на упаковке производителем, не соответствует фактическому и завышено.

В литературных данных неоднократно указывается на тот факт, что аскорбиновая кислота легко окисляется кислородом воздуха , . В связи с этим, был исследован свежий аптечный препарат аскорбиновой кислоты и препарат годичной давности. Результаты приведены на рис.9.

Драже кислоты аскорбиновой, г.Бийск;

Аскорбиновая кислота, г.Йошкар- Ола;

Аскорбиновая кислота с глюкозой, г. Йошкар - Ола;

Аскорбиновая кислота, вкус - черная смородина, г.Йошкар-Ола;

Ревит, г. Йошкар-Ола,

Аэровит, г.Уфа;

Гексавит, г.Уфа.

Рис.9 Изменение содержания витамина С в аптечном препарате аскорбиновой кислоты в ходе хранения

В ходе анализа аптечного препарата аскорбиновой кислоты выявлено значительное снижение содержания витамина С в ходе хранения, что вероятнее всего связано с постепенным окислением его кислородом воздуха.

2.3.2 Йодометрическое определение содержания витамина С во фруктовых соках

Свежие фрукты и овощи как источники витаминов не всегда доступны. Поэтому большой популярностью пользуются соки. Наиболее полезны свежевыжатые соки. Они содержат все витамины и микроэлементы, а также клетчатку и другие биологически активные вещества, которые содержит и свежий фрукт или овощ. Соки нашему организму усвоить проще, чем фрукт или овощ. К сожалению, возможность пить свежеприготовленные соки есть не у всех. Тогда стоить обратить внимание на консервированные соки. В процессе промышленной обработки соков часть витаминов, и прежде всего аскорбиновая кислота, разрушаются. Но в большинство соков промышленного производства все утерянные витамины вводятся дополнительно. Если продолжить разговор о полезных веществах, то в соках есть и калий, и железо. В них содержатся и такие важные вещества, как органические кислоты. Все это и составляет всем известную пользу соков. Кроме того, в ряде случаев сок служит хорошим подспорьем для стимуляции аппетита. К тому же, он достаточно питателен, в нем много углеводов, в основном сахаров фруктов и ягод. В соки, предназначенные специально для детского питания, запрещено добавлять какие-либо консерванты, кроме лимонной кислоты. Наиболее полезны соки с мякотью. Они содержат больше полезных веществ.

В связи с этим, нами было исследовано содержание витамина С в некоторых свежеприготовленных и консервированных соках. Методика исследования описана в п. 2.1.2. Результаты представлены в табл. 6 и рис. 10, 11.

Таблица 6 Количественное содержание витамина С (мг/%) в свежеприготовленных и консервированных соках

Вит. С мг/%

Вит.С, указанное производителем, мг/%

срок годности

1.смородиновый сок (из свежемороженых ягод)

2.сок облепихи (из свежемороженых ягод)

3.сок лимона (свежевыжатый)

4.апельсиновый сок (свежевыжатый)

5.шиповник (отвар)

6. сок "Тонус" (мультифрукт.)

7. сок "Тонус" (яблочн.)

8.сок J - 7 100% (мультифрукт.)

9.мультифрукт. сок "Моя семья"

10. персиковый нектар "Моя семья"

11. яблочный сок "Моя семья"

12. яблочный сок - нектар

13.сок - нектар яблоко - мультифрукт.

14.сок - нектар яблоко - персик


1. сок "Тонус" (мультифрукт.)

2. сок "Тонус" (яблочн.)

Сок J - 7 100% (мультифрукт.)

Мультифрукт. сок "Моя семья"

Персиковый нектар "Моя семья"

Яблочный сок "Моя семья"

Яблочный сок - нектар

Сок - нектар яблоко - мультифрукт.

Сок - нектар яблоко - персик

Анализируя полученные данные, можно констатировать, что в свежеприготовленных соках содержание витамина С значительно больше, чем в консервированных. Наибольшее (мг%) выявлено - из исследуемых - в смородиновом соке. Низкое содержание витамина С в отваре шиповника, по сравнению с литературными данными, указывает на разрушение его в ходе термической обработки.

Заключение

В ходе проведенного исследования можно сделать следующие выводы:

Витамин С является водорастворимым витамином, относящимся к группе производных лактонов ненасыщенных полиоксикарбоновых кислот. По химической природе является легко окисляющейся слабой кислотой за счет присутствия ендиольной группировки.

Аскорбиновая кислота - необходимый компонент в ежедневном рационе человека, так как выполняет целый ряд незаменимых биохимических функций, но при этом не способна синтезироваться самим организмом. Ее дефицит может быть восполнен за счет целого ряда пищевых источников и витаминных препаратов.

Проведенный количественный анализ (метод Тильманса) показал, что содержание витамина С в яблоках отечественных сортов колеблется в пределах от 13,5 до 15,5 мг%, а в импортных - от 1,34 до 6,5 мг%. В целом, содержание витамина С в яблоках отечественных сортов выше.

4. В ходе йодометрического определения содержания аскорбиновой кислоты в витаминных препаратах было установлено, что содержание витамина С в них колеблется в пределах 22,42 - 0,85мг% для моновитаминных и в пределах 12,66 - 6,91мг% для поливитаминных препаратов. В ходе анализа аптечного препарата аскорбиновой кислоты выявлено значительное снижение содержания витамина С в ходе хранения, что вероятнее всего связано с постепенным окислением его кислородом воздуха.

5. В ходе йодометрического определения в соках установлено, что содержание аскорбиновой кислоты в свежеприготовленных соках значительно выше, чем в консервированных. Однако и консервированные соки могут служить хорошим источником витамина в рационе в условиях их дефицита.

Список литературы

1. Абрамова Ж.И. Справочник по лечебному питанию для диет-сестер и поваров. - М.: Медицина, - 1984. - 304с.

Авакумов В.М. Современное учение о витаминах. М.: Химия, 1991. - 214 с.

3. Алексенцев В.Г. Витамины и человек. - М.: Дрофа, 2006.- 156 с.

4. Афиногенова С.Г. Витамины. Учебно-методическое пособие для студентов биолого-химического факультета / С.Г. Афиногенова, Э.А. Сидорская. - Арзамас: АГПИ им. А.П. Гайдара, 1990.- 65 с.

Ванханен В.Д. Гигиена питания. - М.: Медицина, - 1982.- 345 с.

Витамины и методы их определения. - Горький, ГГУ,1981.- 212 с.

7. Ленинджер А. Основы биохимии. М.: Мир, 1985.- Т.1-3.

Марри Р. Биохимия человека/ Р. Марри, Д. Греннер, П. Майес.- М.: 1993. -Т. 2. - 414 с.

Ольгин О. Опыты без взрывов. - М.: Химия, 1986.- 130 с.

10. В.А. Волков, Л.А. Волкова. Определение витамина С //Химия в школе. - 2002. - № 6. - С.63-66.

11. Романовский В.Е. Витамины и витаминотерапия. Серия "Медицина для вас"/ В.Е. Романовский., Е.А. Синькова - Ростов н/Д. "Феникс", 2000.- 320 с.

12. Страйер Л. Биохимия. М.: Мир, 1984. - Т.1-3.

Филлипович Ю.Б. Основы биохимии. М.: Высшая школа, 1985.- 450 с.

Филлипович Ю.Б. Практикум по общей биохимии/ Ю.Б. Филлипович, Т.А. Егорова, Г.А. Севастьянова. М.: Химия, 1982.- 330 с.

Химия биологически активных природных соединений / Под ред. Преображенского Н.А., Евстигнеевой Р.П. - М.: Химия, 1970. - 320 с.

16. Чухрай Е.С. Молекула, жизнь, организм. М.: Просвещение, 1991.-276 с.

Шульпин Г.Б. Химия для всех. - М.: Знание. 1997. - 135 с.

Эйдельман М.М. Сверхдозы аскорбиновой кислоты - кому и когда // Химия и жизнь.- 1985.- №1.- С. 66-69.

Яковлева Н.Б. Химическая природа нужных для жизни витаминов. - М.: Просвещение, 2006. - 120 с.

Приложение

Таблица 1. Содержание витамина С в овощах

Наименование продукта

Количество аскорбиновой кислоты

Баклажаны

Горошек зеленый консервированный

Горошек зеленый свежий

Капуста белокочанная

Капуста квашеная

Капуста цветная

Картофель лежалый

Картофель свежесобранный

Лук зеленый

Перец зеленый сладкий

Перец красный

Томатный сок

Томат-паста

Томаты красные


Таблица 2. Содержание витамина С в некоторых фруктах и ягодах

Наименование продукта

Количество аскорбиновой кислоты

Абрикосы

Апельсины

Брусника

Виноград

Земляника садовая

Крыжовник

Мандарины

Смородина красная

Смородина черная

Шиповник сушеный

Яблоки, антоновка

Яблоки северных сортов

Яблоки южных сортов

Таблица 3. Сохранность витамина С при кулинарной обработке

Наименование блюд

Сохранность витамина по сравнению с исходным сырьем в %

Капуста вареная с отваром (варка 1 час)

Щи, простоявшие на горячей плите при 70-75° 3 часа

То же при подкислении

Щи, простоявшие на горячей плите при 70-75° 6 часов

Щи из кислой капусты (варка 1 час)

Капуста тушеная

Картофель, жаренный сырым, мелко нарезанным

Картофель, варившийся 25-30 минут в кожуре

То же, очищенный

Картофель очищенный, пролежавший 24 часа в воде при комнатной температуре

Картофельное пюре

Картофельный суп

То же, простоявший на горячей плите при 70-75° 3 часа

То же, простоявший 6 часов

Морковь отварная


1

В статье представлены результаты экспериментальных исследований по выбору метода и разработке методики количественного определения филлохинона (витамина К1) в растениях. Обосновано преимущество хроматографического метода (обращенно-фазовой ВЭЖХ) перед спектрофотометрическим при определении филлохинона в составе комплекса БАВ растений. В соответствии с рекомендациями Международной конференции по гармонизации технических требований к регистрации лекарственных средств для применения у человека (International Conference Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use) была проведена валидация разработанной методики по показателям специфичность, линейность, воспроизводимость и точность. Установлено, что предложенная методика является специфичной, линейной, воспроизводимой и точной. На примере фармакопейных видов сырья, содержащих витамин К1, доказана универсальность применения методики при анализе растительных объектов.

филлохинон

витамин К1

крапивы листья

калины кора

кукурузы столбики с рыльцами

пастушьей сумки трава

валидация

1. Абышев А. З. Синтез, свойства и контроль качества витаминных препаратов и витаминоподобных веществ: учебно-методическое пособие / А. З. Абышев, С.Н. Трусов, Н.И. Котова, М. П. Блинова. – СПб. : Изд-во СПФХА, 2010. – 136 с.

2. ГОСТ Р ИСО 5725-2002 «Точность (правильность и прецизионность) методов и результатов измерений» В 6 ч. – Введ. 23.04.02. – М.: Госстандарт России; Изд-во стандартов, 2002.

3. Государственная фармакопея СССР. Вып. 2 Общие методы анализа. Лекарственное растительное сырье / МЗ СССР. – 11-е изд., доп. – М., 1989. – 400 с.

4. Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации. Методические рекомендации МР 2.3.1.2432 -08

5. Носов А. М. Лекарственные растения. – М.: ЭКСМО-Пресс, 1999. – 350 с.

6. Погодин И.С., Лукша Е.А. Разработка методики количественного определения сесквитерпеновых лактонов в траве соссюреи горькой // Современные проблемы науки и образования. – 2013. – № 1; URL: www.сайт/107-8426

Введение

Витамин К относится к классу жирорастворимых витаминов, влияющих на систему гемостаза. К природным витаминам группы К относятся два типа метилированных хиноидных соединений с боковыми цепями, представленными изопреноидными звеньями: витамины К 1 и К 2 . В основе структуры указанных витаминов лежит система 1,4-нафтохинона. Витамин К1 (филлохинон) синтезируется всеми фотосинтезирующими организмами. Витамин К 2 (менахинон) синтезируется микрофлорой толстого кишечника. Биологическая роль витаминов группы К заключается в активации факторов свертывающей и противосвертывающей систем млекопитающих .

В настоящее время определена физиологическая потребность в витамине К для взрослых - 120 мкг/сутки и для детей - от 30 до 75 мкг/сутки .

В медицинской практике препараты растительного происхождения, содержащие филлохинон, используются для коррекции геморрагических осложнений. В Государственную фармакопею 11 издания включены следующие виды лекарственного растительного сырья, обладающие гемостатическим витамин К-зависимым эффектом: кора калины (Соrtex Viburni), столбики с рыльцами кукурузы (Styli cum stigmatis Zeae maydis), листья крапивы (Folia Urticae), трава пастушьей сумки (Herba Bursae pastoris) . Установлено, что витамин К 1 также содержится в траве тысячелистника, горца перечного, горца почечуйного и спорыша, что определяет возможность применения указанного сырья при желудочных, маточных и геморроидальных кровотечениях . В Государственной фармакопее, в настоящее время, отсутствуют методики определения филлохинона в растительном сырье. Для оценки целесообразности использования лекарственного растительного сырья в качестве источников витамина К1, актуальной проблемой является решение вопросов стандартизации и разработки методик, направленных на определение содержания филлохинона в растительных объектах.

Цель работы : разработка методики определения витамина К1 в лекарственном растительном сырье.

Материалы и методы исследования

Объектами исследования являлись официнальные виды лекарственного растительного сырья: кора калины, столбики с рыльцами кукурузы, листья крапивы, трава пастушьей сумки. Все виды сырья были приобретены через аптечные сети. Выбор рационального способа определения витамина К 1 проводили на основании оценки валидационных характеристик, полученных с помощью хроматографических и спектрофотометрических методов анализа. Для разработки методики количественного определения филлохинона в растительном сырье использовали метод обращенно-фазовой высокоэффективной хроматографии высокого давления (ВЭЖХ) с диодно-матричным детектором на приборе Shimadzu LC-20 Prominence в изократическом режиме в следующих условиях: аналитическая колонка, заполненная сорбентом PerfectSil 300 ODS C18, 4,6х250 мм, с размером частиц 5 мкм; состав подвижной фазы: ацетонитрил-изопропанол-вода в соотношении 75:20:5; детектирование при длине волны 254 нм; температура колонки - комнатная; скорость подвижной фазы 1 мл/мин; объем вводимой пробы 20 мкл. Оценку результатов проводили по величине времени удерживания (t r) филлохинона, совпадающим с показателем t r РСО (20.00±1.00 мин.) и по величине площади пика филлохинона. Обработку результатов производили с использованием программного обеспечения LC Solutions.

Спектрофотометрическое определение содержания витамина К 1 проводили на приборе UNICO 2802S в кварцевой кювете с толщиной слоя 1 см.

Обработку результатов выполняли с использованием программы STATISTICA 8.0. Для описания полученных результатов, после проверки нормальности распределения, приводили значение среднего (X ср), стандартного отклонения (S), относительного стандартного отклонения (RSD), дисперсии (S 2), доверительного интервала среднего (Δx ср) при уровне значимости α=0,05.

В качестве стандартного образца использовали рабочий стандартный образец (РСО) витамина К 1 , выделенного методом препаративной колоночной хроматографии из гексанового извлечения листьев крапивы двудомной. Рабочий стандартный образец представляет собой желтую вязкую невысыхающую маслянистую жидкость, практически не растворимую в воде, растворимую в органических растворителях и растительных маслах, температура плавления -20ºС. Спектральные характеристики спиртового раствора рабочего стандартного образца (после удаления гексана) представлены на рис. 1.

Рис. 1. Спектр в УФ- и видимой области раствора РСО филлохинона (витамина К1)

Для максимального извлечения витамина К1 из исследуемых образцов подбирали следующие параметры пробоподготовки: степень измельченности сырья, вид экстрагента, количественные соотношения сырья и экстрагента, время и кратность экстракции, температурный и световой режим экстрагирования.

Результаты и обсуждение . С целью разработки рационального метода определения содержания витамина К 1 были подобраны условия для его извлечения из сырья. В качестве объекта для разработки методики служили листья крапивы. С учетом неустойчивости филлохинона к воздействию световой энергии, все этапы исследования проводили в условиях, предполагающих защиту извлечений от света. Полноту извлечения определяли методом ВЭЖХ по величине площади пика с t r 20.00±2.00 мин. В результате оценки влияния факторов пробоподготовки на полноту извлечения филлохинона были подобраны следующие параметры и условия: измельченность сырья - частицы, проходящие сквозь сито с величиной диаметра отверстий 0,5 мм; экстрагент - гексан; количественное соотношение «сырье:экстрагент» - 1:25; однократная экспозиция в течение 60 мин.; температурный режим - комнатная температура (20-22ºС).

Для разработки методики определения витамина К 1 в растениях спектрофотометрическим методом, предварительно был проведен сравнительный анализ спектров поглощений извлечений из фармакопейного сырья (рис. 2) и раствора РСО филлохинона (рис. 1). В результате было установлено, что доказать присутствие витамина К1 в сырье по референтному максимуму (249 нм) не представляется возможным, ввиду отсутствия данного максимума в спектре всех исследуемых объектов. Следовательно, методика определения витамина К1 в суммарном комплексе биологически активных веществ растительного сырья прямым спектрофотометрическим методом изначально не может быть положительно провалидирована по показателю «специфичность». Повысить показатель специфичности методики при использовании спектрофотометрии возможно при условии извлечения из сырья очищенного филлохинона, что требует введения дополнительных препаративных манипуляций на стадии пробоподготовки объекта исследования. Дополнительная очистка извлечения может отрицательно повлиять на экспрессность и точность методики в конечном результате.

Рисунок 2 - Спектры поглощения извлечений из лекарственного растительного сырья, содержащего филлохинон (Кр - листья крапивы, К - кора калины, Ку - столбики с рыльцами кукурузы, П - трава пастушьей сумки)

Наиболее приемлемым вариантом для определения витамина К 1 в растительном сырье представляется использование метода обращенно-фазовой высокоэффективной хроматографии высокого давления (ВЭЖХ) с диодно-матричным детектором. По разработанным параметрам пробоподготовки сырья к анализу была разработана следующая методика: аналитическую пробу сырья измельчают до размера частиц, проходящих сквозь сито с отверстиями диаметром 0,5 мм. Около 1,0 г (точная навеска) измельченного сырья помещают в коническую колбу вместимостью 50 мл, заливают 25 мл гексана, закрывают пробкой и перемешивают на механическом встряхивателе в течение 60 минут. Извлечение фильтруют через бумажный фильтр в круглодонную колбу и отгоняют гексан на ротационном испарителе. Остаток количественно переносят в мерную колбу на 5 мл (пикнометр) с помощью 4 мл этанола. Доводят объем раствора до метки тем же растворителем и перемешивают. 0,02 мл раствора вводят в хроматограф.

Приготовление стандартного образца: К 0,0005 г (точная навеска) РСО филлохинона приливают 4 мл этанола, переносят в мерную колбу вместимостью 5 мл. Доводят объем раствора до метки растворителем и перемешивают. 0,02 мл раствора вводят в хроматограф.

Содержание филлохинона (X) в абсолютно сухом сырье в процентах вычисляют по формуле:

где S o - площадь пика на хроматограмме раствора РСО филлохинона; S - площадь пика филлохинона на хроматограмме испытуемого раствора; m o - навеска РСО филлохинона, в г; m - навеска сырья, в г; W - потеря в массе при высушивании сырья, в %; Р - содержание филлохинона в РСО филлохинона, в %.

По результатам количественного определения филлохинона методом обращенно-фазовой ВЭЖХ было определено содержание витамина К1 в листьях крапивы (табл. 1).

Таблица 1 - Метрологическая характеристика метода количественного определения филлохинона в листьях крапивы (%) (n=6)

Xср ± Δхср

0,00425 ± 0,00021

Ввиду малого содержания витамина К1 в сырье предлагаем производить расчеты в мг%, для этого необходимо внести изменения в расчетную формулу для перевода единиц измерения (г в мг):

Валидационную оценку методики проводили по показателям - специфичность, линейность, прецизионность (воспроизводимость) и точность .

Специфичность. Идентификация филлохинона подтверждалась совпадением времени удерживания анализируемого компонента в сырье и РСО филлохинона (рис. 3). Пики сопутствующих соединений, входящих в состав извлечений растительного сырья, хорошо разделяются с пиком филлохинона, и не влияют на аналитическое определение.

Рис. 3. Хроматограмма извлечения листьев крапивы (А - пик 17,tr =20.37 мин соответствует филлохинону) и рабочего стандартного образца филлохинона (Б - пик 22 ,tr =20.71 мин)

Линейность и аналитическая область методики была подтверждена анализом 7 проб разных концентраций в диапазоне от 13 до 417 % от концентрации (0,12 мг/мл), принятой за 100 %. Сравнение зависимости между содержанием филлохинона (мг/мл) в испытуемых растворах и величинами площадей хроматографических пиков показало, что она имеет линейный характер и описывается уравнением y = 5104417,9 x + 10944,88. Коэффициент корреляции (rxy) равен 0,999, что позволяет использовать данную методику для количественного определения филлохинона в растительных объектах в диапазоне концентраций от 0,016 до 0,5 мг/мл.

Воспроизводимость (прецизионность) определялась путем проведения анализа разными (двумя) аналитиками на одной серии сырья в разное время. Число повторностей для каждого аналитика - 3, общее число повторностей - 6. Относительное стандартное отклонение, выраженное в процентах (RSD, %), не должно превышать 5 % . По результатам проведенных исследований RSD составило 1,21 %, что характеризует надежность анализа в выбранных условиях (табл. 2).

Таблица 2 - Результаты определения прецизионности методики

Повторность

Аналитик

Определено в образце, мг%

Метрологические характеристики

Xср = 4,00525 мг %

S = 0,04850 мг %

Для определения точности методики анализировали образцы листьев крапивы из одной партии сырья в 3 уровнях навесок (по 0,5, 1,0 и 1,5 г), трижды проводя отбор проб для каждого уровня. Содержание витамина К1 определяли в мг в навеске сырья. Предварительно рассчитывали ожидаемую (теоретическую) величину, исходя из установленного среднего показателя по содержанию витамина К1 в листьях крапивы, равного 4,1 мг%. Теоретический показатель значения сравнивали с фактическим. Для оценки полученных результатов использовали показатель «открываемость» (R), критерий приемлемости для которого принят в пределах 98-102 % от расчетной величины .

Таблица 3 - Результаты определения точности методики

Навеска сырья,

Фактическое

Расчетное

Открываемость

Метрологические

характеристики

Результаты определения точности методики, представленные в таблице 3, показали, что открываемость R составляет 98,73 %, величина относительного стандартного отклонения (RSD) не превышает 5 %, что характеризует точность методики как удовлетворительную.

Таким образом, установлено, что предлагаемая методика количественного определения витамина К1 методом ВЭЖХ в листьях крапивы является специфичной, воспроизводимой и точной. Данная методика была воспроизведена для определения витамина К1 в других видах лекарственного растительного сырья (табл. 4).

Таблица 4 - Содержание витамина К1 (мг%) в лекарственном растительном сырье

Объект (n=6)

Xср ± Δхср

Столбики с рыльцами кукурузы

Трава пастушьей сумки

Кора калины

Проведенные исследования показали целесообразность использования метода обращенно-фазовой ВЭЖХ для определения филлохинона в растительном сырье. Преимуществом метода ВЭЖХ является возможность проведения оценки качественного и количественного содержания филлохинона в одной навеске сырья, что существенно экономит временные затраты на анализ. Разработанная методика может быть использована для определения содержания витамина К1 в растительных объектах.

Рецензенты:

Гришин А.В. д.фарм.н., профессор, зав. кафедрой фармации ГБОУ ВПО ОмГМА Минздрава России, г.Омск.

Пеньевская Н.А. д.м.н., доцент, зав. кафедрой фармацевтической технологии с курсом биотехнологии ГБОУ ВПО ОмГМА Минздрава России, г.Омск.

Библиографическая ссылка

Лукша Е.А., Погодин И.С., Калинкина Г.И., Коломиец Н.Э., Величко Г.Н. РАЗРАБОТКА МЕТОДИКИ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ФИЛЛОХИНОНА (ВИТАМИНА К1) В РАСТИТЕЛЬНЫХ ОБЪЕКТАХ // Современные проблемы науки и образования. – 2014. – № 3.;
URL: http://science-education.ru/ru/article/view?id=13736 (дата обращения: 02.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Количественное определение аскорбиновой кислоты в исследуемом материале часто осуществляют с помощью раствора 2,6-дихлофенолиндофенола натрия, который в щелочной среде имеет синюю окраску, в кислой – розовую. Химизм реакции можно выразить в виде следующего уравнения.

Принцип метода основан на способности аскорбиновой кислоты восстанавливать индофеноловый реактив. При титровании вытяжки исследуемого материала раствором 2,6-дихлорфенолиндофенола происходит окисление аскорбиновой кислоты в дегидроаскорбиновую и восстановление индофенолового реактива. Конец титрования можно установить по изменению окраски. Окисленная форма 2,6-дихлорфенолиндофенола имеет синюю окраску в нейтральной и щелочной среде, восстановленная форма – приобретает розовую окраску в кислой среде.

Аскорбиновую кислоту извлекают из исследуемого материала 1 % раствором соляной кислоты и титруют раствором индофенолового реактива. По количеству краски, затраченной на титрование, рассчитывают содержание аскорбиновой кислоты.

Следует заметить, что точному определению содержания аскорбиновой кислоты в биологических объектах мешают другие, легко окисляемые вещества: глютатион, цистеин и т.п.

7.7.1. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ВИТАМИНА С В

РАСТИТЕЛЬНОМ МАТЕРИАЛЕ

Берут навеску исследуемого материала 5-20 г (в зависимости от предполагаемого содержания аскорбиновой кислоты), нарезают мелкими кусочками (картофель, морковь, черемша, яблоки и т.п.) тщательно растирают в ступке со щепоткой стекла или кварцевого песка, добавляя порциями по 4-5 мл раствора с массовой долей метафосфорной или соляной кислоты 2 % до получения однородной жидкой кашицы. Смесь из ступки количественно, с помощью раствора используемой при растирании кислоты, переносят в мерную колбу вместимостью 100 мл и общий объем экстракта доводят до метки тем же раствором кислоты. Содержимое хорошо перемешивают, настаивают 5-7 мин и фильтруют через бумажный фильтр. Полученный фильтрат должен быть совершенно прозрачным.

Используемые для экстракции кислоты (соляная, метафосфорная, щавелевая) извлекают из исследуемого материала как свободную, так и связанную аскорбиновую кислоту, а также способствуют устойчивости аскорбиновой кислоты в экстрактах.

Берут две конические колбочки вместимостью 100-150 мл и в одну пипеткой вносят 20 мл полученного фильтрата, в другую – 20 мл раствора кислоты, используемой для растирания исследуемого материала. Содержимое колбочек титруют индофеноловым реактивом до слабо-розового цвета, удерживающегося 30 секунд. Результаты записывают, и титрование повторяют с новыми порциями того же фильтрата. На основании средней величины, полученной из 2-3 определений, рассчитывают содержание аскорбиновой кислоты по формуле:

,

(a-b) – разность между объемами индофенолового реактива, пошедшими на титрование опытной (а) и контрольной (b) проб, мл;

u - общий объем экстракта, мл;

u 1 – объем фильтрата, взятого для титрования, мл;

m – масса исследуемого материала, г,

100 – пересчет на 100г материала.

В растительных тканях в некоторых количествах содержатся и другие редуцирующие вещества, восстанавливающие 2,6-дихлорфенолиндофенол, поэтому при необходимости проведения особо точного анализа следует принять это в расчет. Для этого к двум другим порциям по 10-20 мл исследуемой вытяжки прибавляют по 0,1 или 0,2 мл 10 % раствора сернокислой меди и нагревают в термостате или сушильном шкафу 10 мин при температуре 110 ˚С. Охлаждают и титруют индофеноловым реактивом. В присутствии солей меди и при нагревании аскорбиновая кислота разрушается полностью. Полученную поправку вычитают из данных титрования опытных проб.

При анализе многих плодов и ягод, некоторых овощей получают окрашенные экстракты, что затрудняет определение аскорбиновой кислоты. Для определения аскорбиновой кислоты, окрашенную вытяжку переносят в широкую пробирку, приливают 2-5 мл дихлорэтана или хлороформа и титруют при взбалтывании раствором индофенолового реактива до появлении в слое дихлорэтана или хлороформа розового окрашивания, не исчезающего 30 сек.

При определении необходимо учитывать редуцирующую способность применяемых для экстракции кислот (смесь 20 мл 1 % соляной кислоты и 80 мл 2 % метафосфорной или 1 % щавелевой кислоты). Для этого две порции смеси кислот по 10 мл титруют индофеноловым реактивом до розового окрашивания. Полученную поправку (обычно не превышающую 0,08-0,10 мл раствора краски) вычитают из данных титрования опытных растворов.

+
7.7.2. ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ РАСТВОРА

2,6-ДИХЛОРФЕНОЛИНДОФЕНОЛА НАТРИЯ (ПО АСКОРБИНОВОЙ КИСЛОТЕ)

: R 4 – CH | NH | CO | R 3 – CH | NH | CO | R 2 – CH | NH | CO | R 1 – CH | NH | CO:

NaOH (избыток) Сu 2+
В две колбочки вносят по 5 мл раствора с массовой долей метафосфорной или соляной кислоты 2 % и по 2 мл стандартного раствора аско­рбиновой кислоты (основной опыт). Содержимое каждой колбочки титруют индофеноловым реактивом до слабо-розового окрашивания, сохраняющегося 30 секунд. Параллельно с основным опытом проводят контрольное определение, где также берут две колбочки и в каждую вносят по 7 мл раствора с массовой долей метафосфорной или соляной кислоты 2 % и воду в объеме, равном объему индофенолового реактива, пошедшего на титрование в основном опыте. Содержимое этих колб титруют индофеноловым реактивом до слабо-розового цвета, сохраняющегося 30 секунд.

Мaccy аскорбиновой кислоты (в мг), соответствующую 1 мл индофенолового реактива (раствора 2,6-дихлорфенолиндофенола натрия), рассчитывают пo формуле:

где М – масса аскорбиновой кислоты в мг, соответствующая 1 мл индофенолового реактива;

(u-u 1) - разность между объемами индофенолового реактива, пошедшими на титрование пробы с аскорбиновой кислотой (u) и пробы без аскорбиновой кислоты (u 1), мл;

2 – масса аскорбиновой кислоты в мг, содержащаяся в опытной пробе (основной опыт).

7.7.3. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ВИТАМИНА С В МОЛОКЕ

Для определения аскорбиновой кислоты в молоке предварительно осаждают белки.

В колбочку наливают 50 мл молока и добавляют 4 мл насыщенного раствора щавелевой кислоты, взбалтывают, приливают 10 мл насыщенного раствора хлорида натрия, взбалтывают и оставляют при комнатной температуре на 5 мин. Затем содержимое колбочки фильтруют через бумажный складчатый фильтр, отмеривают пипеткой 20 мл фильтрата и титруют его индофеноловым реактивом до слабо-розового цвета, сохраняющегося 30 секунд. Берут еще 20 мл фильтрата и титрование повторяют. Для расчета берут средний результат.

Параллельно проводят контрольное определение, для чего в колбочке смешивают 50 мл воды, 4 мл насыщенного раствора щавелевой кислоты и 10 мл насыщенного раствора хлорида натрия. Далее поступают как в основном опыте.

,

где (a-b) – разность между объемами индофенолового реактива, пошедшего на титрование опытной и контрольной проб, мл;

64 – общий объем молока после добавления осадителей белка и жира;

М – масса аскорбиновой кислоты, соответствующая 1 мл индофенолового реактива (см. пункт 7.7.2.), мг;

u - объем фильтрата, взятого для титрования, мл;

u 1 - объем молока, взятого для анализа, мл.

РЕАКТИВЫ. Вода дистиллированная; молоко свежее; картофель (лимоны,морковь, яблоки, капуста, черемша и т.п.); раствор с массовой долей метафосфорной или соляной кислоты 2 %; насыщенный раствор щавелевой кислоты; насыщенный раствор хлорида натрия; свежеприготов­ленный стандартный раствор аскорбиновой кислоты (в мерную колбу вме­стимостью 100 мл вносят 100 мг аскорбиновой кислоты квалификации «медицинская» и, растворяя, объем доводят до метки раствором с массо­вой долей метафосфорной или соляной кислоты 2 %; индофеноловый реак­тив (в мерную колбу вместимостью 500 мл вносят 140-150 мг 2,6-дихлорфенолиндофенола натрия и 200-300 мл воды, энергично встряхивают до растворения краски, объем доводят до метки водой, перемешивают и фильтруют через бумажный фильтр в сухую склянку из темного стекла; раствор хранят в холодильнике не более трех суток).

Опыт 1. Количественное определение витамина С.

Принцип метода. Метод основан на способности витамина С восстанавливать 2,6-дихлорфенолиндофенол, который в кислой среде имеет красную окраску, а при восстановлении обесцвечивается; в щелочной среде окраска синяя. Для предохранения витамина С от разрушения исследуемый раствор титруют в кислой среде щелочным раствором 2,6-дихлорфенолиндофенолом до появления розового окрашивания.

Для расчета содержания аскорбиновой кислоты в таких продуктах, как капуста, картофель, хвоя, шиповник и др., используют формулу:

где Х – содержание аскорбиновой кислоты в миллиграм­мах на 100 г продукта; 0,088 – содержание аскорбиновой кислоты, мг; А – результат титрования 0,001 н раствором 2,6-дихлорфенолиндофенола, мл; Б – объем экстракта, взятый для титрования, мл; В – количество продукта, взятое для анализа, г; Г – общее количество экстракта, мл; 100 – пересчет на 100 г продукта.

Вывод: записать результаты опыта и расчётных данных.

Опыт 1.1. Определение содержания витамина С в капусте.

Порядок выполнения работы.

Отвешивают 1 г капусты, растирают в ступке с 2 мл 10% раствора хлористоводородной кислоты (HCl – Соляная кислота, хлористоводородная кислота, хлороводородная кислота), приливают 8 мл воды и фильтруют. Отмеривают для титрования 2 мл фильтрата, добавляют 10 капель 10% раствора хлористоводородной кислоты и титруют 2,6-дихлорфенолиндофенолом до розовой окраски, сохраняющейся в течение 30 с, на этом основан принцип метода реакции. Вычисляют содержание аскорбиновой кислоты в 100 г капусты по формуле, указанной выше. В 100 г капусты содержится аскорбиновой кислоты 25-60 мг, в 100 г шиповника 500-1500 мг, а в хвое 200-400 мг.

Опыт 1.2. Определение содержания витамина С в картофеле.

Порядок выполнения работы.

Отвешивают 5 г картофеля, растирают в ступке с 20 каплями 10 % раствора хлористоводородной кислоты (чтобы картофель не темнел). Постепенно приливают дистиллированную воду – 15 мл. Полученную массу сливают в стаканчик, ополаскивают ступку водой, сливают ее по стеклянной палочке в стаканчик и титруют 0,001 н. раствором 2,6-дихлорфенолиндофенола до розовой окраски, на этом основан принцип метода реакции. В 100 г картофеля содержится витамина С 1-5 мг.

Вывод: записать результаты опыта.

Опыт 1.3. Определение содержания витамина С в моче.

Определение содержания витамина С в моче дает представление о запасах этого витамина в организме, так как наблюдается соответствие между концентрацией витамина С в крови и количеством этого витамина, выделяемым с мочой. Однако при гиповитаминозе С содержание аскорбиновой кислоты в моче не всегда понижено. Часто оно бывает нормальным, несмотря на большой недостаток этого витамина в тканях и органах.

У здоровых людей введение per os 100 мг витамина С быстро приводит к повышению его концентрации в крови и моче. При гиповитаминозе С ткани, испытывающие недостаток в витамине, задерживают принятый витамин С и его концентрация в моче не повышается. Моча здорового человека содержит 20-30 мг витамина С или 113,55-170,33 мкмоль/сут. У детей уровень этого витамина понижается при цинге, а также острых и хронических инфекционных заболеваниях.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top