Медицинские технологии будущего каким он будет. Медицина будущего: что день грядущий нам готовит? Гель, имитирующий живые клетки

Медицинские технологии будущего каким он будет. Медицина будущего: что день грядущий нам готовит? Гель, имитирующий живые клетки

Словно паук из пластика и стали робот нависает над верхней частью туловища пациента: длинные иглы проникают сквозь кожу и через них вводятся камеры, зажимы и скальпели. С их помощью на экране монитора хирург может удалить простату, прооперировать сердечные клапаны или отсечь фаллопиеву трубу. Даже раны он может зашить с помощью специального джойстика и ножных педалей.

Интерфейс «человек-машина»

Сцена из рекламного ролика производителя медицинских роботов кажется захватывающей и устрашающей. Но к этому пора бы уже привыкнуть. Подобные устройства уже около 15 лет применяются в операционных - только в Германии, по данным производителя, их установлено более 60 штук. Поэтому больший интерес представляет другой участник процесса: врач-хирург. На видео ему достаётся лишь второстепенная роль. И даже если пока он управляет набором инструментов на мониторе с помощью специальных манипуляторов и ножных педалей, послание в целом ясно: и операционные залы не обходятся без автоматизации. Рано или поздно машина заменит человека, которой ей сейчас управляет.

Разумеется, уже довольно давно существуют прототипы, которые могут выполнять определенные хирургические действия без вмешательства человека. Они используют фотоснимки и рентгенограммы, ультразвук и множество других сенсорных данных, чтобы на основании трёхмерной функциональной модели пациента разрабатывать и реализовывать стратегии операций. Первые исследовательские группы уже работают над разработкой нанороботов, которые перемещаются по кровеносной системе, охотятся на раковые клетки или поддерживают иммунную систему.

В последние годы медицина показала поразительное количество подобных сенсационных достижений. Тем не менее, самые большие успехи ещё впереди. Ведь процессы, начавшиеся 200 лет назад как ответ на вызовы промышленной революции, достигли своего расцвета в информационном веке. После того, как медицина объявила человека «ремонтируемым устройством», благодаря новейшим технологиям человек становится информацией и тем самым - частью алгоритмической революции. Если техника и медицина станут единым целым, это может расширить границы человеческого существования. Медицина, если угодно, обещает нам светлое будущее.

Индивидуальные человеческие «запчасти»


Браслет Ava собирает данные о менструальном цикле женщины, чтобы на их основании определить дни, благоприятные для зачатия

Совместное развитие высоких технологий и медицины можно свести к пяти основным процессам: алгоритмическая диагностика и профилактика заболеваний, автоматизация медицинских услуг, миниатюризация и мобилизация лабораторий, индивидуализация медицины и массовое индивидуальное производство человеческих органов.

Объединяет все эти разработки то, что они становятся возможными благодаря достижениям в области алгоритмических данных и обработки сигналов, стабильному, быстрому и повсеместному подключению к Интернету, а также огромным успехам в сфере компьютеризированных медицинских исследований. Однако эти, не только медицинские вехи, не имели бы никакого значения без нового представления о человеке в цифровой форме, а именно - концепции организма как комплексной, принципиально поддающейся управлению системе.

Следствия этой новейшей разработки, как описывает медицинский футурист и писатель Берталан Меско, являются весьма практичными: инструменты диагностики становятся всё точнее и всё чаще пациенты применяют их вместо врачей. Лечение всё чаще может быть направлено на ситуации отдельных пациентов, иногда даже на уровне ДНК. В конце концов, всё больше крупных операций и большинство мелких «планируются» компьютерами и выполняются роботами.

Компоненты для них, а также персонализированные лекарства изготавливаются в лабораториях. В целом изменяются традиционные отношения между пациентом, врачом, лабораторией и машиной: медицина становится индивидуальной, более точной и более сложной. Этот принцип осуществляется вплоть до общественного уровня, где огромные массивы данных о состоянии здоровья большого числа индивидов объединяются в своего рода модель медицинского прогноза для всего населения.

Тренд № 1: алгоритмы лучше лечат

Искусственный интеллект распознаёт рак кожи
Система профилактики рака кожи с применением смартфона действует благодаря распознаванию изображений. Она обнаруживает хаотическое разрастание тканей на фото родимого пятна.

Человеческое тело слишком сложно, чтобы понимать его как целое. Гораздо легче определить неполадки в системе, например, с помощью алгоритмов для распознавания образов. Нарушение сердечного ритма, хаотический рост клеток кожи или изменение голоса могут свидетельствовать о возникшей проблеме. Путём обучения машины в медицине можно отличить норму от отклонения. Это обещает успех, прежде всего, в мобильной профилактике болезней благодаря самим пациентам.

Так, в настоящее время разрабатывается несколько приложений, которые с помощью алгоритмов распознавания изображений могут идентифицировать проблемные родимые пятна, и они уже выполняют это точнее, чем когда-либо мог делать человек. Для этого не требуется даже очень хорошая камера или дорогой смартфон.

Этот метод является универсальным, независимо от того, используются ли визуальные данные, тоны сердца, особенности речи или абстрактные наборы данных. Путём сбора данных алгоритм учится отличать желательные образцы от нежелательных и затем с поразительной точностью находит их в новых данных.

Благодаря тому, что этот подход настолько хорошо зарекомендовал себя, он в настоящее время также испытывается для раннего определения болезни Паркинсона и шизофрении на основании коротких записей речи. Тем не менее, он также может применяться для анализа существующих массивов данных с целью поиска ранее неизвестных закономерностей, независимо от того, идёт ли речь об нераспознанных симптомах, скрытых взаимодействиях или даже мошенничестве с рецептами.

Впрочем, у алгоритмов уже появляются противники: поскольку алгоритмы находят связи, не улавливаемые ни одним человеком, они становятся непонятными (см. блок Проблема «черного ящика»).

Тренд № 2: роботы-хирурги и наномедицина


Робот-«оригами», созданный в Массачусетском институте, разворачивается в желудке или кишечнике; управление и перемещение осуществляется с помощью внешнего магнитного поля

Компьютеры уже довольно давно оказывают помощь при планировании хирургических вмешательств, а запрограммированные роботы, такие, как хирургическая система da Vinci, ассистируют людям-хирургам, обеспечивая выверенное перемещение инструментов. Их потенциал увеличивается вместе с точностью конфигурации их моделей пациентов.

Благодаря новым методам распознавания изображений они теперь настолько точны и современны, что роботы могут проводить операции частично или полностью автоматически. Так, например, робот Smart Tissue Autonomous Robot (STAR) под наблюдением сшивает мягкие ткани с миллиметровой точностью. Свои выходные данные он получает от системы флуоресценции и передачи изображений в 3D, а также датчика давления.

В будущем медицинские наноботы будут выглядеть следующим образом: действующие подобно рою устройства размером с клетку, которые самостоятельно выполняют «профилактические работы» в организме, например, помогают при наращивании костей или отмечают клетки опухоли для иммунной системы. При этом наномедицина будет использовать механизмы тела: наноботы плывут в жидкостях организма к своей цели, как мини-«бродяги» прикрепляются к аутогенным клеткам или располагаются и формируют ткань вокруг органов, нуждающихся в помощи.

Тренд № 3: Из приёмной - в гостиную

Роботы-сиделки оказывают помощь при уходе за пожилыми и больными людьми; их человекоподобный внешний вид создаёт доверительную атмосферу

Основой для медицины будущего представляются новые объёмы данных, в которые также вносят свою долю и сами пациенты, благодаря новым инструментам диагностики и своей инициативе к самостоятельным измерениям. В этом случае смартфон может внезапно сообщить: лучше сходи к врачу, твоё сердце вытворяет странные вещи! Традиционные места медицинского приёма и в самом деле меняются: диагностика производится рядом с пациентом или незаметно по его профилю данных в вычислительном центре.

Кроме того, существует также целый комплекс биодатчиков и мини-лабораторий, которые могут выполнять сложные исследования без профессиональных знаний своих пользователей. Так, например, пациенты с маниакально-депрессивным психозом, к примеру, должны измерять содержание лития в крови с помощью хемосенсоров, а мужчины, желающие иметь детей, - качество спермы.

В виде проглоченной нанопроволоки подобные микро-лаборатории могли бы исследовать весь кишечник на биомаркеры раковых опухолей и, при их наличии, отправить уведомление на смартфон (и согласовать дату посещения проктолога). Благодаря объединению устройств в единую сеть медицинский персонал может управлять всё большим числом операций дистанционно, в том числе с помощью хирургических роботов. Подобные массивы данных смещают фокус с лечения на профилактику. Но они влекут за собой новые требования к защите данных и риски конфиденциальности.


Из 3D-принтера появляются на свет не только «запчасти» для людей, но и «обновления»: более прочные, более эластичные

Проблема «черного ящика»

На машинное обучение возлагаются большие медицинские надежды: с помощью этого метода в массивах данных с высокой степенью надёжности могут определяться известные образцы, например, нетипичное разрастание тканей, изменения речи или неблагоприятные особенности. Однако этот метод рискован! Распознавание образцов, в отличие от традиционных методов, едва ли является убедительным для людей.

Статистически верные, но совершенно бессмысленные взаимосвязи возникают вследствие искаженных данных подготовки алгоритма или большого разнообразия данных. Таким образом, дело доходит до фатальных ошибочных диагнозов, причины которых остаются необъяснимыми. Поэтому исследователи данных (например, Рич Каруана) предостерегают от слепой уверенности в алгоритмических «черных ящиках». Вместо этого необходимо выбирать традиционные методы, даже если они являются менее точными. И ещё: компании оберегают «чёрные ящики» от независимого контроля и тем самым монополизируют знания. Здоровье не должно становиться тайной.

Тренд № 4: биологические имплантаты из 3D-принтера

Пластиковые протезы из 3D-принтера - это только начало: не только печатные оригиналы становятся более сложными и бионическими (например, модель ноги козы, смоделированная командой исследователей). Материалы также становятся более интеллектуальными: новые протезы экономят энергию, передают сигналы обратной связи усилий в нервную систему и даже могут перемещаться с помощью мускульных импульсов.

3D-печать также увеличивает производство биоматериалов. Так, некоторые исследовательские группы представили методы изготовления полностью совместимой человеческой кожи: с помощью одного из них кожу «печатают» непосредственно на рану, которая ранее была измерена с помощью лазера. Другие послойно наносят в кюветы кожные структуры, которые в дальнейшем могут свободно использоваться. Преимущества аддитивной печати: с помощью подобных методов могут также создаваться сложные 3D-структуры из различных материалов, например, целые органы.

Тренд № 5: Индивидуальное лечение


По массе
Сети фастфуда используют высокие технологии для того, чтобы тайком сделать свою еду более полезной. Это могло бы помочь людям, мало заботящимся о здоровье, питаться лучше

Эти четыре разработки встречаются в супер-тенденции персонализированной медицины: вместо диагностики и терапии, направленных на помощь как можно большему числу людей, развиваются методы индивидуального лечения и производятся медикаменты для отдельных пациентов.

Например, при лечении рака лёгких это уже осуществляется с помощью т. н. «таблеточной терапии»: при этом с помощью генетического исследования определяется, существует ли определённая мутация клеток в опухоли, а затем на неё воздействуют специально подобранными медикаментами с меньшим числом побочных эффектов.

Персонализированная медицина пока находится в начале своего пути. Однако на горизонте уже ждёт генетика. В конечном итоге, благодаря новейшему методу редактирования генома CRISPR/Cas, который отличается низкими затратами и пригодностью для использования в массовом порядке, будет применяться индивидуальное вмешательство в генетический материал пациентов и возбудителей болезней.

Актуальная тема дискуссии: фармацевтическая промышленность находится в лихорадочном поиске новых биомаркеров, в том числе молекулярных следов данных или даже таких, из которых могут развиваться опасные болезни, протекающие без симптомов.

Будущее для всех

Соединённые
проводами
Космонавты на борту
МКС постоянно соби-
рают собственные
медицинские данные
и испытывают опера-
ции с использовани-
ем электронных ме-
тодов для оказания
первой помощи в
космосе

Современная медицина всегда была и историей технического успеха. В наши дни, когда всё больше стираются границы между биологией и технологиями, это могло бы означать новый порядок вещей для человека: считаются ли в этом случае болезнями пороки, ранее оцениваемые как природные? Если машины «заболевают», можете ли вы подхватить от них вирусы?

При этом не стоит забывать: величайшие открытия медицины никогда не привлекали всеобщее внимание. Искусство врачевания всегда расцветало именно в тот момент, когда могло принести наибольшую пользу человечеству, то есть тогда, когда оно становилось дешевле, проще, доступнее и универсальнее. И, возможно, это является одной из главных задач медицины будущего: обеспечить возможность исцеления всем, а не только избранным, с огромными затратами и невероятными методами.

Медицина будущего должна оцениваться по результату, а не по внешнему воздействию, поскольку её задачей является лечение болезней, а не празднование сногсшибательных успехов или упование технологическими новациями.

ФОТО: Universidad Carlos III de Madrid; Thomas Splettstoesser/wwwscistylecom/Wikipedia/CC BY-SA 4.0; dpa/Picture Alliance/AP Photos/Eric Risberg; Northwestern University; NASA; Fraunhofer IPA; Melanie Gonick/MIT

Происходит масса удивительных вещей, краткий обзор самых важных идей и разработок дал бы возможность заглянуть в завтрашний день.

Предлагаем вам топ-10 медицинских технологий будущего.

1. Дополненная реальность

Запатентованные Google цифровые контактные линзы способны измерять уровень глюкозы в крови через слезную жидкость. Пока эта технология готовит революцию в мониторинге и лечении сахарного диабета, инженеры Microsoft создали нечто удивительное - очки, меняющие восприятие мира.

Технология Hololens, которая испытывается разработчиками с 2016 года, может изменить медицинское образование и клиническую практику в целом.

Еще в 2013 Институт Фраунгофера в Германии начал экспериментировать с приложением дополнительной реальности для iPad при удалении раковых опухолей. Во время операции хирурги могут видеть сквозь тело пациента, с ювелирной точностью направляя инструмент к опухолям.

2. Искусственный интеллект в медицине

Мы входим в эпоху, когда компьютеры будут не только выполнять анализы, но и принимать клинические решения вместе с врачами (или вместо них). Искусственный интеллект на примере IBM Watson уже помогает избежать человеческой ошибки, запоминая и анализируя тысячи клинических исследований и протоколов.

Упомянутый суперкомпьютер может за 15 секунд прочитать и запомнить около 40 миллионов медицинских документов, выбрав наиболее подходящее решение для врача. Загрузите в него 40 лет клинической практики, и мы станем лишними…

Врач - живой человек, а человеческий фактор порой становится причиной фатальных ошибок. Так, в больницах Великобритании 1 из 10 пациентов стационара так или иначе испытывает на себе последствия человеческой ошибки. По мнению экспертов, искусственный интеллект позволит избежать большинства из них.

Проект Google Deepmind Health используется для майнинга медицинских данных. Совместно с британской больницей Moorfields Eye Hospital NHS эта система работает над автоматизацией и ускорением принятия клинических решений.

3. Киборги среди нас

Наши читатели наверняка слышали о людях, которые уже получили электронные компоненты вместо утраченных частей тела - будь то рука или даже язык.

На самом деле эпоха киборгов началась много десятилетий назад, когда люди перешагнули черту между живой и неживой природой. Первый имплантируемый водитель ритма в 1958, первое искусственное сердце в 1969 году…

Нынешняя эпоха кибернетического ажиотажа на Западе подхватила новое поколение хипстеров, готовых имплантировать железные части тела ради «крутого» вида.

Достижения медицины сегодня рассматриваются не только как возможность преодолеть болезнь и компенсировать физические дефекты, но и как удивительный способ расширить возможности человеческого тела. Глаз орла, слух летучей мыши, скорость гепарда и хватка терминатора - это больше не кажется бредом.

4. Медицинская 3D-печать

Сейчас можно свободно печатать оружие и запчасти к военной технике, а биотехнологическая промышленность активно трудится над 3D-печатью живых клеток и каркасов тканей.

Стоит ли нам удивляться отпечатанным лекарствам?

Это перекроит весь фармацевтический мир.

Технология персональной 3D-печати лекарств, с одной стороны, затруднит контроль качества. Но, с другой стороны, она сделает миллиарды людей независимыми от мутного бизнеса Big Pharma.

Не исключено, что через 20 лет вы сможете отпечатать таблетки цитрамона на собственной кухне. Это будет так же просто, как чашка утреннего кофе. Перспективы трансплантологии и эндопротезирования суставов выглядят просто потрясающе. Врачи смогут создавать бионические уши и компоненты тазобедренных суставов «у койки больного», по снимкам и персональным замерам.

Уже сегодня благодаря проекту e-NABLING the Future неравнодушные врачи и добровольцы распространяют медицинскую 3D-печать, публикуют видеоуроки и разрабатывают новую техническую документацию по протезированию.

Благодаря им дети и взрослые из Чили, Ганы, Индонезии получили новые искусственные руки, недоступные с «шаблонными» технологиями.

5. Геномика

Знаменитый проект «Геном человека», направленный на полное картирование и расшифровку человеческих генов, открыл эпоху персонализированной медицины - каждому человеку полагается свое лекарство и своя доза.

По данным Коалиции персонализированной медицины, в 2017 году существуют сотни доказательных приложений для клинических решений на основе геномики. С ними врачи могут подбирать оптимальное лечение, основываясь на результатах генетических анализов конкретного пациента.

Благодаря методу быстрого генетического секвенирования Стивен Кингсмор и его команда в 2013 спасли смертельно больного ребенка, и это было лишь начало.

Геномика - удивительный медицинский инструмент профилактики и лечения болезней, если он используется мудро и ответственно.

6. Оптогенетика

Это технология, основанная на применении света для контроля живых клеток.

Суть ее заключается в том, что ученые модифицируют генетический материал клеток, обучая его реагировать на свет определенного спектра. Затем работой органов можно управлять при помощи «выключателя» - обычной лампочки. Издание Science ранее сообщало, что специалисты в сфере оптогенетики научились индуцировать ложные воспоминания у мышей, воздействуя светом на мозг.

Идеальный инструмент пропаганды сразу после вечерних новостей!

Кроме шуток, оптогенетика может предложить фантастические опции лечения хронических заболеваний. Как насчет замены таблеток на «волшебную кнопку»?

7. Роботы-помощники

С быстрым развитием технологий роботы постепенно переходят с экранов фантастических фильмов в мир здравоохранения. Рост числа пожилых людей делает фактически неизбежным появление роботов-помощников, медсестер и сиделок.

Робот TUG - это надежная «лошадка», способная носить множество медицинских грузов суммарным весом до 1000 фунтов (453 кг). Этот маленький помощник бороздит коридоры клиник, помогая доставлять инструменты, лекарства и даже чувствительные лабораторные образцы.

Его японский коллега Robear выполнен в виде гигантского медведя с мультяшной головой. Японец может поднимать и укладывать пациентов в постель, помогать встать с кресла-коляски и переворачивать лежачих больных для профилактики пролежней.

На следующем этапе развития роботы будут выполнять простые медицинские манипуляции и брать биоматериал для лабораторных анализов.

8. Многофункциональная радиология

Радиология - одна из самых быстрорастущих областей медицины. Здесь мы рассчитываем увидеть величайшие достижения.

Уже наметился переход от допотопных рентгеновских аппаратов к многофункциональным цифровым машинам, которые одновременно видят сотни медицинских проблем и биомаркеров. Вообразите сканер, способный за секунду подсчитать количество раковых клеток внутри вашего тела!

9. Испытания препаратов без живых существ

Доклинические и клинические испытания новых препаратов требуют обязательного участия живых существ – животных или человека соответственно. Переход от этически сомнительных, долгих и дорогостоящих испытаний к автоматизированным тестам in silico – это революция в фармакологии и медицине.

Современные микрочипы с клеточными культурами позволяют имитировать настоящие органы и целые физиологические системы, давая явные преимущества перед многолетними испытаниями на добровольцах.

Технология Organs-on-Chips основана на использовании стволовых клеток для имитации живого организма с помощью вычислительных устройств.

Многие эксперты считают, что данная технология сможет полностью заменить доклинические испытания на животных и улучшить лечение рака.

10. Носимая электроника

Современный человек носит Xiaomi mi Band, но будущее - за более удобными и пригодными для повседневной носки датчиками. Биометрические татуировки вроде eSkin VivaLNK могут незаметно скрываться под одеждой и передавать вашу медицинскую информацию врачу 24/7.

: магистр фармации и профессиональный медицинский переводчик


Медицина не стоит на месте. Новые открытия и технологии позволяют излечивать те болезни, которые совсем недавно считались неизлечимыми. Совершенно на новый уровень выходит также диагностика заболеваний. И сегодня мы расскажем про 5 самых необычных медицинских технологий современности, которые уже в самом скором будущем могут стать обычным делом.


Само словосочетание «британские ученые» давно стало носить юмористическую окраску. Ведь они часто исследует совершенно абсурдные и непонятные вещи, вызывающие у общественности удивление. Но, бывает, что ученые из Великобритании занимаются, действительно, важными вещами. К примеру, недавно медики из этой страны представили революционную медицинскую технологию.

Она позволяет определить генетические заболевания в автоматическом режиме по фотографии. Компьютер, основываясь на снимках человеческого лица, может указать, какие проблемы могут появиться у человека в будущем.



Ведь исследования показали, что примерно тридцать процентов изменений, происходящих с лицом человека, обусловлены его хроническими и генетическими болезнями. А медики из Оксфорда создали программное обеспечение, позволяющее обнаруживать потенциальные проблемы пациентов на основе мельчайших деталей их физиогномики.
Медики давно искали способ оперативно бороться с приступами удушья у пациентов. Ведь долгое время самым эффективным вариантом в таких случаях была трахеотомия – рассечение хирургическим путем трахеи, чтобы вставить туда трубку. Но ученые из Бостонской детской клиники (Boston Children"s Hospital) придумали новый .



Они разработали инъекции, обогащающие человеческую кровь кислородом на время до тридцати минут. Это нужно, в первую очередь, для медицинских потребностей, проведения операций и спасения людей в экстремальных условиях. Но использовать технологию можно также в спорте и развлечениях.



Во время укола в тело попадают жировые частицы, содержащие в себе молекулы кислорода. Последние высвобождаются при контакте жира с эритроцитами и насыщают кровь необходимым человеку ресурсом.
Медикам из разных стран помогают находить рак у пациентов специально обученные собаки. Оказывается, эти животные способны обнаруживать раковые клетки в организме человека и даже отличать один вид заболевания от другого.

Самым известным подобным псом является , который «работает» в одной из онкологических клиник Южной Кореи. Его владельцы даже решили клонировать своего питомца, чтобы затем продавать пса с уникальными данными в другие больницы по всему миру.



А в Израиле решили пойти другим путем. Они создали технологию «искусственный нос», позволяющую определять раковые клетки при помощи электроники. Пациенту достаточно выдохнуть в специальную трубку, и компьютер диагностирует у него один из нескольких видов рака, если, конечно, это опасное заболевание у человека имеется. Более того, этот технологический нос во много раз более точный, чем нос лабрадора Мэрина.



Цветочная пыльца – это удивительное вещество, которое, попадая в дыхательные пути человека, может затем быстро распространиться в разные части тела, в том числе, в пищеварительную систему и на слизистые оболочки. Этот ее эффект и решили использовать в медицинских целях ученые из Университета Техаса.

Группа американских исследователей создала технологию, позволяющую проводить вакцинацию человека без использования игл и уколов. Она научилась покрывать вакциной цветочную пыльцу, которая затем проникает в человеческий организм и несет полезный препарат в самые сокровенные его уголки, где он затем легко впитывается.



Интересно, что самой сложной частью этого научного проекта была попытка научиться избавлять цветочную пыльцу от всех аллергенов. С этого, собственно, и начались исследования. А, научившись деаллергизации пыльцы, ученые смогли легко нанести на очищенный материал и медицинские препараты.



Долгие десятилетия самым действенным способом борьбы с депрессией были специализированные лекарства. Они вызывали побочные эффекты и зависимость, что негативно влияло не только на эмоциональное, но и физическое здоровье человека. Но недавно был разработан кардинально противоположный способ борьбы с этим заболеванием, основанный не на химии, а на электромагнитном излучении.



Шлем со сложным названием NeuroStar Transcranial Magnetic Stimulation Therapy System воздействует на определенные зоны коры головного мозга человека при помощи электромагнитных импульсов, заставляя возбуждаться нейтроны, ответственные за получение удовольствия.



Клинические опыты показали, что 30-40 минут, проведенные ежедневно в шлеме NeuroStar Transcranial Magnetic Stimulation Therapy System, позволяют больным депрессией людям чувствовать себя намного лучше, а тридцати процентам подобное лечение со временем приносит полное выздоровление.

Здоровье

Нет сомнений в том, что наше общество в настоящее время развивается гораздо быстрее , чем в прошлом. Это относится также к медицинским технологиям, которые сегодня достигли невероятно высокого уровня, но что же нас ждет впереди ?

Многие технологии уже успешно применяются, но некоторые из них еще ждут своего часа, несмотря на то, что уже есть доказательства их эффективности . В будущем мы сможем заживлять раны за считанные минуты, выращивать полноценные органы, кости и клетки, создавать оборудование, работающее на энергии человека, восстанавливать поврежденный мозг и многое другое.

Здесь собраны самые любопытные технологии, которые уже изобретены, но пока широко не используются.

1) Остановить кровотечение поможет гель

Обычно какие-то открытия в области медицины случаются в ходе долгих лет сложных дорогостоящих исследований . Однако порой ученые имеют дело со случайными открытиями, или группа молодых перспективных исследователей вдруг наталкивается на нечто интересное.


Например, благодаря молодым исследователям Джо Ландолина и Исааку Миллеру на свет появился Veti-Gel – кремообразное вещество, которое моментально запечатывает рану и стимулирует процесс заживления .

Этот гель, останавливающий кровотечение, создает синтетическую структуру, которая имитирует внеклеточный матрикс – ткань межклеточного пространства, которая скрепляет клетки. Предлагаем посмотреть видео , которое демонстрирует гель в действии.

Так мы будем останавливать кровь: технология будущего (видео):

В этом примере видно, как из разрезанного куска свиного мяса сочится кровь и как она моментально останавливается при использовании геля.

В других тестах Ландорино использовал гель для того, чтобы остановить кровотечение сонной артерии у крысы. Если этот продукт станет широко применяться в медицине, он позволит спасти миллионы жизней , особенно в зонах боевых действий.

2) Магнитная левитация помогает выращивать органы

Выращивание искусственной легочной ткани с помощью магнитной левитации – звучит, как фраза из фантастической книги, однако теперь это реальность. В 2010 году Глауко Соуза и его команда стали искать способ создания реалистичной человеческой ткани с помощью наномагнитов , которые позволяют ткани, выращенной в лаборатории, подниматься над питательным раствором.


В результате была получена самая реалистичная ткань органа из всех искусственных тканей. Обычно ткани, созданные в лаборатории, растут в чашках Петри, а если ткань приполнять, она начинает расти в трехмерной форме , что позволяет строить более сложные слои клеток.


Рост клеток "в 3D формате" является самой лучшей симуляцией роста в естественных условиях в теле человека. Это огромный шаг вперед в создании искусственных органов, которые затем можно имплантировать в тело пациента.

3) Искусственные клетки, имитирующие натуральные

Медицинские технологии сегодня идут в направлении поиска возможностей выращивать человеческие ткани за пределами организма, другими словами, ученые стремятся найти способ создавать реалистичные "запчасти", чтобы помочь всем нуждающимся.

Сеть волокон синтетического геля


Если какой-то орган отказывается работать, мы заменяем его на новый, таким образом, обновляя всю систему. Сегодня эта идея обращается к клеточному уровню: ученые разработали крем, который имитирует действие некоторых клеток .

Этот материал создается сгустками шириной всего 7,5 миллиардных частей метра. Клетки имеют свой собственный тип скелета , известный под названием цитоскелет , который образован из белков.

Цитоскелет клеток


Синтетический крем заменит этот цитоскелет в клетке, а если крем применить на рану, он способен заменить все клетки, которые были потеряны при травме . Жидкости будут проходить сквозь клетки, что позволит ране заживать, а искусственный скелет будет защищать от проникновения в организм бактерий.

4) Клетки мозга из мочи – новая технология в медицине

Как это ни странно, но ученые нашли способ получения человеческих клеток мозга из мочи . В Институте биомедицины и здоровья в городе Гуанчжоу , Китай, группа биологов использовала ненужные клетки мочи для создания из них с помощью лейковирусов клеток-предшественников , которые наш организм использует в качестве строительных блоков для клеток мозга.


Самым ценным в этом методе является то, что новые созданные нейроны не способны вызывать появление опухолей , по крайней мере, как показали эксперименты с мышами.

В прошлом для этой цели использовались стволовые клетки эмбрионов , однако одним из побочных эффектов таких клеток было то, что в них с большой вероятностью появлялись опухоли после трансплантации. Через несколько недель клетки, полученные из мочи, уже начинали формироваться в нейроны совершенно без каких-то нежелательных мутаций.


Очевидное преимущество такого метода в том, что сырье для новых клеток является очень доступным . Также ученые имеют возможность создавать клетки для пациента из его же собственной мочи, что повышает шансы того, что клетки приживутся.

5) Медицинская одежда будущего – электрическое нижнее белье

Невероятно, но факт: электрическое нижнее белье поможет спасти сотни жизней . Когда пациент лежит в больнице дни, недели, месяцы без возможности вставать с постели, у него могут появиться пролежни - открытые раны, которые образуются из-за отсутствия циркуляции и сжимания тканей.


Оказывается, пролежни могут приводить к летальному исходу. Примерно 60 тысяч людей умирает из-за пролежней и сопутствующих инфекций ежегодно только в США.

Канадский исследователь Шон Дукелов разработал электрическое нижнее белье, которое получило название Smart-E-Pants . С помощью такой одежды тело пациента получает маленький электрический разряд каждые 10 минут.


Эффект от таких ударов током такой же, как если бы пациент двигался естественным образом. Ток активирует мышцы, повышает циркуляцию крови в этой области, эффективно предотвращает появление пролежней , позволяя спасти пациенту жизнь.

6) Эффективная вакцина из цветочной пыльцы

Цветочная пыльца – один из самых распространенных аллергенов в мире, что связано со строением пыльцы. Внешняя оболочка пыльцы невероятно прочная, что позволяет ей оставаться целой , даже проходя через пищеварительную систему человека.


Именно таким свойством должна обладать любая вакцина: многие вакцины теряют эффективность, так как они не могут выдержать кислоты желудка , если применять их орально. Вакцины разрушаются и становятся бесполезными.


Исследователи из Технического Университета Техаса ищут способы использования пыльцы для создания вакцин, спасающих жизни, для солдат, направленных за рубеж. Главный исследователь Харвиндер Гилл имеет цель проникнуть в пыльцевое зерно и удалить аллергены, а вместо них поместить в пустую оболочку вакцину . Ученые уверены, что эта возможность изменит способы использования вакцин и медикаментов.

7) Искусственные кости с помощью 3D принтера

Все мы прекрасно помним, что если сломать руку или ногу, мы должны в течение долгих недель носить гипс , чтобы кости срослись. Похоже, что подобные технологии уже в прошлом. С помощью 3D принтера ученые из Вашингтонского Университета разработали гибридный материал, который имеет те же свойства (прочность и гибкость) , что и настоящие кости.

Такая "модель" помещается на место травмы, а настоящая кость начинает обрастать вокруг нее. После того, как процесс завершен, модель размельчается.


3D принтер, который используется – ProMetal , он доступен практически любому. Проблемой является сам материал для костной структуры . Ученые используют формулу, которая включает цинк, силикон и фосфат кальция . Процесс удачно был тестирован на кроликах. Когда костный материал комбинировали со стволовыми клетками , естественный рост кости был намного быстрее, чем обычно.


Вероятно, в будущем с помощью 3D принтеров можно будет выращивать не только кости, но и другие органы. Единственное, что нужно изобрести подходящие материалы .

8) Восстановление поврежденного мозга

Мозг – очень нежный орган и даже небольшая травма может вызвать серьезные длительные последствия , если повреждены определенные важные области. Для людей, переживших подобные травмы, длительная реабилитация – единственная надежда вернутся к полноценной жизни. В качестве альтернативы изобретено специальное устройство , которое стимулирует язык.


Ваш язык связан с нервной системой с помощью тысяч пучков нервов , некоторые из которых ведут прямо в мозг. Основываясь на этом факте, был изобретен переносной стимулятор нервов под названием PoNS , который стимулирует особые нервные области на языке, чтобы заставить мозг восстанавливать клетки, которые были повреждены.


Удивительно, но это работает. Пациенты, которые получали такое лечение, испытывали улучшение уже через неделю . Помимо тупых травм, PoNS может также использоваться для восстановления мозга от чего угодно, включая алкоголизм, болезнь Паркинсона, инсульт и рассеянный склероз .

9) Человек, как генератор энергии: кардиостимуляторы будущего

Кардиостимуляторы сегодня используются примерно 700 тысячами людей для регулирования сердечного ритма. Но через какое-то время, обычно около 7 лет, его заряд истощается и он разряжается, требуя сложнейшей дорогой операции по замене .


Ученые из Университета Мичигана , похоже, решили проблему, разработав способ использовать энергию, которую дает движение сердца. Эту энергию можно использовать для питания кардиостимулятора.

После весьма успешных испытаний кардиостимулятор нового поколения готов к реальному использованию на живом человеческом сердце. Это устройство создано из материалов, которые создают электричество, меняя форму.


Если попытка окажется удачной, эту технологию можно будет применять не только для кардиостимуляторов. Можно будет создавать оборудование и устройства, работающие на человеческой энергии . Например, уже изобретен прибор, который вырабатывает электричество, используя вибрации внутреннего уха, и применяется для питания небольшого радиоприемника.

Что нас ждет впереди? Какие цели ставят перед собой ученые и медики, и станем ли мы свидетелями настоящей революции в медицине?

Эра нулевых годов ознаменовалась большим рывком в информационных технологиях. Человечество шагнуло далеко вперед в вопросах, касающихся информатизации и роботизации практически всех сфер человеческой жизнедеятельности. В частности большие перемены ожидаются в медицине, а некоторые фундаментальные новшества уже внедрены и успешно себя зарекомендовали. Например, за последние годы все активнее стали внедряться лазерные технологии и телемедицина, когда врач может консультировать своих пациентов, находясь за несколько тысяч километров от них. Все это доступно уже сегодня, но каков прогноз на «завтра»?

Наноботы вместо хирургов

В последнее время о нанотехнологиях не говорит только ленивый. В мире науки и медицины нанотехнологии, это, пожалуй, самая популярная тема. И эта популярность не случайна. Ведь наночастицы обладают настолько фантастическими свойствами, что весь научный мир ждет не дождется, когда наноструктуры основательно внедрятся в нашу жизнь. В частности, в будущем предрекают появление миниатюрных роботов (наноботы), которые будут осуществлять «ремонт» всего организма. Схема будет выглядеть примерно так: больной выпивает некую смесь с наноботами, и те всасываются в кровеносное русло. Либо нанороботы будут вводиться внутривенно. Путешествуя по мельчайшим кровеносным сосудам, наноботы будут устранять все неполадки. Планируется даже вмешательство в ДНК. С помощью этих наночастиц можно будет исправлять последовательности, и предотвращать мутации, которые приводят к болезням.

Выращивание органов

Население нашей матушки-планеты уже перевалило за 7 миллиардов. С ростом числа населения растет и количество заболеваний. Если учесть еще и экологические факторы, то уровень заболеваемости населения растет и в процентном отношении. Часто при терминальных стадиях болезни, когда орган спасти уже не удается, то врачи прибегают к трансплантации. Однако доноров на всех не хватает, и к тому же процесс трансплантации «живого» органа – это процесс весьма трудоемкий и дорогостоящий. Здесь ставка делается на стволовые клетки. Сегодня в лабораториях успешно выращиваются отдельные ткани, и по мнение авторитетных ученых недалек тот час, когда человеку можно будет за умеренную цену заменить больной орган на вновь выращенный из его же отобранных клеток.

Человек-киборг

Если медицине и не удастся пока качественно выращивать органы, то есть и второй вариант – киборгизация человека . К примеру, остановившееся сердце человека можно будет заменить на более стойкий к износу аналог. Стоит отметить, что в 2011 году одному из американских пациентов полностью удалили сердце и поставили вместо него два ротора, качающих кровь.

Относительно давно уже на сердце ставят искусственные стимуляторы, и основной проблемой таких устройств было то, что их нужно было менять через каждые несколько лет. Сегодня же израильскими учеными разработаны стимуляторы (и не только стимуляторы, но и другие искусственные приспособления), которые питаются биотоками человеческого тела, возникающими от мышечного сокращения.

Диагностика будущего

Особое место в медицине занимает диагностика, а точнее – ранняя диагностика. На сегодняшний день неизлечимые формы множества заболеваний, в частности онкологических, развиваются из-за позднего обращения пациента к врачу, либо из-за несовершенства современной диагностической аппаратуры.

Мир могут лишить будущих гениев

Как пишет The Guardian со ссылкой на новую книгу британского автора Грэма Фармелло, стали известны новые подробности жизни великого британского физика Поля Дирака. Подозревают, что он был болен аутизмом. Многие медики, в частности в

Планируется создание специальных миниатюрных датчиков, которые будут вшиваться в одежду человека, либо вживляться под кожу. Такие биосенсорные механизмы будут постоянно отражать уровень сахара в крови, давление, частоту сердечных сокращений, биохимию крови, уровень гормонов и много других параметров, по которым врач может заподозрить начало того или иного нарушения. Данные будут передаваться в медицинское учреждение, и если вашему лечащему врачу не понравятся ваши анализы, то он вас вызовет на прием. Таким образом, отпадет необходимость в обязательных медицинских плановых осмотрах. За человеческим телом будут постоянно следить специальные устройства, не давая возможности заболеванию усугубиться.

Сложности

В идеале, медицина ставит перед собой очень амбициозную задачу: победить все болезни. Однако, пока ее достижения в этом весьма скромны, и говорить о каких-либо датах в будущем пока еще рано. Трудность состоит в том, что учеными пока еще не открыта «суть» живого. Изначально ученым предстоит создать теоретическую биологию, для того чтобы можно было предугадать «поведение» жизни, а также точно рассчитать все ее параметры. К примеру, благодаря теоретической физике даже школьник может рассчитать места, куда приземлиться стальной шарик определенной массы, брошенный с определенной силой. К сожалению, как поведет себя живой организм при одних и тех же внешних условиях, неизвестно никому. Можно лишь приблизительно догадываться, но такой подход не приемлем в лечении пациентов.

Михаил Хецуриани




Самое обсуждаемое
К чему увидеть кошку во сне? К чему увидеть кошку во сне?
Яркая и мечтательная женщина-Овен: как завоевать ее? Яркая и мечтательная женщина-Овен: как завоевать ее?
Печень индейки рецепт приготовления в сметане Печень индейки рецепт приготовления в сметане


top