Морфофункциональная характеристика х и у хромосом. Морфологическое строение и химический состав хромосом

Морфофункциональная характеристика х и у хромосом. Морфологическое строение и химический состав хромосом

днк-двуцепочная правозакрученная спираль, состоит из нуклеотидов. Нуклеотиды в свою очередь состоят из азотистого основания - углевода-ост. фосфор. к-ты.

Азотистые основания:

1)Пуриновые

Аденин(А)

Гуанин(Г)

2)пиримидиновые

Цитозин(Ц)

Урацил(У)

Азотистое основания способны создавать пары по принципу комплементарности

Нуклеотиды объед-ся в цепь простыми ковалентными фосфорно диэфирными связами.

Строение ДНК.

Между нитями ДНК-водородные связи, кот.возникают между азотистыми основаниями по принципу комплементарности.

Роль в кл-ке ДНК.

1.хранит,передача наслед.информ.

Хромосомы.

Хим.состав и строение хромосом.

В основном состоят из ДНК и белков. Кот.образуют нуклеопротеиновый комплекс-хроматин, получивший савое название за способность окрашиваться осноными красителями.

Кол-во ДНК в ядрах клеток организма данного вида постояннаи прямопорцианальная их их плоидности. В диплоидных соматических организма ее в двое бльше, чем в гаметах.

Форам хромосом.

Различают неск. Форм хромосом: равноплечие(с центромерой по середине), не равноплечие(с центромерой сдвинутой к одному из концов), палочковидные(с центромерой практически расположенной на конце хромосомы) и точковые-очень небольшие, форму которых трудно определить.

Способы бесполого и полового размножения

Бесполое размножение – начало новому организму дает 1 родительская особь, потомки – точные генетические копии материн. организма (в основе деления клеток - митоз). Бесп.размн. способствует генетической стабильности вида.

Виды у многоклеточных:

Полиэмбриония – вид бесп.размнож. при котором зигота делится на несколько бластомеров, каждый из которых развивается в полноценный самостоятельный организм(Ex: однояйцовые близнецы).

Вегетативное размн - размножение частями тела.

а) у растений способы разнообразны – побегами, корнями, листьями и тд.

б) у животных

Фрагментация – распад тела на фрагменты, каждый из которых восстанавливает себя до полноценного организма (белый планарий)

Разделение на 2 части (дождевой червь)

Почкование (гидры)

Спорообразование (папоротники, хвощи, плауны, высшие споровые растения)

У одноклеточных:

Деление на 2 : поперек(митоз, инфузории), продольное(эвглена зеленая), без ориентации(амеба)

Шизогония – множественное деление ядра с последующей группировкой вокруг каждого ядра цитоплазмы и распадом клетки на множество мелких клеток(малярийный плазмодий)



Спорогония (малярийный плазмодий – многократ. деление клетки с последующим распадом на множество клеток, однако I деление - мейоз)

Спорообразование (хламидомонада)

Половое размножение – начало новому организму дают 2 родит. особи, потомки – генетически отличны от родителей за счет кроссинговера и независ. расхождения гомологичных хромосом, а так же явления случайного оплодотворения(в основе деления - мейоз). Увеличивается генетическое разнообразие потомства→выживаемость в изменяющихся условиях.

У одноклеточных:

Агаметогония (без образования гамет) Ex: конъюгация

Гаметогония (с образованием гамет):

а) изогамия (муж и жен гаметы подвижны, внешне не различимы)

б) гетерогамия (обе гаметы подвижны, но жен. значительно крупнее)

Оогамия (жен. крупная и неподвижная, муж. мелкая и подвижная) Ex: вольвокс

У многоклеточных:

С оплодотворением

Без оплодотворения (партеногенез)

Гиногенез (начало новому организму дает неоплодотворенная яйцеклетка). При развитии неопл. яйцекл. пчел развиваются трутни.

Андрогенез (ядро яйцекл-ки погибает, в нее проникает сперматозоид (1-гаплоид., 2-диплоид.) яйцекл. несет генетич. материал отца)

Различают облигатный (постоянный)и факультативный (временный) партеногенез.

Мейоз

Это непрямое деление клетки, при котором из материнской образуется 4 гаплоидные дочерние клетки, отличающиеся по генетич. материалу от метерин.

I деление – редукционное : вдвое уменьшается число хромосом 2n4c→1n2c. Вкл. 4 фазы:

Профаза I . Вкл. 5 стадий:

1) лептотена – ДНК спирализуется, стан-ся видны хромосомы в виде тонких нитей, ядер.оболочка распадается на фрагменты, ядрышко исчезает

2) зиготена – спирализация продолжается, хромосомы более видны, происх. конъюгация (процесс сближения гомологич. хр-м→образуются биваленты(тетрады))

3) пахитена – заканчивается образование бивалентов, происх. обмен гомологич. уч-ми хр-м – кроссинговер.



4) диплотена – хр-мы в бивалентах немного расходятся, оставаясь скрепленными в местах кроссинговера, становятся видны хиазмы

5) диакинез – хр-мы в бивалентах обособляются др. от др., центриоли расх-ся к разным полюсам, образуются нити веретена деления.

Метафаза I . Биваленты выстраиваются в обл. экватора, к центромерам прикрепляются нити веретена деления

Анафаза I . Разделение центромеры не происходит. К полюсам расх-ся целые гомологичные хр-мы, каждая из которых состоит из 2х хроматид (1 хр-ма идет к одному полюсу, др. – к другому) Существует закон независимого расхождения гомол. хр-м : в каждой паре хр-мы расходятся независимо др. от др.

Телофаза I . У полюсов ДНК в хромосомах деспирализуется, хромосомы не видны, вокруг них образуется ядерная оболочка, формируется ядрышко, затем происходит цитокинез – разделение цитоплазмы и образуются 2 клетки(но в кажд. клетке по 1n2c)

II деление – эквационное : кол-во хромосом = кол-ву ДНК 1n2c→1n1c

Профаза II, Метафаза II, Анафаза II, Телофаза II – как в митозе.

Значение мейоза:

1) лежит в основе полового размножения, обеспечивает гаплоидность гамет

2)способствует увеличения генетического разнообразия потомства→выживаемость в изменяющихся усл. среды.

Интерфазная хромосома - это раскрученная двойная нить ДНК, в таком состоянии с нее считывается информация, необходимая для жизнедеятельности клетки. То есть функция интерфазной ХР - передача информации с генома, последовательности нуклеотидов в молекуле ДНК, для синтеза необходимых белков, ферментов и т. д.
Когда приходит время деления клетки необходимо сохранить всю имеющуюся информацию и передать ее в дочерние клетки. В состоянии "раздрая" ХР этого сделать не может. Поэтому хромосоме приходится структурироваться - скручивать нить своей ДНК в компактную структуру. ДНК к этому времени уже удвоена и каждая нить скручивается в свою хроматиду. 2 хроматиды образуют хромосому. В профазе под микроскопом в ядре клетки становятся заметны маленькие рыхлые комочки - это будущие ХР. Они постепенно укрупняются и формируют видимые хромосомы, которые к середине метафазы выстраиваются по экватору клетки. В норме в телофазе равное количество хромосом начинает двигаться к полюсам клетки. (я не повторяю 1-го ответа, там все правильно. Суммируйте информацию) .
Однако случается иногда, что хроматиды цепляются друг за друга, переплетаются, кусочки отрываются - а результате две дочерние клетки получают немного неравную информацию. Такая штука называется патологический митоз. После него дочерние клетки будуи работать неправильно. При сильном повреждении хромосом клетка погибнет, при более слабом не сможет разделиться еще раз или даст череду неправильных делений. Такие вещи приводят к возникновению заболеваний, от нарушений биохимической реакции в отдельной клетке, до заболевания раком какого-то органа. Клетки делятся во всех органах, но с разной интенсивностью, поэтому у разных органов - разная вероятность заболеть раком. К счастью такие патологические митозы бывают не слишком часто и природа придумала механизмы избавления от получившихся неправильных клеток. Только когда среда обитания организма очень плохая (повышен радиоактивный фон, сильные загрязнения воды, воздуха вредными хим. веществами, бесконтрольное применение лекарственных препаратов и т. п.) -природный защитный механизм не справляется. В таком случае вероятность появления заболеваний увеличивается. Нужно стараться свести вредные факторы воздействия на организм к минимуму и принимать биопротекторы в виде живой пищи, свежего воздуха, витаминов и веществ необходимых в данной местности, это может быть иод, селен, магний или что-то еще. Не игнорируйте заботу о своем здоровье.

Хроматин (греч. χρώματα - цвета, краски) - это вещество хромосом - комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот и входит в состав нуклеоида у прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК

Различают два вида хроматина:
1) эухроматин, локализующийся ближе к центру ядра, более светлый, более деспирилизованный, менее компакт-ный, более активен в функциональном отношении. Предполагается, что в нем сосредоточена та ДНК, которая в интерфазе генетически активна. Эухроматин соответствует сегментам хромосом, которые деспирализованы и от-крыты для транскрипции. Эти сегменты не окрашиваются и не видны в световой микроскоп.
2) гетерохроматин - плотно спирализованная часть хроматина. Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом (что делает их недоступными для транскрипции) . Он интенсивно окра-шивается основными красителями, и в световом микроскопе имеет вид тёмных пятен, гранул. Гетерохроматин располагается ближе к оболочке ядра, более компактен, чем эухроматин и содержит “молчащие” гены, т. е. гены, которые в настоящий момент неактивны. Различают конститутивный и факультативный гетерохроматин. Консти-тутивный гетерохроматин никогда не переходит в эухроматин и является гетерохроматином во всех типах клеток. Факультативный гетерохроматин может превращаться в эухоматин в некоторых клетках или на разных стадиях онтогенеза организма. Примером скопления факультативного гетерохроматина является тельце Барра – инактиви-рованная Х-хромосома у самок млекопитающих, которая в интерфазе плотно скручена и неактивна. В большинст-ве клеток оно лежит у кариолеммы.

Половой хроматин - особые хроматиновые тельца клеточных ядер особей женского пола у человека и других млекопитающих. Располагаются у ядерной оболочки, на препаратах имеют обычно треугольную или овальную форму; размер 0,7-1,2 мк (рис. 1). Половой хроматин образован одной из Х-хромосом женского кариотипа и может быть выявлен в любой ткани человека (в клетках слизистых оболочек, кожи, крови, биопсированной ткани), Наиболее простым исследованием полового хроматина является исследование его в клетках эпителия слизистой оболочки полости рта. Взятый шпателем соскоб со слизистой оболочки щеки помещают на предметное стекло, окрашивают ацетоорсеином и анализируют под микроскопом 100 светлоокрашенных клеточных ядер, подсчитывая, сколько из них содержат половой хроматин. В норме он встречается в среднем в 30-40% ядер у женщин и не обнаруживается у мужчин

15.Особенности строения метафазных хромосом. Типы хромосом. Хромосомный набор. Правила хромосом.

Метафазная хромосома состоит из двух соединенных центромерой сестринских хроматид, каждая из которых содержит одну молекулу ДНП, уложенную в виде суперспирали. При спирализа-ции участки эу- и гетерохроматина укладываются закономерным образом, так что на протяжении хроматид образуются чередующиеся поперечные полосы. Их выявляют при помощи специальных окрасок. Поверхность хромосом покрыта различными молекулами, главным образом, рибонуклеопротеинами (РНП). В соматических клетках имеются по две копии каждой хромосомы, их называют гомологичными. Они одинаковы по длине, форме, строению, расположению полос, несут одни и те же гены, которые локализованы одинаково. Гомологичные хромосомы могут различаться аллелями генов, содержащихся в них. Ген - это участок молекулы ДНК, на котором синтезируется активная молекула РНК. Гены, входящие в состав хромосом человека, могут содержать до двух млн пар нуклеотидов.

Деспирализованные активные участки хромосом не видны под микроскопом. Лишь слабая гомогенная базофилия нуклеоплазмы указывает на присутствие ДНК; их можно выявить также гистохимическими методами. Такие участки относят к эухроматину. Неактивные сильно спирализованные комплексы ДНК и высокомолекулярных белков выделяются при окрасках в виде глыбок гетерохроматина. Хромосомы фиксированы на внутренней поверхности кариотеки к ядерной ламине.



Хромосомы в функционирующей клетке обеспечивают синтез РНК, необходимых для последующего синтеза белков. При этом осуществляется считывание генетической информации - ее транскрипция. Не вся хромосома принимает в ней непосредственное участие.

Разные участки хромосом обеспечивают синтез различных РНК. Особенно выделяются участки, синтезирующие рибосомные РНК (рРНК); ими обладают не все хромосомы. Эти участки называют ядрышковыми организаторами. Ядрышковые организаторы образуют петли. Верхушки петель разных хромосом тяготеют друг к другу и встречаются вместе. Таким образом формируется структура ядра, именуемая ядрышком (рис. 20). В нем различают три компонента: слабоокрашенный компонент соответствует петлям хромосом, фибриллярный - транскрибированной рРНК и глобулярный - предшественникам рибосом.

Хромосомы являются ведущими компонентами клетки, регулирующими все обменные процессы: любые метаболические реакции возможны только с участием ферментов, ферменты же всегда белки, белки синтезируются только с участием РНК.

Вместе с тем хромосомы являются и хранителями наследственных свойств организма. Именно последовательность нуклеоти-дов в цепях ДНК определяет генетический код.

Расположение центромеры определяет три основных типа хромосом:

1) равноплечие – с плечами равной или почти равной длины;

2) неравноплечие, имеющие плечи неравной длины;

3) палочковидные – с одним длинным и вторым очень коротким, иногда с трудом обнаруживаемым плечом. хромосомный набор-Кариоти́п - совокупность признаков полного набора хромосом, присущая клеткам данного биологического вида, данного организма или линии клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора. Термин «кариотип» был введён в 1924 году советским цитологом

Правила хромосом

1. Постоянство числа хромосом.

Соматические клетки организма каждого вида имеют строго определенное число хромосом (у человека -46, у кошки- 38, У мушки дрозофилы - 8, у собаки -78. у курицы -78).

2. Парность хромосом.

Каждая. хромосома в соматических клетках с диплоидным набором имеет такую же гомологичную (одинаковую) хромосому, идентичную по размерам, форме, но неодинаковую по происхождению: одну - от отца, другую - от матери.

3. Правило индивидуальности хромосом.

Каждая пара хромосом отличается от другой пары размерами, формой, чередованием светлых и темных полос.

4. Правило непрерывности.

Перед делением клетки ДНК удваивается и в результате получается 2 сестринские хроматиды. После деления в дочерние клетки попадает по одной хроматиде, таким о6разом, хромосомы непепрывны: от хромосомы образуется хромосома.

16.Кариотип человека. Его определение. Кариограмма, принцип составления. Идиограмма, ее содержание.

Кариотип .(от карио... и греч. typos - отпечаток, форма),ттипичная для вида совокупность морфологических признаков хромосом (размер, форма, детали строения, число и т. д.). Важная генетическая характеристика вида, лежащая в основе кариосистематики. Для определения кариотипа используют микрофотографию или зарисовку хромосом при микроскопии делящихся клеток.У каждого человека 46 хромосом, две из которых половые. У женщины это две X хромосомы (кариотип: 46, ХХ), а у мужчин одна Х хромосома, а другая – Y (кариотип: 46, ХY). Исследование кариотипа проводится с помощью метода, называемого цитогенетика.

Идиограмма (от греч. idios - свой, своеобразный и...грамма), схематическое изображение гаплоидного набора хромосом организма, которые располагают в ряд в соответствии с их размерами.

Кариограмма (от карио... и... грамма),графическое изображение кариотипа для количественной характеристики каждой хромосомы. Один из типов К. - идиограмма -схематическая зарисовка хромосом, расположенных в ряд по их длине (рис.). Др. тип К. - график, на котором координатами служат какие-либо значения длины хромосомы или её части и всего кариотипа (например, относительная длина хромосом) и так называемый центромерный индекс, т. е. отношение длины короткого плеча к длине всей хромосомы. Расположение каждой точки на К. отражает распределение хромосом в кариотипе. Основная задача кариограммного анализа -выявление гетерогенности (различий) внешне сходных хромосом в той или иной их группе.

В зависимости от периода клеточного цикла хромосомы могут находиться в ядре в двух состояниях – конденсированном, частично конденсированном и полностью конденсированном.

Раньше для обозначения упаковки хромосом употребляли термин – спирализация, деспирализация. В настоящее время используют более точный термин конденсация, деконденсация. Этот термин более ёмкий и включает процесс спирализации хромосомы, её укладку и укорочение.

Во время интерфазы экспрессия (функция, работа) генов максимальна и хромосомы имеют вид тонких нитей. Те участки нити, в которых происходит синтез РНК – деконденсированы, а те участки, где синтез не происходит, – наоборот, конденсированы (рис. 19).

Во время деления, когда ДНК в хромосомах практически не функционирует, хромосомы представляют собой плотные тельца, похожие на «Х» или «У». Это связано с сильной конденсацией ДНК в хромосомах.

Особо необходимо уяснить, что наследственный материал по-разному представлен в клетках, находящихся в интерфазе и в момент деления. В интерфазе в клетке отчётливо просматривается ядро, наследственный материал, в котором представлен хроматином. Хроматин, в свою очередь, состоит из частично конденсированных нитей хромосом. Если же рассматривать клетку во время деления, когда ядра уже нет, то весь наследственный материал концентрируется в хромосомах, которые максимально конденсированы (рис. 20).

Совокупность всех нитей хромосом, состоящих из ДНК и различных белков, в ядрах эукариотических клеток носит название хроматин (см. рис. 19. В). Хроматин в свою очередь делится на эухроматин и гетерохроматин . Первый слабо окрашивается красителями, т.к. содержит тонкие неконденсированные нити хромосом. Гетерохроматин, напротив, – содержит конденсированную, а следовательно, хорошо прокрашиваемую нить хромосомы. Неконденсированные участки хроматина содержат ДНК, в которой функционируют гены (т.е. происходит синтез РНК).


А Б В

Рис. 19. Хромосомы в интерфазе.

А – выделенная нить хромосомы из ядра клетки, находящейся в интерфазе. 1- конденсированный участок; 2 – неконденсированный участок.

Б – выделенные несколько нитей хромосом из ядра клетки, находящейся в интерфазе. 1 – конденсированный участок; 2 – неконденсированный участок. В – ядро клетки с нитями хромосом, находящейся в интерфазе. 1 – конденсированный участок; 2 – неконденсированный участок; 1 и 2 – хроматин ядра.

Клетка в интерфазе Клетка во время деления


Ядро Хромосомы

Рис. 20. Два состояния наследственного материала в клетках в клеточном цикле: А – в интерфазе наследственный материал расположен в хромосомах, которые частично деконденсированы и расположены в ядре; Б – при делении клетки наследственный материал выходит из ядра, хромосомы располагаются в цитоплазме.

Необходимо помнить, что если ген функционирует, то ДНК в этом участке деконденсирована. И наоборот, конденсация ДНК гена свидетельствует о блокаде активности гена. Феномен конденсации и деконденсации участков ДНК достаточно часто можно обнаружить, когда в клетке регулируется активность (включения или выключения) генов.

Субмолекулярное строение хроматина (в дальнейшем мы будем их называть интерфазные хромосомы) и хромосом делящейся клетки (в дальнейшем мы будем их называть метафазные хромосомы) до настоящего времени полностью не выяснено. Однако ясно, что при различных состояниях клетки (интерфаза и деление) организация наследственного материала различна. В основе интерфазных (ИХ) и метафазных хромосом (МХ) лежит нуклеосома . Нуклеосома состоит из центральной белковой части, вокруг которой обёрнута нить ДНК. Центральную часть образуют восемь молекул белка-гистона – Н2А, Н2В, Н3, Н4 (каждый гистон представлен двумя молекулами). В связи с этим сердцевина нуклеосомы носит название тетрамер, октамер иликор . Молекула ДНК в форме спирали обвивает кор 1,75 раз и переходит на соседний кор, обвивает его и переходит на следующую. Таким образом создаётся своеобразная фигура, напоминающая нитку (ДНК) с нанизанными на ней бусами (нуклеосомами).

Между нуклеосомами лежит ДНК, которая называется линкерной . С ней может связываться ещё один гистон – Н1. Если он связывается с линкерным участком, то ДНК изгибается и сворачивается в спираль (рис. 21. Б). Гистон Н1 принимает участие в сложном процессе конденсации ДНК, при котором нитка бус сворачивается в спираль толщиной 30 нм. Эта спираль носит название соленоид . Нити хромосом интерфазных клеток состоят из нитей бус и соленоидов. В метафазных хромосомах соленоид сворачивается в суперспираль, которая соединяется с сетчатой структурой (из белков), формируя петли, которые укладываются уже в виде хромосомы. Такая упаковка приводит к почти 5000-кратному уплотнению ДНК в метафазной хромосоме. На рисунке 23 представлена схема последовательной укладки хроматина. Понятно, что процесс спирализации ДНК в ИХ и МХ намного сложнее, но сказанное даёт возможность уяснить наиболее общие принципы упаковки хромосом.



Рис. 21. Строение нуклеосом:

А – в неконденсированной хромосоме. Гистон Н1 не связан с линкерной ДНК. Б – в конденсированной хромосоме. Гистон Н1 связан с линкерной ДНК.

Необходимо отметить, что, каждая хромосома в метафазе состоит из двух хроматид, удерживаемых с помощью центромеры (первичной перетяжки). В основе каждой из этих хроматид лежат упакованные порознь дочерние молекулы ДНК. После процесса компактизации они становятся хорошо различимыми в световой микроскоп хроматидами одной хромосомы. В конце митоза они расходятся по дочерним клеткам. С момента отделения хроматид одной хромосомы друг от друга, их уже называют хромосомами, то есть хромосома содержит либо две хроматиды, перед делением, либо – одну (но она называется уже хромосомой) после деления.

Некоторые хромосомы, кроме первичной перетяжки, имеют вторичную. Её ещё называют ядрышковый организатор . Это тонкая нить хромосомы, на конце которой помещается спутник. Вторичная перетяжка, как и основная хромосома, состоит из ДНК, на которой располагаются гены, ответственные за синтез рибосомальных РНК. На концах хромосомы располагается участок, называемый теломерой . Он как бы «запечатывает» хромосому. Если теломера случайно отрывается, образуется «липкий» конец, который может соединиться с таким же концом другой хромосомы.

Клетка в интерфазе Делящаяся клетка

Нить хромосомы



Нуклеосома Гистон Н1

Рис. 22. Модель упаковки хромосомы в клетках, находящихся в интерфазе и митозе.

располагается посередине, хромосома имеет равные по величине плечи. В субметацентрических хромосомах центромера немного сдвинута к одному концу. Плечи хромосомы не одинаковы по длине – одно длиннее другого. В акроцентрических хромосомах центромера располагается почти на конце хромосомы и короткие плечи трудно различимы. Количество хромосом постоянно для каждого вида. Так, кариотип человека содержит 46 хромосом. У дрозофилы их 8, а в клетке пшеницы – 14.

Совокупность всех метафазных хромосом клетки, их форма и морфология называется кариотипом . По форме различают три типа хромосом – метацентрические, субметацентрические и акроцентрические (рис. 23). В метацентрических хромосомах центромера

Ядрышко

Это плотное, хорошо прокрашиваемое тельце, расположенное внутри ядра. В нем обнаружены ДНК, РНК и белки. Основу ядрышка составляют ядрышковые организаторы – участки ДНК, несущие множественные копии генов рРНК. На ДНК ядрышковых организаторов происходит синтез рибосомальных РНК. К ним присоединяются белки и формируется сложное образование - рибонуклеопротеидные (РНП) частицы. Это предшественники (или полуфабрикаты) малой и большой субъединиц рибосом. Процесс образования РНП в основном происходит в периферической части ядрышек. Предшественники ри-

Спутник


Рибосомы

Предшественники рибосом

Рис. 24. Формирование рибосом в ядрышке ядра.

Размер ядрышка отражает степень его функциональной активности, которая широко варьирует в различных клетках и может изменяться в индивидуальной клетке. Чем интенсивнее происходит процесс формирования рибосом в цитоплазме, тем активнее осуществляется синтез специфических белков на рибосомах. В этом отношении примечательно действие стероидных гормонов (СГ) на клетки-мишени. СГ попадают в ядро и активируют синтез рРНК. В результате возрастает количество РНП и, как следствие, увеличивается число рибосом в цитоплазме. Это приводит к значительному возрастанию уровня синтеза специальных белков, которые через ряд биохимических и физиологических реакций обеспечивают определённый фармакологический эффект (например, разрастается железистый эпителий в матке).

В зависимости от фазы клеточного цикла внешний вид ядрышка заметно меняется. С началом митоза ядрышко уменьшается, а затем и вовсе исчезает. В конце митоза, когда возобновляется синтез рРНК, миниатюрные ядрышки вновь возникают на участках хромосом, содержащих гены рРНК.

Ядерный матрикс

Хромосомы в трёхмерном пространстве ядра располагаются не хаотично, а строго упорядоченно. Этому способствует каркасная внутриядерная структура, называемая ядерным матриксом или скелетом. В основе этой структуры - ядерная ламина (см. рис. 19). К ней прикрепляется внутренний белковый каркас, занимающий весь объём ядра. Хромосомы в интерфазе прикрепляются и к ламине и к участкам внутреннего белкового матрикса.

Все перечисленные компоненты – не застывшие жёсткие структуры, а подвижные образования, архитектура которых меняется в зависимости от функциональной особенности клетки.

Ядерный матрикс играет важную роль в организации хромосом, репликации ДНК и транскрипции генов. Ферменты репликации и транскрипции закреплены на ядерном матриксе, а нить ДНК «протаскивается» через этот фиксированный комплекс.

В последнее время ламина ядерного матрикса привлекает внимание исследователей, работающих над проблемой долгожительства. Исследования показали, что ламина состоит из нескольких различных белков, которые кодируются генами. Нарушение структуры этих генов (а следовательно, и белков ламины) резко сокращает продолжительность жизни экспериментальных животных.

При микроскопическом анализе хромосом прежде всего видны различия их по форме и величине. Строение каждой хромосомы сугубо индивидуальное. Можно заметить также, что хромосомы обладают общими морфологическими признаками. Они состоят из двух нитей - хроматид, расположенных парал­лельно и соединенных между собой в одной точке, названной центромерой или первичной перетяжкой. На некоторых хромосо­мах можно видеть и вторичную перетяжку. Она является харак­терным признаком, позволяющим идентифицировать отдельные хромосомы в клетке. Если вторичная перетяжка расположена близко к концу хромосомы, то дистальный участок, ограничен­ный ею, называют спутником. Хромосомы, содержащие спутник, обозначаются как АТ-хромосомы. На некоторых из них в тело-фазе происходит образование ядрышек.

Концевые участки хромосом имеют особую структуру и назы­ваются теломерами. Теломерные районы обладают определенной полярностью, препятствующей их соединению друг с другом при разрывах или со свободными концами хромосом. Участок хрома-тиды (хромосомы) от теломеры до центромеры называют плечом хромосомы. Каждая хромосома имеет два плеча. В зависимости от соотношения длин плеч выделяют три типа хромосом: 1) мета-центрические (равноплечие); 2) субметацентрические (неравно­плечие); 3) акроцентрические, у которых одно плечо очень корот­кое и не всегда четко различимо.

На Парижской конференции по стандартизации кариотипов вместо морфологических терминов «метацентрики» или «акро-центрики» в связи с разработкой новых методов получения «по­лосатых» хромосом предложена символика, в которой всем хро­мосомам набора присваивается ранг (порядковый номер) по по­рядку убывания величины и в обоих плечах каждой хромосомы (р - короткое плечо, q - длинное плечо) нумеруются участки плеч и полосы в каждом участке по направлению от центромеры. Такая система обозначений позволяет детально описывать ано­малии хромосом.

Наряду с расположением центромеры, наличием вторичной перетяжки и спутника важное значение для определения отдель­ных хромосом имеет их длина. Для каждой хромосомы опреде­ленного набора длина ее остается относительно постоянной. Из­мерение хромосом необходимо для изучения их изменчивости в онтогенезе в связи с болезнями, аномалиями, нарушением вос­производительной функции.

Тонкое строение хромосом. Химический анализ структуры хромосом показал наличие в них двух основных компонентов: дезоксирибонуклеиновой кислоты (ДНК) и белков типа гистонов и протомите (в половых клетках). Исследования тонкой субмоле­кулярной структуры хромосом привели ученых к выводу, что каждая хроматида содержит одну нить - хромонему. Каждая хро-монема состоит из одной молекулы ДНК. Структурной основой хроматиды является тяж белковой природы. Хромонема уложена в хроматиде в форму, близкую к спирали. Доказательства этого предположения были получены, в частности, при изучении мель­чайших обменных частиц сестринских хроматид, которые распо­лагались поперек хромосомы.

Совокупность хромосом соматической клетки, характеризующая организм данного вида, называется кариотипом (рис. 2.12).

Рис. 2.12. Кариотип (а ) и идиограмма (б ) хромосом человека

Хромосомы подразделяют на аутосомы (оди­наковые у обоих полов) и гетерохромосомы , или поло­вые хромосомы (разный набор у мужских и женских осо­бей). Например, кариотип человека содержит 22 пары аутосом и две половые хромосомы - ХХ у женщины и XY y мужчи­ны (44+XX и 44+XY соответственно). Соматические клетки организмов содержат диплоидный (двойной) набор хромосом, а гаметы - гаплоидный (одинарный).

Идиограмма - это систематизированный кариотип, в кото-1М хромосомы располагаются по мере уменьшения их разме­ти. Точно расположить хромосомы по размеру удается дале­ки не всегда, так как некоторые пары хромосом имеют близ­кие размеры. Поэтому в 1960 г. была предложена Денверская классификация хромосом , которая помимо размеров учитывает форму хромосом, положение центромеры и наличие вто­ричных перетяжек и спутников (рис. 2.13). Согласно этой классификации, 23 пары хромосом человека разбили на 7 групп - от А до G. Важным признаком, облегчающим клас­сификацию, является центромерный индекс (ЦИ), который от­ражает отношение (в процентах) длины короткого плеча к длине всей хромосомы.

Рис. 2.13. Денверская классификация хромосом человека

Расссмотрим группы хромосом.

Группа А (хромосомы 1-3). Это большие, метацентрические и субметацентрические хромосомы, их центромерный индекс - от 38 до 49. Первая пара хромосом - самые большие метацентрические (ЦИ 48-49), в проксимальной части длин­ною плеча вблизи центромеры может быть вторичная перетяжка. Вторая пара хромосом - самые большие субметацент-рические (ЦИ 38-40). Третья пара хромосом на 20% короче первой, хромосомы субметацентрические (ЦИ 45-46), легко идентифицируются.

Группа В (хромосомы 4 и 5). Это большие субметацентрические хромосомы, их центромерный индекс 24-30. Они не различаются между собой при обычном окрашивании. Распределение R- и G-сегментов (см. ниже) у них различное.

Группа С (хромосомы 6-12). Хромосомы среднего раз j мера, субметацентрические, их центромерный индекс 27-35. В 9-й хромосоме часто обнаруживается вторичная перетяжка. К этой группе относят и Х-хромосому. Все хромосомы данной группы можно идентифицировать с помощью Q- и G-окрашивания.

Группа D (хромосомы 13-15). Хромосомы акроцентрические, сильно отличаются от всех других хромосом человека, их центромерный индекс около 15. Все три пары имеют спутники. Длинные плечи этих хромосом различаются по Q- и G- сегментам.

Группа Е (хромосомы 16-18). Хромосомы относительно короткие, метацентрические или субметацентрические, их центромерный индекс от 26 до 40 (хромосома 16 имеет ЦИ около 40, хромосома 17- ЦИ 34, хромосома 18 - ЦИ 26). В длинном плече 16-й хромосомы в 10% случаев выявляется вторичная перетяжка.

Группа F (хромосомы 19 и 20). Хромосомы короткие, субметацентрические, их центромерный индекс 36-46. При обычном окрашивании они выглядят одинаковыми, а при дифференциальном - хорошо различимы.

Группа G (хромосомы 21 и 22). Хромосомы маленькие, акроцентрические, их центромерный индекс 13-33. К этой группе относят и Y-хромосому. Они легко различимы при дифференциальном окрашивании.

В основе Парижской классификации хромосом человека (1971) лежат методы специального дифференциального их окрашивания, при которых в каждой хромосоме выявляется характерный только для нее порядок чередования попереч­ных светлых и темных сегментов (рис. 2.14).

Рис. 2.14. Парижская классификация хромосом человека

Различные типы сегментов обозначают по методам, с помощью которых они выявляются наиболее четко. Например, Q-сегменты - это участки хромосом, флюоресцирующие после окрашивания акрихин-ипритом; сегменты выявляются при окрашива­нии красителем Гимза (Q- и G-сегменты идентичны); R-сегменты окрашиваются после контролируемой тепловой денатурации и т. д. Данные методы позволяют четко дифференци­ровать хромосомы человека внутри групп.

Короткое плечо хромосом обозначают латинской буквой p а длинное - q . Каждое плечо хромосомы разделяют на рай­оны, нумеруемые от центромеры к теломерам. В некоторых коротких плечах выделяют один такой район, а в других (длинных) - до четырех. Полосы внутри районов нумеруются по порядку от центромеры. Если локализация гена точно из­вестна, для ее обозначения используют индекс полосы. На­пример, локализация гена, кодирующего эстеразу D, обозна­чается 13p 14, т. е. четвертая полоса первого района короткого плеча тринадцатой хромосомы. Локализация генов не всегда известна с точностью до полосы. Так, местоположение гена ретинобластомы обозначают 13q , что означает локализацию его в длинном плече тринадцатой хромосомы.

Основные функции хромосом состоят в хране­нии, воспроизведении и передаче генетической информации при размножении клеток и организмов.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top