На чем основан метод компьютерной томографии. Компьютерная томография

На чем основан метод компьютерной томографии. Компьютерная томография

Данный метод был впервые использован в 1972 г. Он основан на измерении и последующей обработке данных о различии ослабления рентгеновского излучения тканями, отличающимися по плотности.

КТ используют для визуализации камер сердца, крупных сосудов, перикарда и расположенных рядом тканей. На практике КТ наиболее часто используют для визуализации аорты при подозрении на расслоение аорты. Спиральная КТ имеет вращающуюся раму, которая получает изображения быстрее, чем за одну секунду. Дальнейшие разработки спиральной КТ привели к созданию мультиспиральной КТ, которая может получить до 32-64 срезов за один оборот рамы. На полученных изображениях практически исключены помехи, вызванные движением тела.

В настоящее время стала возможной неинвазивная визуализация коронарных артерий. Пространственное разрешение КТ позволяет получать изображения проксимальных частей коронарных артерий, по качеству сравнимые с обычной коронароангиографией. Коронарные обходные шунты тоже можно хорошо увидеть с помощью спиральной КТ, и в некоторых лечебных учреждениях состояния шунта оценивают с использованием именно этой технологии. Также можно определите кальцификацию коронарных артерий, что напрямую коррелирует со степенью атеросклеротического поражения. Следовательно, количественное определение кальция можно использовать для стратификации риска.

Изображения, получающиеся посредством использования метода рентгеновской компьютерной томографии, имеют определенные аналоги в истории анатомии. Следует упомянуть, что еще великий русский физиолог Н. И. Пирогов разработал и внедрил в практику метод изучения взаиморасположения органов и тканей, названный «топографической анатомией». Предложенный метод заключался в послойном иссечении замороженных тканей («ледяная анатомия») в 3 направлениях. На основе метода был издан атлас, иллюстрации в котором по сути напоминали изображения, полученные с помощью томографа.

Современные методики получения послойных изображений, разумеется, имеют массу преимуществ. Это возможность прижизненной диагностики и осуществления компьютерной реконструкции в 3 плоскостях. При помощи методик можно не только устанавливать размеры и взаиморасположение органов и тканей, но и производить изучение их структурных особенностей и ряда физиологических характеристик.

Для оценки плотности структур организма, исследуемых с помощью метода компьютерной томографии, применяется специальная градация ослабления рентгеновского излучения, называемая шкалой Хаунсфилда. Отражением данной шкалы на мониторе томографа является черно-белый спектр полученного изображения. Диапазон ослабления рентгеновского излучения составляет от -1024 до +3071, т. е. 4096 условных единиц ослабления. Средний показатель в данной шкале соответствует плотности воды, отрицательные цифры - воздуху и жировой ткани (малая плотность), а положительные цифры - мягким тканям и костям (более высокая плотность). Следует учитывать, что шкалы разных аппаратов могут отличаться между собой.

При работе с компьютерным томографом важно помнить, что «рентгеновская плотность» - относительное и усредненное понятие. Так, перенасыщенные жиром мягкие ткани могут иметь плотность, соответствующую плотности воды, что иногда затрудняет определение характера исследуемой структуры.

Неотъемлемой частью аппарата для проведения томографии является значительный по объему пакет программного обеспечения. Он дает возможность проводить весь спектр компьютерно-томографических исследований. Причем он может быть дополнен за счет узкоспециализированных программ, делающих поправки на сферу применения каждого отдельно взятого аппарата.

Коллимация рентгеновских лучей, проходящих через тело человека, позволяет получить серию аттенуированных изображений, которые с помощью компьютера формируют поперечные «срезы» объекта (обычно шаг срезов составляет 3-8 мм, что зависит от прибора, а также от клинической задачи, поставленной перед специалистом). В последнее время на смену последовательной съемке пришла методика непрерывной регистрации изображения (спиральная КТ). Контрастности тканей достигают за счет того, что ткани ослабляют рентгеновское излучение в разной степени. Всю брюшную полость можно просканировать за одну задержку дыхания. Ожирение положительно сказывается на качестве КТ (в отличие от УЗИ). Разделенная во времени съемка с введением внутривенных контрастных веществ на основе йода может проявить характерные особенности патологического процесса в артериальную и венозную фазу кровообращения или обозначить портальный венозный кровоток. Режим съемки всегда зависит от того, какой орган интересует исследователя или какова поставленная клиническая задача.

Показания для КТ при болезнях ЖКТ весьма разнообразны. К ним относят исследования при остром животе; диагностику и определение стадии злокачественных образований; оценку того, что происходит при другой патологии поджелудочной железы, поражениях билиарного тракта и печени; выявление внутрибрюшных скоплений жидкости. Отдельно обсуждают КТ-пневмоколонографию. В зависимости от анатомии места расположения и опыта специалиста под контролем КТ или УЗИ можно осуществлять прицельную биопсию патологически измененных тканей.

Противопоказаний для КТ мало. К ним относят непереносимость йода (этот вопрос следует обсудить с радиологом, так как почти всегда ценную информацию можно извлечь из КТ без контрастирования).

В КТ рентгеновский источник и детектор рентгеновского излучения, расположенные в конструкции в форме бублика, двигаются циркулярно вокруг пациента, лежащего на механизированном столе, который перемещается сквозь устройство. Обычно используются мультиде-текторные сканеры с 4-64 или более рядами детекторов, т.к. большее число детекторов позволяет сканировать быстрее и с более высоким разрешением изображений.

Данные от датчиков, по существу, представляют собой серию рентгеновских снимков, сделанных под разными углами вокруг пациента. Однако изображения не рассматриваются непосредственно, а отправляются на компьютер, который быстро реконструирует их в 2-мерные изображения (томограммы), представляющие срез тела в любой желаемой плоскости. Данные также можно использовать для построения подробного 3-мерного изображения. У некоторых КТ стол движется постепенно и останавливается при каждом сканировании. У других КТ стол во время сканирования движется непрерывно; т.к. пациент движется по прямой линии и детекторы движутся по кругу, серии изображений делаются по спирали вокруг пациента - отсюда и термин «спиральная КТ».

Эти же принципы томографических изображений можно применять к радиоизотопному сканированию, при котором датчики для испускаемого излучения окружают пациента, а вычислительная техника преобразует данные датчиков в томографические изображения; примеры - однофотонная эмиссионная КТ (ОФЭКТ) и ПЭТ.

Лучевая нагрузка при проведении КТ области живота велика (эквивалентна выполнению 500 рентгеновских снимков грудной клетки или 3,3 годам воздействия фонового излучения), поэтому в отношении молодых людей и больных, нуждающихся в повторных исследованиях, всегда необходимо учитывать возможные альтернативные подходы. Проведения КТ следует избегать при беременности, особенно в I триместре.

ПЭТ - лучевой метод получения изображения. Используют фармакологические препараты с включением радиоактивных элементов с коротким временем полураспада, что позволяет оценить различные аспекты функции сердца в разных областях:

  • Общая и локальная функция левого желудочка.
  • Кровоток в миокарде.
  • Метаболизм миокарда: метаболизм глюкозы и жирных кислот, потребление кислорода.
  • Фармакология: Р-адренергические и мускариновые рецепторы симпатическая иннервация, миокардиальный АПФ (ангиотензин-превращающий фермент) и рецепторы ангиотензина II.
  • Экспрессия генов миокарда.

Клиническое применение

Определение жизнеспособности миокарда. Основное клиническое применение в кардиологии ПЭТ - определение жизнеспособности миокарда у больных ИБС со сниженной функцией левого желудочка, которая может быть улучшена путем выполнения хирургической или чрескожной коронарной реваскуляризации. Показано, что ПЭТ имеет высокую чувствительность при прогнозировании восстановления функции левого желудочка после реваскуляризации, а также позволило понять основные механизмы развития дисфункции левого желудочка у пациентов с ИБС.

По сравнению с простой рентгенографией томографические срезы КТ дают более пространственную детализацию и позволяют лучше различать уплотнения мягких тканей. Так как КТ предоставляет гораздо больше информации, она предпочтительнее обычной рентгенографии для получения изображений большинства тканей головного мозга, головы, шеи, позвоночника, груди и брюшины. Трехмерные изображения поражений могут помочь хирургам планировать операцию. КТ является наиболее точным исследованием для обнаружения и локализации камней в мочевом пузыре.

КТ может быть сделана с или без внутривенного вливания рентгеноконтрастного вещества. Неконтрастная КТ используется для обнаружения острого кровоизлияния в мозг, камней в мочевом пузыре, узлов в легких, а также для определения переломов костей и других скелетных аномалий.

Контрастные вещества, вводимые орально или иногда ректально, применяются для визуализации органов брюшной полости; иногда, чтобы расширить нижний отдел желудочно-кишечного тракта и сделать его видимым, используется газ. Контрастное вещество в желудочно-кишечном тракте помогает отличить желудочно-кишечный тракт от окружающих структур. Стандартное контрастное вещество, вводимое перорально, производится на основе бария, но при подозрении на прободение кишечника или когда высок риск аспирации, следует применять низкоосмолярное йодированное контрастное вещество.

Исследовательское применение

Значительное количество параметров, доступных исследованию при помощи ПЭТ, позволяет оценить многие аспекты функции сердца и предоставить сведения о механизмах работы сердца при различных заболеваниях. Это исследование позволяет также оценить механизмы лечебного действия при используемых и внедряемых терапевтических методиках. Приведем ряд примеров:

  • Кровоток в миокарде и микроциркуляция: ИБС, гипертрофическая кардиомиопатия, аортальный стеноз, синдром X.
  • Метаболизм в миокарде и энергетический обмен в сердце: ишемическая кардиомиопатия, дилатационная кардиомиопатия.
  • Автономная функция сердца.

Вариации

Виртуальная колоноскопия. После введения газа в прямую кишку через гибкий резиновый катетер малого диаметра, выполняется КТ всей толстой кишки. Виртуальная колоноскопия производит 3-мерные изображения толстой кишки высокого разрешения, которые в некотором роде имитируют результаты оптической колоноскопии. Эта техника может показать полипы толстой кишки и поражения слизистой оболочки толстой кишки размером до 5 мм. Это альтернатива обычной колоноскопии.

КТ внутривенной пиелографии или урографии. Вводится внутривенно контрастное вещество. Процедура дает детальные изображения почек, мочеточников и мочевого пузыря. Она является альтернативой обычной внутривенной урографии.

КТ легочной ангиографии. После быстрой болюсной инъекции контрастного вещества быстро выполняются изображения в виде тонких срезов, в то время как контрастное вещество делает артерии и вены непрозрачными. Усовершенствованные методы компьютерной графики применяются для удаления изображения окружающих мягких тканей и обеспечения высокодетального изображения кровеносных сосудов, аналогичного обычной ангиографии.

Недостатки

На долю КТ приходится наибольшая доза диагностического радиационного облучения всех пациентов в целом. Если выполняются многочисленные сканирования, общая доза облучения может быть высокой, подвергая пациента потенциальному риску (см. гл. «Принципы рентгеновской визуализации. Опасности ионизирующего излучения»). Пациентам, у которых периодически наблюдаются камни в мочевыводящих путях или перенесшим серьезные травмы, скорее всего надо делать многократное КТ-сканирование. Всегда следует учитывать соотношение риска радиационного облучения и преимущества обследования.

В некоторых КТ применяют внутривенное контрастное вещество, вызывающее определенный риск. Если барий вытекает из сосудов в ткани за пределами просвета желудочно-кишечного тракта, он может вызвать серьезное воспаление; при вдыхании барий может вызвать тяжелую пневмонию. Барий может также затвердеть и сгуститься, потенциально способствуя развитию непроходимости кишечника. Гастрографин более безопасен, но контрастное вещество и снимки желудочно-кишечного тракта, которые он делает, не так хороши.

Стол КТ не подходит для очень тучных пациентов.

Сравнение позитронно-эмиссионной томографии с другими радионуклидными методами обследования сердца (гамма-камера, SPECT)

Преимущества:

  • Короткое время полураспада радиоактивных препаратов.
  • Возможность повторных исследований с небольшим интервалом.
  • Более качественное пространственное разрешение.
  • Возможность качественной оценки накопления радиоактивного препарата в органе позволяет численно определить физиологические параметры.
  • Циклотрон располагается в том же учреждении, где проводится исследование.

Недостатки:

  • Дорогой метод.
  • Ограниченный доступ.
  • Преимущественное использование в научных работах.

За последнее десятилетие МРТ сердца показала себя как важный метод исследования в диагностике и лечении сердечно-сосудистых заболеваний.

Методика:

  • Используют сигналы, излучаемые протонами (ионы водорода присутствуют в большом количестве в живых организмах, так как значительная часть тела человека состоит из воды).
  • При использовании магнитного поля протоны выстраиваются параллельно (большинство) и перпендикулярно полю с результирующим вектором между ними.
  • Результирующий вектор изменяется при использовании разных типов короткого радиочастотного излучения.
  • При прекращении этого вторичного излучения вектор возвращается к исходной позиции и высвобождает энергию в виде радиоволн.
  • Существуют две формы восстановления сетчатого вектора - продольная и поперечная.

МРТ не требует ионизирующего излучения и позволяет получить множественные «срезы» сердца. МРТ используют для исследования разных органов, в том числе для визуализации аорты и расположения крупных сосудов, изучения камер сердца при врождённых пороках. Данные можно получать, обрабатывая сигнал, отражающийся от движущейся крови. Есть специальные алгоритмы и программы, показывающие скорость, наличие регургитации крови, стеноза клапанов. Также доступно проведение анализа движений стенки сосуда. Так, например, стенка левого желудочка легко визуализируется при МРТ, в то время как при ЭхоКГ её визуализировать сложнее.

Значительную роль играет МРТ при оценке жизнеспособности миокарда. Можно увидеть области гипоперфузии при сканировании в динамике на фоне введения контрастного вещества (например, гадолиния). При этом ишемию видно намного лучше, чем при использовании технологий ядерной медицины, что позволяет производить более точный подбор пациентов, которым требуется реваскуляризация.

Виды магнитно-резонансного исследования

  1. Спин-эхо используют для оценки морфологии. Ткани организма, имеющие разную плотность, отличаются, текущая кровь отображается в темном цвете.
  2. Гоадиент-эхо используют для исследования шунтов, поражений клапанов, крупных сосудов и оценки функции левого желудочка. Поток крови (т.е. поток протонов) вдоль магнитного градиента имеет магнитные векторы с фазой, изменяющейся пропорционально скорости потока, что позволяет проводить оценку динамических нарушений. Использующиеся более слабые различия по плотности тканей отображают поток крови в виде сигнала высокой интенсивности.

Использование магнитно-резонансной томографии сердца

Перечень возможностей МРТ постоянно расширяется:

  • Врожденные заболевания сердца. Полезно при исследовании сложных пороков сердца и крупных сосудов (анатомия и гемодинамика).
  • Функция желудочков. Особенно важно для определения систолической и диастолической функции левого и правого желудочков и выявления их опухолей. Полезно в определение эффективности нового метода лечения.
  • Заболевания аорты. Не уступает чреспищеводной ЭхоКГ и КТ в диагностике острого расслоения аорты. Отлично зарекомендовала себя в описательной анатомии расслоения аорты (источник, протяженность, объем поражения), особенно у пациентов с предшествующими заболеваниями аорты и операциями на аорте. При синдроме Марфана проведение ряда последовательных исследований позволяет выявить прогрессирование аневризмы. Внутристеночная гематома, бляшки.
  • Заболевания клапанов сердца. Основными методами диагностики при данных заболеваниях остаются чреспищеводная ЭхоКГ и катетеризация сердца. Более широко начинают использовать МРТ как метод с улучшенным отношением чувствитепьность/специфичность.
  • Кардиомиопатии. Выявляет морфологические признаки и позволяет провести оценку гемодинамики. При гипертрофической обструктивной кардиомиопатии данный метод позволяет выявить фиброз и нарушения перфузии. МРТ - один из методов диагностики аритмогенной кардиомиопатии правого желудочка.
  • Опухоли сердца и заболевания перикарде. Необходимо для оценки как первичного, так и метастатического опухолевого поражения сердца. Дает возможность определить локализацию и внесердечное распространение. Последовательное градиент-эхо позволяет оценить васкуляризацию опухоли. МРТ - наиболее предпочтительный метод диагностики заболеваний перикарда и выявления выпота в полости перикарда.

Магнитно-резонансная томография сердца

Преимущества:

  • Быстрые последовательные изображения.
  • Клинические признаки дополняют анатомическую, гемодинамическую и функциональную информацию при одинаковых снимках.
  • Неинвазивная методика (при диагностическом исследовании) в сравнении с ангиографией, чреспищеводной ЭхоКГ.
  • Высокое пространственное разрешение в сравнении с ЭхоКГ, КТ.
  • Нет ионизирующего облучения в сравнении с ангиографией и т.д.

Недостатки:

  • Клаустрофобия - вызывается узким закрытым пространством внутри томографа.
  • Недостаток адекватного наблюдения - электрическое искажение затрудняет применение данного метода у больных с нестабильной гемодинамикой, для которых как раз полезна точность МРТ сердца. Данный недостаток можно преодолеть при использовании специальных широких пластин (для мониторинга, кислородотерапии и т.д.), которые позволяют изолировать металлическое/электрическое оборудование.
  • Высокие затраты и отсутствие центров, проводящих МРТ. Необходимы высокие начальные финансовые затраты. Тем не менее данный метод исследования начинают широко использовать в клинической практике.

Металлические протезы остаются некоторой проблемой при проведении МРТ. Ферромагнетизм (свойство металлов притягиваться магнитным полем) сначала относился к железным конструкциям и их свойству притяжения в магнитном поле. Однако другие металлы также сильно магнетичны: кобальт, диспрозий, гадолиний и никель. Сплавы, содержащие данные металлы, в какой-либо степени будут обладать магнетизмом. Большинство протезов человека не являются сильными магнетиками, так как используемые для их создания сплавы железа содержат различные примеси для увеличения прочности и усиления антиоксидантных свойств.

Возможность повреждений при магнитно-резонансной томографии и наличии металлических предметов

Существует три основных механизма развития повреждений:

  • Ударное повреждение. Связано с дополнительным оборудованием (баллоны с кислородом, зажимы, ножницы и т.д.), которое находится в помещении МРТ. Сильное магнитное поле притягивает металлические предметы через комнату с явными последствиями. Поэтому все металлические предметы должны быть удалены из помещения МРТ или необходимо использовать безопасное оборудование.
  • Имплантированные протезы. Повреждение может возникнуть из-за внутреннего движения металлических протезов. Вероятное движение зависит от магнетических свойств протезе и сдерживания его движения окружающими тканями. Таким образом, бедренный протез имеет меньшую вероятность стать причиной повреждений, чем внутричерепная артериальная клипса.
  • Электрический ток. МРТ вызывает электрические ток в аппаратуре, способной к электропроводности, что приводит к накаливанию и термической травме. Примеры такого оборудования - провода кардиостимулятора, проводники, катетеры для катетеризации легочной артерии.

Оборудование и безопасность при проведении магнитно-резонансной томографии

  • Коронарные стенты.

Существует теоретический риск термического повреждения, а также риск внутреннего движения. Однако клинические исследования показали безопасность применения МРТ у данной группы больных.

  • Другие сосудистые стенты.

Соответствуют риску при коронарных стентах (производители часто рекомендуют ожидать от 6 до 52 ч после имплантации).

  • Проводники.

Могут вызвать термические повреждения (новые МРТ-проводники отличаются безопасностью для магнитно-резонансного исследования).

  • Протезные клапаны, кольца.

Все клапаны проявили себя безопасными, включая ранние баллонные и коробчатые клапаны.

  • Искусственный водитель ритма и имплантированный дефибриллятор сердца.

Существует опасность движения, термической травмы и электрического торможения импульсации. Использование МРТ связано с увеличением смертности. В настоящее время их использование не рекомендовано, однако рекомендации могут измениться при использовании новых (современных) томографов высокой надежности.

  • Внутрисердечные катетеры.

Полиуретановые и поливинилхлоридные безопасны. Прочие с наличием металлических частей (например, катетеры, плавающие в легочной артерии) могут быть причиной термического повреждения и небезопасны.

  • Интрааортальный баллонный насос и насос левого желудочка.

Небезопасны из-за возможности термического повреждения, внутреннего движения или механических неисправностей.

  • Провода для электрокардиографа.

Стандартные металлические провода опасны в связи с ожогами (могут быть тяжелыми). Новые углеродно-основные магнитно-резонансно совместимые отведения отвечают всем требованиям безопасности.

  • Стернальные швы, перикардиальные пошаговые швы.

Безопасны, но являются источниками артефактов

Спиральная компьютерная томография

Метод заключается в параллельном осуществлении постоянного вращения источника излучения вокруг тела обследуемого и постоянного поступательного движения стола, на котором размещается пациент, вдоль продольной оси сканирования. В отличие от более раннего метода - последовательной компьютерной томографии - скорость движения стола с пациентом может изменяться по мере надобности. Увеличение скорости движения пропорционально увеличивает площадь сканируемой области тела. Данная технология позволяет существенно сократить время исследования и снизить степень облучения обследуемого.

Многослойная компьютерная томография

Многослойная компьютерная томография - более совершенная методика. При ней рентгеновское излучение принимается несколькими рядами детекторов и используется объемная форма пучка рентгеновского излучения. Несомненные преимущества по сравнению со спиральной компьютерной томографией - это улучшение временного и пространственного разрешения вдоль продольной оси, увеличение скорости сканирования, а следовательно, уменьшение времени обследования. Так же к достоинствам этого метода относят существенное улучшение контрастного разрешения, увеличение обследуемой зоны и уменьшение степени облучения пациента.

Главным недостатком метода компьютерной томографии была и остается относительно высокая степень лучевой нагрузки на обследуемого человека, хотя с развитием технологий ее удалось существенно уменьшить.

Для улучшения визуального отличия органов друг от друга, а также различения нормальных и патологических структур в организме используются разнообразные методики контрастного усиления. В процессе этих исследований пациенту вводятся перорально либо внутривенно йодсодержащие препараты. В 1-м случае достигается максимальное контрастирование полых органов пищеварительного тракта. При внутривенном введении ренгеноконтрастных препаратов можно объективно оценить характер и степень накопления контрастного вещества тканями и органами пациента. Внутривенное контрастное усиление зачастую дает возможность уточнить характер обнаруженных патологических изменений, в том числе новообразований, и зафиксировать те из них, которые крайне сложно обнаружить в ходе стандартного исследования.

Компьютерная томография, как и другие методы исследования, имеет определенные показания. В качестве скринингового теста данная методика применяется при головных болях, черепно-мозговых травмах, не сопровождавшихся потерей сознания, при периодическом возникновении обморочных состояний, а также для исключения диагноза «рак легкого». Для экстренной диагностики компьютерная томография применяется при тяжелых травмах, наличии подозрений на кровоизлияние в мозг, повреждение крупного сосуда или на острые повреждения паренхиматозных органов. Для плановой диагностики компьютерная томография используется относительно редко, в целях окончательного подтверждения диагноза. В ряде случаев некоторые врачебные манипуляции, в частности пункции, также выполняют под контролем компьютерной томографии.

Для получения изображения на мониторе размером 200 х 200 пикселей система вычисления включает в себя 40 000 линейных уравнений.

Существует ряд противопоказаний к проведению этого исследования. Так, применение данного метода без использования рентгеноконтрастного вещества не допускается в периоде беременности и при высокой массе тела больного (максимальной для конкретного прибора).

С контрастным веществом данное исследование не проводится при индивидуальной непереносимости рентгено-контрастного препарата, почечной недостаточности, тяжелой форме сахарного диабета, беременности, патологиях щитовидной железы и миеломной болезни.

История появления КТ в медицине началась с конструирования первого аппарата (компьютерного томографа) Хаунсфилдом в 1972 г. Это стало возможным благодаря тому, что в 1963 г физик А. Кормак разработал математический метод реконструкции рентгеновского изображения головного мозга. Сначала аппарат был предназначен только для исследования головного мозга, а затем уже через 2 года появился томограф для исследования всего тела. За изобретение КТ учёные А. Кормак и Г. Хаунсфилд получили Нобелевскую премию в 1979 г.

Из каких составных частей состоит компьютерный томограф, где можно фиксировать полученное изображение?

Компьютерный томограф состоит из следующих составных частей.

Стол, на котором помещается больной и который может автоматически перемещаться в направлении его длины. Расстояние между двумя срезами 5-10 мм. Один срез получают за 1-2 с.

Штатив «Гентри» с отверстием диаметром 50 см, внутри которого расположен стол с пациентом. В штативе установлена круговая система детекторов (в количестве до нескольких тысяч). Рентгеновская трубка движется по окружности (продолжительность вращения 1-3 с) или по спирали, испуская лучи, которые, проходя через тело человека, попадают на детекторы, они преобразуют энергию излучения в электрические сигналы.

Компьютер служит для сбора и обработки информации, поступающей от детекторов, а также для реконструкции изображения, его хранения и передачи необходимой информации на дисплей, пульт управления, штатив и стол.

Пульт управления, с помощью которого устанавливают режим работы аппарата. К пульту подключен монитор и другие устройства для записи, хранения и преобразования информации.

Фиксировать изображение при КТ можно:

На мониторе в реальном времени или поместить в долговременную память компьютера;

Рентгеновской плёнке;

Фотоплёнке.

Какие существуют разновидности КТ?

В настоящее время существуют нижеперечисленные разновидности КТ.

Электронно-лучевая КТ использует в качестве источника излучения не рентгеновские лучи, а вакуумные электронные пушки, испускающие быстрые электроны; применяют пока только в кардиологии.

Поперечная КТ использует рентгеновские лучи, при этом осуществляется движение рентгеновской трубки по окружности, в центре которой находится объект, получаются поперечные срезы тела человека на любом уровне.

Спиральная КТ отличается тем, что рентгеновская трубка движется по спирали по отношению к объекту и за несколько секунд его «просматривает». Спиральная КТ позволяет получать не только поперечные, но также фронтальные и сагиттальные срезы, что расширяет её диагностические возможности. На основании спиральной КТ разрабатывают новые методики.

КТ-ангиография позволяет в трёхмерном изображении видеть сосуды, в первую очередь брюшную аорту на большом протяжении.

Трёхмерная КТ способствует объёмному изучению органов.

Виртуальная эндоскопия способна дать цветное изображение как наружных контуров органов с соседними образованиями, так и визуализировать внутреннюю поверхность некоторых органов (например, трахеи и главных бронхов, толстой кишки, сосудов), создавая иллюзию продвижения по ним, как при эндоскопии.

Компьютерные томографы с кардиосинхронизаторами создают возможность получения поперечных срезов сердца только в заданное время - во время систолы или во время диастолы. Это позволяет судить о размерах камер сердца и оценить сократительную способность сердечной стенки.

Для чего существует при КТ методика усиления, как проводится и каковы показания к её применению?

Методика усиления при КТ существует для повышения контрастности изображения. Этого достигают путём внутривенного введения больному 20-40 мл водорастворимого контрастного вещества (натрия амидотризоат), которое способствует увеличению поглощения рентгеновского излучения.

Показания к применению методики усиления при КТ

Обнаружение объёмных образований, так, например, на фоне усиленной тени паренхимы печени лучше выявляются:

Малососудистые или бессосудистые образования (кисты, опухоли);

Выделяются сильно васкуляризированные опухоли - гемангиомы.

Дифференциальная диагностика:

Доброкачественных и злокачественных опухолей;

Первичного рака и метастазов в печень.

Уточнённая диагностика патологических изменений головного мозга, средостения, малого таза.

В каких случаях нужна подготовка пациентов к КТ?

Подготовка пациентов к КТ нужна при исследовании органов брюшной полости, она заключается в следующем.

Пациент должен быть натощак.

Принимают меры для уменьшения газов в кишечнике (за 2-3 дня до исследования - низкошлаковая диета и приём натощак активированного угля из расчёта 1 таблетка на 10 кг массы тела 1 раз в сутки утром).

Контрастирование желудка и кишечника, чтобы они не затрудняли интерпретацию мягкотканных образований брюшной полости. Для этого 20 мл (1 ампулу) 76% водорастворимого контрастного вещества (натрия амидотризоат) растворяют в 1/2 л кипяченой воды, затем 1/2 этого раствора принимают перорально за 12 ч до исследования, 1/2 из оставшейся половины - за 3 ч и остальной контраст непосредственно перед исследованием. Время приёма препарата рассчитано с учётом сроков эвакуации по ЖКТ.

Контрастирование желудка и кишечника для изучения этих органов проводят путём приёма 250-500 мл 2,5% водорастворимого контраста непосредственно перед исследованием.

Необходимо добиться отсутствия в желудке и кишечнике бариевой взвеси, оставшейся после предварительно проведённого рентгенологического исследования, поэтому КТ назначают не раньше, чем через 2-3 сут после рентгеноскопии.

В чём состоят преимущества КТ?

Благодаря КТ впервые за всю историю развития медицины появилась возможность изучать анатомию органов и тканей на живом человеке, включая структуры диаметром в несколько миллиметров.

При выведении изображения на дисплей можно с помощью компьютера увеличивать или уменьшать исследуемые объекты, менять теневую картину для лучшей визуализации.

С помощью КТ можно дифференцировать друг от друга рядом расположенные объекты даже с небольшой разницей в плотности - 0,4-0,5% (при рентгенографии не менее 15-20%).

КТ применяют при исследовании органов мало доступных для рентгенологического исследования, таких как головной и спинной мозг, печень, поджелудочная железа, надпочечники, предстательная железа, лимфатические узлы, сердце. При этом КТ уточняет данные сонографии.

При КТ существует возможность детального изучения патологических изменений, их локализации, формы, размеров, контуров, структуры, плотности, что позволяет не только установить их характер, но и провести дифференциальную диагностику заболеваний. Так, например, благодаря установлению плотности объём- ного образования можно отдифференцировать кисту от опухоли.

Под контролем КТ производят пункцию различных объектов.

КТ используют для динамического контроля после проведения консервативного и хирургического лечения.

КТ нашла широкое применение в лучевой терапии для установления формы, размеров и границ полей облучения, особое значение это имеет благодаря получению поперечных срезов тела человека на любом уровне, так как раньше приходилось изготавливать разметку опухолей на поперечных срезах вручную.

Как формируется изображение при КТ? Для чего существует шкала Хаунсфилда? Какое изображение дают различные органы?

Формирование изображения при КТ, как и при рентгенологическом исследовании, происходит благодаря тому что различные органы и ткани по-разному поглощают рентгеновские лучи, что зависит в первую очередь от плотности объекта. Для определения плотности объектов при КТ существует так называемая шкала Хаунсфилда, согласно которой для каждого органа и ткани подсчитан коэффициент абсорбции (КА).

КА воды принят за 0.

КА костей, обладающих наибольшей плотностью, составляет +1000 единиц Хаунсфилда (Hounsfield Unifs );

КА воздуха, имеющего наименьшую плотность, равен -1000 HU. В этом интервале и располагаются все органы и ткани:

В отрицательной части шкалы менее плотные: жировая клетчатка, лёгочная ткань (они дают гиподенсивное изображение);

В положительной части - более плотные: печень, почки, селе- зёнка, мышцы, кровь и т.д. (выглядят гиперденсивными).

Разница КА многих органов и очагов может составлять всего 10-15 HU, но тем не менее они визуализируются из-за большой чувствительности метода (в 20-40 раз больше, чем рентгенографии).

При исследовании каких органов используют КТ?

КТ используют обычно для исследования тех органов, которые невозможно или технически трудно изучить рентгенологически, а также при трудностях дифференциальной рентгенодиагностики и для уточнения данных УЗИ:

Органы пищеварения (поджелудочная железа, печень, желчный пузырь, желудок, кишечник);

Почки и надпочечники;

Селезёнка;

Органы грудной полости (лёгкие и средостение);

Щитовидная железа;

Орбита и глазное яблоко;

Носоглотка, гортань, придаточные пазухи носа;

Органы малого таза (матка, яичники, предстательная железа, мочевой пузырь, прямая кишка);

Молочная железа;

Головной мозг;

Компьютерная проективная томография является неинвазивным методом диагностики заболеваний (то есть получение изображений внутреннего строения организма без его повреждения). Принцип работы компьютерного томографа основан на разности коэффициента поглощения разными по плотности тканями организма. Изображение получают путем компьютерной обработки разности ослабления рентгеновского излучения. Поглощение рентгеновского излучения может меняться при разных заболеваниях.

Преимущество КТ перед рентгенодиагностикой

Данный метод позволяет увидеть мельчайшие структуры внутренних органов размером всего несколько миллиметров. В отличии от классического рентгеновского обследование, где имеем изображение всех внутренних органов, через которые проходило рентгеновские лучи, КТ дает набор срезов (проекций) пациента. Далее данные обрабатывает компьютер, формируя трехмерное изображение. На рентгеновских снимках все слои тканей накладываются один на другой и небольшие патологические образования могут быть невидны. КТ дает информацию о небольших новообразованиях, которые еще поддаются хирургическому лечению.

Специфика работы компьютерного резонансного томографа

Компьютерный томограф представляет собой кольцо, через которое проходит стол с пациентом. В кольце расположена рентгеновская трубка, производящая излучение и детекторы, воспринимающие его.
Рентгеновская трубка вращается вокруг пациента, что дает возможность получать отдельные изображения поперечных слоев тканей. Качественные изображения позволяют с большой точностью определить локализацию очага заболевания, взаимное положение органов, а так же их морфологические изменения.
Компьютерная томография используется для обследования скелета, органов грудной клетки, брюшной полости, для диагностики злокачественных опухолей и других заболеваний.

Виды томографов

  • Томограф 1-го поколения имеет одну рентгеновскую трубку, один детектор. Сканирование проводится в несколько этапов, с одним оборотом снимается один слой, каждый занимает около 4 минут.
  • Томограф 2-го поколения имеет веерный тип конструкции. Одна рентгеновская трубка, несколько детекторов. Время обследования - 20 сек.
  • Томограф 3-го поколения использует принцип спиральной компьютерной томографии. За один шаг стола рентгеновская трубка с расположенными напротив нее детекторами (количество которых больше, чем в предыдущем поколении) осуществляет один оборот. Время обследования около 3 сек.
  • Томограф 4-го поколения имеет множество датчиков, расположенных по всему кольцу, вращается только рентгеновская трубка. Преимущество томографа 4-го поколения перед томографом 3-го поколения только во времени обследования, которое составляет меньше секунды.

Последние последних методов компьютерной томографии сделали возможным проведение обследования сердца, бронхов, кишечника.

Как проходит КТ обследование?

Перед обследованием пациент должен снять из себя все металлические предметы (украшения, ключи, телефон), так как они могут искажать картину, кроме того, электроника может выйти из строя. Существует множество фирм, занимающиеся техническим обслуживанием КТ. Вот, например, сайт одной из них http://mrimrt.ru/ . Рекомендуется пару часов не есть перед обследованием.
Во время процедуры пациент ложится на стол томографа и лежит в расслабленном состоянии. КТ абсолютно безболезненна. Процедура сканирования длится меньше одной минуты. После обследования пациент получает рентгеновскую пленку с отобранными снимками, заключение врача рентгенолога, а также CD-диск с полным обследованием и программой для его чтения.

Плюсы КТ

Обследование занимает около минуты.
. Совершенно безболезненный метод.
. Можно использовать как метод первичной диагностики, и как уточняющий метод, после ультразвукового или рентгеновского обследования.
. Быстрое выявление повреждений дает возможность спасти человеку жизнь.
. Диагностика болезней на ранних стадиях.
. Не влияет на работу имплантированных медицинских устройств.
. Высокое разрешение и контрастность изображений.

Минусы КТ

Более высокая доза излучения, чем в рентгеновском обследовании.
. Если есть возможность беременности, нужно обязательно сообщить врачу.
. При введении некоторых контрастных веществ (например, йод), есть возможность возникновения аллергических реакций.

Противопоказания для компьютерной томографии

Большая масса тела
. Наличие гипса или металлического элемента.
. Беременность и кормление грудью.
. Дети (связано с лучевой нагрузкой).
. Почечная недостаточность.
. Диабет.
. Проблемы со щитовидной железой

КТ сосудов

Причина заболевания может крыться в нарушении работы сосудов. В таком случаи применяется метод ангиографии. В организм пациента вводится контрастное вещество и проводится компьютерная томография сосудов любой части тела

КТ головного мозга

Для того, чтобы сделать изображения мозга более четким, вводится контрастное вещество. Врач получает послойный снимок мозга и может диагностировать опухоли, кисты, заболевания сосудов, гематомы, отек, воспаления и другие заболевания.
Также проводится исследования брюшной полости (назначается при панкреатите, пиелонефрите, циррозе печени, болевых ощущения в брюшной полости),грудной клетки (пневмония, рак, туберкулез).
Томографы сегодня есть в большинстве современных больниц. Компьютерная томография незаменима для правильного планирования радиотерапии при опухолях, руководства малоинвазивными методами лечения, а так же для исследования состояния внутренних органов посте травмы или трансплантации.

КТ от МРТ отличается по принципу действия. На усмотрение врача может назначаться та или иная процедура. В зависимости от того, какая область организма должна быть обследована, выбирается и диагностический метод. Также во многом метод диагностики зависит и от того, сколько раз за короткий период времени потребуется провести обследование. Каждый из методов имеет свои достоинства и недостатки. Их полезно знать пациенту, который должен проходить диагностическое обследование с применением компьютерного или магнитно-резонансного томографа.

Оба метода высокоинформативны и позволяют очень точно определить наличие или отсутствие патологических процессов. В принципе действия приборов есть кардинальная разница, и из-за этого возможность частоты сканирования организма при помощи этих двух приборов различна. Сегодня в качестве наиболее точных методов диагностики используются рентген, КТ, МРТ.

Компьютерная томография — КТ

Компьютерная томография проводится с использованием рентгеновских лучей и, как и рентгенография, сопровождается облучением организма. Проходя через тело, при таком исследовании лучи позволяют получить не двухмерное изображение (в отличие от рентгена), а объёмное, что намного удобнее при диагностике. Излучение при сканировании организма исходит из особого кольцеобразного контура, расположенного в капсуле прибора, в которой находится пациент.

По сути, при проведении компьютерной томографии выполняется череда последовательных рентгеновских снимков (воздействие таких лучей вредно) поражённой области. Они выполняются в разных проекциях, из-за чего удаётся получить точное трёхмерное изображение обследуемой области. Все изображения объединяются и превращаются в единую картинку. Большое значение имеет то, что врач может посмотреть все снимки по отдельности и за счёт этого изучить срезы, которые, в зависимости от настройки аппарата, могут быть толщиной от 1 мм, а после этого еще и объёмное изображение.

Таким образом, при проведении компьютерной томографии пациент получает некоторую дозу облучения, как и при рентгене, из-за чего процедуру нельзя назвать полностью безопасной.

Магнитно-резонансная томография — МРТ

Магнитно-резонансная томография также позволяет получить трёхмерное изображение и череду снимков, которые можно смотреть по отдельности. В отличие от КТ, в аппарате не используется рентгеновских лучей, и пациент не получает дозы облучения. Для сканирования организма используется действие электромагнитных волн. На их воздействие разные ткани дают неодинаковый ответ, и потому происходит формирование изображения. Особый приёмник в аппарате улавливает отражение волн от тканей и формирует изображение. Врач имеет возможность увеличить, когда это нужно, картинку на экране прибора и посмотреть послойные срезы интересующего органа. Проекция снимков разная, что необходимо для полноценного осмотра исследуемой области.

Отличия в принципе работы томографов дают врачу возможность при выявлении патологий в той или иной области тела выбрать тот метод, что в конкретной ситуации сможет дать более полноценную информацию: КТ или МРТ.

Показания

Показания для проведения обследования с применением того или другого метода различны. Компьютерная томография выявляет изменения в костях, а также кисты, камни и опухолевые образования. МРТ же показывает, кроме этих нарушений, ещё и различные патологии мягких тканей, сосудистых и нервных путей, суставных хрящей.

Показания к МРТ Показания к КТ
Опухоли мягких тканей и подозрение на их наличие Повреждение костей, в том числе челюсти и зубов
Определение состояния нервных волокон во внутренних органах, а также головном и спинном мозге Определение степени повреждения суставов при травмах и хронических заболеваниях
Определение состояния оболочек спинного мозга и головного мозга Выявление болезней позвоночника, в том числе межпозвонковых грыж, остеопороза и сколиоза
Изучение состояния головного мозга после инсульта и при рассеянном склерозе Определение степени повреждения головного мозга при опухолевых заболеваниях и травмах
Определение состояния мышц и связок Определение состояния органов грудной клетки
Определение состояния суставов Определение новообразований в щитовидной железе
Воспалительные и некротические процессы в тканях органов и костных тканях Определение изменений в полых органах
МРТ лёгких может быть проведено при установлении наличия опухолевого процесса даже в самом начале его развития. Определение наличия камней в желчном пузыре и мочеполовой системе

В ряде случаев может быть использован с равной долей информативности компьютерный или магнитно-резонансный томограф. Таким образом, в зависимости от оснащённости медицинского учреждения обследование может проводиться с применением одного или другого вида оборудования для сканирования состояния тела.

Противопоказания

Оба метода сканирования имеют некоторые противопоказания к применению. В ряде случаев, когда проведение одного метода исследования не желательно или запрещено, может быть рассмотрен вариант проведения второго.

Противопоказания к КТ Противопоказания к МРТ
Беременность Наличие металлических элементов в организме
Грудное кормление (если проводится процедура, надо прервать вскармливание грудью на 48 часов после исследования, чтобы ребёнок не получил порцию радиации) Присутствие вживлённых электронных корректоров работы внутренних органов и систем
Детский возраст (исключением являются только случаи, когда иного способа определения состояния больного нет, и польза от диагностики превышает риски от процедуры) Наличие инсулиновой помпы
Вес пациента более 200 кг Первый триместр беременности
Нервное перевозбуждение, при котором пациент не может сохранять неподвижное состояние во время сканирования Вес более 130 кг
Частое использование Невозможность нахождения в неподвижном состоянии столько времени, сколько необходимо для процедуры
Гипсовая повязка в месте обследования Клаустрофобия

При процедуре с контрастированием противопоказания для обеих процедур одинаковы. Связано это с тем, что контрастное вещество имеет ограничения к использованию. Вводить его не следует при наличии тяжёлой почечной и печёночной недостаточности, а также при аллергии на контраст.

Если неизвестно, есть ли наличие непереносимости средства, то предварительно проводится тест на аллергию на контрастное вещество. Использовать могут несколько видов контраста и, как правило, удаётся подобрать средство, которое подходит конкретному пациенту.

Как часто можно проводить сканирование

КТ проводится с применением рентгеновских лучей, и потому частое повторение процедуры не допускается. По норме проводить ее более 1 раза в год не следует. Если имеется раковое заболевание, регулярный мониторинг которого необходим, минимальный перерыв между обследованиями составляет 2,5 месяца. Лучше в этом случае применять МРТ, при которой отсутствует негативное воздействие на организм радиации, что важно для предупреждения осложнений. Процедура не просто безопаснее, а полностью безвредна. МРТ можно проводить неограниченное количество раз, а при необходимости – даже несколько сканирований за 1 день.

При использовании сканирования с контрастированием также нет ограничений на частоту процедуры. Единственное, что необходимо учитывать, – это перерыв между повторными введениями средства. Его желательно выдерживать не менее 2 дней, чтобы снизить нагрузку на почки. Вреда здоровью контрастное вещество не наносит. Если оно применяется при КТ, то все ограничения связаны непосредственно с рентгеновским воздействием, а не влиянием на организм контраста.

Возможно ли проводить МРТ и КТ в один день

Принцип воздействия на организм при обследовании с применением компьютерного и магнитного томографов разный, и потому при их сочетании организм перегрузки не получает. В случае необходимости можно провести оба вида томографии в один день, не опасаясь за здоровье. Это полностью безопасно.

Отличие методик при исследовании мозга

Сканирование мозга необходимо при многих нарушениях, в том числе инсультах, нарушении кровоснабжении и опухолевых процессах. Если нужно часто делать снимки для контроля состояния, то предпочтение надо отдать МРТ, так как она не представляет опасности при частом повторении. Какой метод будет выбран, всецело зависит от оснащённости клиники и наличия у пациента противопоказаний и ограничений к процедуре.

По данным КТ и МРТ при изучении мозга получают одинаково точные результаты, и потому в диагностике различий не будет. Оба вида исследования покажут опухоли, сосудистые нарушения и очаги воспалений. Дополнительно МРТ позволяет определить и плотность тканей мозга.

Важной особенностью магнитно-резонансной томографии является способность выявить очаг ишемического нарушения ещё за 20 минут до того, как разовьётся острое состояние больного. Из-за этого при подозрениях на патологию проводится именно МРТ.

Что лучше для сканирования лёгких

Если имеются подозрения на то, что при травме осколки рёбер затронули лёгкие, то показано проведение КТ, так как эта процедура точнее всего продемонстрирует наличие костных осколков. Такое же сканирование применяется при травмах для исключения или выявления кровотечений. Так как проводится компьютерная томография особенно быстро, то в экстренных состояниях она наиболее оптимальна. Также процедура позволяет очень точно определить присутствие метастазов; КТ лёгких показывает и вторичные раковые опухоли.

МРТ лёгких чаще назначается при опухолевых и воспалительных процессах. Такие изменения в мягких тканях обследование показывает очень чётко и позволяет отслеживать динамику их развития без риска чрезмерного облучения организма.

Различия в воздействии томографов на организм позволяют получить максимум информации.

Что оптимально при исследовании брюшной полости

Сильных различий по информативности методов нет. Исключением является то, что при КТ лучше определяется плотность тканей органов брюшной полости, а также можно быстро установить наличие твердых образований и предметов, костных обломков и кровотечений. При травматических повреждениях живота рекомендуется проведение именно КТ, так как быстрота проведения процедуры дает возможность в минимальный срок выявить опасные нарушения.

МРТ позволяет получить самую точную информацию о состоянии мягких тканей и наличии воспалительных процессов в брюшной полости. Из-за этого процедура чаще проводится при исследовании состояния, поджелудочной железы, печени, селезенки, кишечника и др.

Что информативнее при болезнях суставов

При поражениях суставов, в том числе тазобедренных, назначаются и КТ, и МРТ. Пациентов закономерно интересует, какой метод более информативен и достоверен. При нарушениях в суставах чаще всего проводится магнитно-резонансная томография, которая позволяет получить максимум информации обо всех тканях, в том числе мягких, воспалением которых очень часто сопровождаются болезни суставов.
При травмах или хронических патологиях проведение МРТ позволяет определить состояние даже нервных волокон, сухожилий, связок и кровеносных сосудов.

КТ суставов применяют при травмах, когда подозревается наличие повреждений костей или их головок, образующих сустав. Во время такой процедуры быстро выявляются кровотечения в полость сустава и присутствие костных осколков. Также это исследование проводится при заболеваниях и травмах суставов, если есть противопоказания для проведения магнитно-резонансной томографии.

Если необходимо регулярно контролировать изменения в суставе, то применяется только МРТ, так как перегрузка рентгеновскими лучами организма представляет большую угрозу. Детям при проблемах с суставами проводится только МРТ.

Какое сканирование лучше

Каждый из методов является высокоинформативным. Выбор того, какое исследование будет проводиться, зависит от противопоказаний и того, какие ткани надо осмотреть в первую очередь. Если есть подозрения на проблемы с костными системами, врач выбирает КТ, а с мягкими – МРТ. Нельзя сказать, что одна диагностическая процедура лучше, а другая хуже. Каждый метод эффективнее для получения определённой информации. Более опасной для здоровья является КТ, но при обследовании, проведенном правильно, рентгеновское излучение не вызовет негативных последствий.

Где делают и сколько стоит процедура?

Стоимость обследования зависит от области сканирования и того, какого поколения оборудование применяется (разница в цене в зависимости от типа прибора может быть достаточно велика). Имеет значение и клиника, в которой проводится процедура. В государственных медицинских учреждениях пройти КТ можно за 3-4 тысячи рублей, а МРТ стоит от 4 до 9 тысяч рублей в зависимости от исследуемого органа. Дороже всего обойдётся сканирование головного мозга.

Компьютерная томография

Магнитно-резонансная томография

Выбор метода диагностики остаётся за лечащим врачом. И МРТ, и КТ должны проводиться только по медицинским назначениям.

Компьютерная томография

Компьютерный томограф

Компью́терная томогра́фия - метод неразрушающего послойного исследования внутренней структуры объекта, был предложен в 1972 году Годфри Хаунсфилдом и Алланом Кормаком , удостоенными за эту разработку Нобелевской премии . Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями.

Компьютерная томография (КТ) - в широком смысле, синоним термина томография (так как все современные томографические методы реализуются с помощью компьютерной техники); в узком смысле (в котором употребляется значительно чаще), синоним термина рентгеновская компьютерная томография , так как именно этот метод положил начало современной томографии.

Рентгеновская компьютерная томография - томографический метод исследования внутренних органов человека с использованием рентгеновского излучения.

Появление компьютерных томографов

Первые математические алгоритмы для КТ были разработаны в 1917 году австрийским математиком И. Радоном (см. преобразование Радона). Физической основой метода является экспоненциальный закон ослабления излучения , который справедлив для чисто поглощающих сред. В рентгеновском диапазоне излучения экспоненциальный закон выполняется с высокой степенью точности, поэтому разработанные математические алгоритмы были впервые применены именно для рентгеновской компьютерной томографии.

Предпосылки метода в истории медицины

Изображения, полученные методом рентгеновской компьютерной томографии, имеют свои аналоги в истории изучения анатомии . В частности, Николай Иванович Пирогов разработал новый метод изучения взаиморасположения органов оперирующими хирургами, получивший название топографической анатомии . Сутью метода было изучение замороженных трупов, послойно разрезанных в различных анатомических плоскостях («анатомическая томография»). Пироговым был издан атлас под названием «Топографическая анатомия, иллюстрированная разрезами, проведёнными через замороженное тело человека в трёх направлениях». Фактически, изображения в атласе предвосхищали появление подобных изображений, полученных лучевыми томографическими методами исследования. Разумеется, современные способы получения послойных изображений имеют несравнимые преимущества: нетравматичность, позволяющая проводить прижизненную диагностику заболеваний; возможность аппаратной реконструкции однократно полученных «сырых» КТ-данных в различных анатомических плоскостях (проекциях), а также трёхмерной реконструкции; возможность не только оценивать размеры и взаиморасположение органов, но и детально изучать их структурные особенности и даже некоторые физиологические характеристики, основываясь на показателях рентгеновской плотности и их изменении при внутривенном контрастном усилении.

С математической точки зрения построение изображения сводится к решению системы линейных уравнений . Так, например, для получения томограммы размером 200×200 пикселей система включает 40000 уравнений. Для решения подобных систем разработаны специализированные методы, ориентированные на параллельные вычисления .

Поколения компьютерных томографов: от первого до четвёртого

Прогресс КТ томографов напрямую связан с увеличением количества детекторов, то есть с увеличением числа одновременно собираемых проекций.

Аппарат 1-го поколения появился в 1973 г. КТ аппараты первого поколения были пошаговыми. Была одна трубка, направленная на один детектор. Сканирование производилось шаг за шагом, делая по одному обороту на слой. Один слой изображения обрабатывался около 4 минут.

Во 2-м поколении КТ аппаратов использовался веерный тип конструкции. На кольце вращения напротив рентгеновской трубки устанавливалось несколько детекторов. Время обработки изображения составило 20 секунд.

3-е поколение компьютерных томографов ввело понятие спиральной компьютерной томографии. Трубка и детекторы за один шаг стола синхронно осуществляли полное вращение по часовой стрелке, что значительно уменьшило время исследования. Увеличилось и количество детекторов. Время обработки и реконструкций заметно уменьшилось.

4-е поколение имеет 1088 люминесцентных датчиков, расположенных по всему кольцу гентри . Вращается лишь рентгеновская трубка. Благодаря этому методу время вращения сократилось до 0,7 секунд. Но существенного отличия в качестве изображений с КТ аппаратами 3-го поколения не имеет.

Спиральная компьютерная томография

Спиральная КТ используется в клинической практике с 1988 года , когда компания Siemens Medical Solutions представила первый спиральный компьютерный томограф. Спиральное сканирование заключается в одновременном выполнении двух действий: непрерывного вращения источника - рентгеновской трубки , генерирующей излучение, вокруг тела пациента , и непрерывного поступательного движения стола с пациентом вдоль продольной оси сканирования z через апертуру гентри. В этом случае траектория движения рентгеновской трубки, относительно оси z - направления движения стола с телом пациента, примет форму спирали.

В отличие от последовательной КТ скорость движения стола с телом пациента может принимать произвольные значения, определяемые целями исследования. Чем выше скорость движения стола, тем больше протяженность области сканирования. Важно то, что длина пути стола за один оборот рентгеновской трубки может быть в 1,5–2 раза больше толщины томографического слоя без ухудшения пространственного разрешения изображения.

Технология спирального сканирования позволила значительно сократить время, затрачиваемое на КТ-исследование и существенно уменьшить лучевую нагрузку на пациента.

Многослойная компьютерная томография (МСКТ)

Многослойная («мультиспиральная») компьютерная томография с внутривенным контрастным усилением и трёхмерной реконструкцией изображения.

Многослойная («мультиспиральная», «мультисрезовая» компьютерная томография - МСКТ) была впервые представлена компанией Elscint Co. в 1992 году . Принципиальное отличие мсКТ томографов от спиральных томографов предыдущих поколений в том, что по окружности гентри расположены не один, а два и более ряда детекторов. Для того, чтобы рентгеновское излучение могло одновременно приниматься детекторами, расположенными на разных рядах, была разработана новая - объёмная геометрическая форма пучка. В 1992 году появились первые двухсрезовые (двухспиральные) МСКТ томографы с двумя рядами детекторов, а в 1998 году - четырёхсрезовые (четырёхспиральные), с четырьмя рядами детекторов соответственно. Кроме вышеотмеченных особенностей, было увеличено количество оборотов рентгеновской трубки с одного до двух в секунду. Таким образом, четырёхспиральные мсКТ томографы пятого поколения на сегодняшний день в восемь раз быстрее, чем обычные спиральные КТ томографы четвертого поколения. В -2005 годах были представлены 32-, 64- и 128-срезовые МСКТ томографы, в том числе - с двумя рентгеновскими трубками. Сегодня же в некоторых клиниках уже имеются 320-срезовые компьютерные томографы. Эти томографы, впервые представленные в 2007 году компанией Toshiba, являются новым витком эволюции рентгеновской компьютерной томографии. Они позволяют не только получать изображения, но и дают возможность наблюдать почти что «в реальном» времени физиологические процессы, происходящие в головном мозге и в сердце ! Особенностью подобной системы является возможность сканирования целого органа (сердце, суставы, головной мозг и т.д.) за один оборот рентгеновской трубки, что значительно сокращает время обследования, а также возможность сканировать сердце даже у пациентов, страдающих аритмиями. Несколько 320-срезовых сканеров уже установлены и функционируют в России.

Преимущества МСКТ перед обычной спиральной КТ

  • улучшение временного разрешения
  • улучшение пространственного разрешения вдоль продольной оси z
  • увеличение скорости сканирования
  • улучшение контрастного разрешения
  • увеличение отношения сигнал/шум
  • эффективное использование рентгеновской трубки
  • большая зона анатомического покрытия
  • уменьшение лучевой нагрузки на пациента

Все эти факторы значительно повышают скорость и информативность исследований.

Основным недостатком метода остается высокая лучевая нагрузка на пациента, несмотря на то, что за время существования КТ её удалось значительно снизить.

  • Улучшение временного разрешения достигается за счёт уменьшения времени исследования и количества артефактов из-за непроизвольного движения внутренних органов и пульсации крупных сосудов .
  • Улучшение пространственного разрешения вдоль продольной оси z, связано с использованием тонких (1–1,5 мм) срезов и очень тонких, субмиллиметровых (0,5 мм) срезов. Чтобы реализовать эту возможность, разработаны два типа расположения массива детекторов в МСК томографах:
    • матричные детекторы (matrix detectors), имеющие одинаковую ширину вдоль продольной оси z;
    • адаптивные детекторы (adaptive detectors), имеющие неодинаковую ширину вдоль продольной оси z.
Преимущество матричного массива детекторов заключается в том, что количество детекторов в ряду можно легко увеличить для получения большего количества срезов за один оборот рентгеновской трубки. Так как в адаптивном массиве детекторов меньше количество самих элементов, то меньше и число зазоров между ними, что дает снижение лучевой нагрузки на пациента и уменьшение электронного шума. Поэтому три из четырёх мировых производителей МСК томографов выбрали именно этот тип.

Все вышеотмеченные нововведения не только повышают пространственное разрешение, но благодаря специально разработанным алгоритмам реконструкции позволяют значительно уменьшить количество и размеры артефактов (посторонних элементов) КТ-изображений. Основным преимуществом МСКТ по сравнению с односрезовой СКТ является возможность получения изотропного изображения при сканировании с субмиллиметровой толщиной среза (0,5 мм). Изотропное изображение возможно получить, если грани вокселя матрицы изображения равны, то есть воксель принимает форму куба . В этом случае пространственное разрешение в поперечной плоскости x-y и вдоль продольной оси z становится одинаковым.

  • Увеличение скорости сканирования достигается уменьшением времени оборота рентгеновской трубки, по сравнению с обычной спиральной КТ, в два раза - до 0,45–0,50 с.
  • Улучшение контрастного разрешения достигается вследствие увеличения дозы и скорости введения контрастных средств при проведении ангиографии или стандартных КТ-исследований, требующих контрастного усиления. Различие между артериальной и венозной фазой введения контрастного средства прослеживается более чётко.
  • Увеличение отношения сигнал/шум достигнуто благодаря конструктивным особенностям исполнения новых детекторов и используемых при этом материалов; улучшения качества исполнения электронных компонентов и плат ; увеличению тока накала рентгеновской трубки до 400 мА при стандартных исследованиях или исследованиях тучных пациентов.
  • Эффективное использование рентгеновской трубки достигается за счёт меньшего времени работы трубки при стандартном исследовании. Конструкция рентгеновских трубок претерпела изменения для обеспечения лучшей устойчивости при больших центробежных силах, возникающих при вращении за время, равное или менее 0,5 с. Использование генераторов большей мощности (до 100 кВт), конструктивные особенности исполнения рентгеновских трубок, лучшее охлаждение анода и повышение его теплоёмкости до 8 000 000 единиц также позволяют продлить срок службы трубок.
  • Зона анатомического покрытия увеличена благодаря одновременной реконструкции нескольких срезов полученных за время одного оборота рентгеновской трубки. Для МСКТ установки зона анатомического покрытия зависит от количества каналов данных, шага спирали, толщины томографического слоя, времени сканирования и времени вращения рентгеновской трубки. Зона анатомического покрытия может быть в несколько раз больше за одно и то же время сканирования по сравнению с обычным спиральным компьютерным томографом.
  • Лучевая нагрузка при многослойном спиральном КТ-исследовании при сопоставимых объёмах диагностической информации меньше на 30 % по сравнению с обычным спиральным КТ-исследованием. Для этого улучшается фильтрация спектра рентгеновского излучения и производится оптимизация массива детекторов. Разработаны алгоритмы , позволяющие в реальном масштабе времени автоматически уменьшать ток и напряжение на рентгеновской трубке в зависимости от исследуемого органа , размеров и возраста каждого пациента.

Компьютерная томография с двумя источниками излучения

DSCT - Dual Source Computed Tomography. Русскоязычной аббревиатуры в настоящее время нет.

Контрастное усиление

Для улучшения дифференцировки органов друг от друга, а также нормальных и патологических структур, используются различные методики контрастного усиления (чаще всего, с применением йодсодержащих контрастных препаратов).

Двумя основными разновидностями введения контрастного препарата являются пероральное (пациент с определенным режимом выпивает раствор препарата) и внутривенное (производится медицинским персоналом). Главной целью первого метода является контрастирование полых органов желудочно-кишечного тракта; второй метод позволяет оценить характер накопления контрастного препарата тканями и органами через кровеносную систему. Методики внутривенного контрастного усиления во многих случаях позволяют уточнить характер выявленных патологических изменений (в том числе достаточно точно указать наличие опухолей, вплоть до предположения их гистологической структуры) на фоне окружающих их мягких тканей, а также визуализировать изменения, не выявляемые при обычном («нативном») исследовании.

В свою очередь, внутривенное контрастирование можно проводить двумя способами: «ручное» внутривенное контрастирование и болюсное контрастирование .

При первом способе контраст вводится вручную рентгенлаборантом или процедурной медсестрой, время и скорость введения не регулируются, исследование начинается после введения контрастного вещества. Этот способ применяется на «медленных» аппаратах первых поколений, при МСКТ «ручное» введение контрастного препарата уже не соответствует значительно возросшим возможностям метода.

При болюсном контрастном усилении контрастный препарат вводится внутривенно шприцем-инжектором с установленными скоростью и временем подачи вещества. Цель болюсного контрастного усиления - разграничение фаз контрастирования. Время сканирования различается на разных аппаратах, при разных скоростях введения контрастного препарата и у разных пациентов; в среднем при скорости введения препарата 4–5 мл/сек сканирование начинается примерно через 20–30 секунд после начала введения инжектором контраста, при этом визуализируется наполнение артерий (артериальная фаза контрастирования). Через 40–60 секунд аппарат повторно сканирует эту же зону для выделения портально-венозной фазы, в которую визуализируется контрастирование вен. Также выделяют отсроченную фазу (180 секунд после начала введения), при которой наблюдается выведение контрастного препарата через мочевыделительную систему.

КТ-ангиография

КТ-ангиография позволяет получить послойную серию изображений кровеносных сосудов; на основе полученных данных посредством компьютерной постобработки с 3D-реконструкцией строится трёхмерная модель кровеносной системы.

Спиральная КТ-ангиография - одно из последних достижений рентгеновской компьютерной томографии. Исследование проводится в амбулаторных условиях. В локтевую вену вводится йодсодержащий контрастный препарат в объеме ~100 мл. В момент введения контрастного вещества делают серию сканирований исследуемого участка.

КТ-перфузия

Метод, позволяющий оценить прохождение крови через ткани организма, в частности.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top