Нейронные сети для задач диагностики. Нейронные сети в медицине Нейронные сети в кардиологии

Нейронные сети для задач диагностики. Нейронные сети в медицине Нейронные сети в кардиологии
Правильная ссылка на статью:

Мустафаев А.Г. — Применение искусственных нейронных сетей для ранней диагностики заболевания сахарным диабетом // Кибернетика и программирование. - 2016. - № 2. - С. 1 - 7. DOI: 10.7256/2306-4196.2016.2.17904 URL: https://nbpublish.com/library_read_article.php?id=17904

Применение искусственных нейронных сетей для ранней диагностики заболевания сахарным диабетом

Другие публикации этого автора

Аннотация.

Сахарный диабет - хроническое заболевание, в патогенезе которого лежит недостаток инсулина в организме человека, вызывающий нарушение обмена веществ и патологические изменения в различных органах и тканях, зачастую приводящие к высокому риску инфаркта и почечной недостаточности. Сделана попытка разработать систему ранней диагностики сахарного диабета обследуемого пациента использующая аппарат искусственных нейронных сетей. Разработана модель нейронной сети на основе многослойного персептрона обученная на основе алгоритма обратного распространения ошибки. Для проектирования нейронной сети был использован пакет Neural Network Toolbox из MATLAB 8.6 (R2015b) являющийся мощным и гибким инструментом работы с нейронными сетями. Результаты обучения и проверки работоспособности спроектированной нейронной сети показывают её успешное применение для решения поставленных задач и способность находить сложные закономерности и взаимосвязи между различными характеристиками объекта. Чувствительность разработанной нейросетевой модели составила 89.5%, специфичность 87.2%. После того как сеть обучена, она становится надежным и недорогим диагностическим инструментом.


Ключевые слова: сахарный диабет, искусственная нейронная сеть, компьютерная диагностика, специфичность, чувствительность, классификация данных, многослойный персептрон, обратное распространение ошибки, сеть прямого распространения, обучение с учителем

10.7256/2306-4196.2016.2.17904


Дата направления в редакцию:

11-02-2016

Дата рецензирования:

12-02-2016

Дата публикации:

03-03-2016

Abstract.

Diabetes is a chronic disease, in the pathogenesis of which is a lack of insulin in the human body causing a metabolic disorder and pathological changes in various organs and tissues, often leading to a high risk of heart attack and kidney failure. The author makes an attempt to create a system for early diagnosis of diabetes patients using the device of artificial neural networks. The article presents a model of neural network based on multilayer perceptron trained by back-propagation algorithm. For the design of the neural network the author used Neural Network Toolbox из MATLAB 8.6 (R2015b) which is a powerful and flexible tool for working with neural networks. The results of training and performance tests of the neural network designed show its successful application for the task and the ability to find patterns and complex relationships between the different characteristics of the object. The sensitivity of the developed neural network model is 89.5%, specificity of 87.2%. Once the network is trained it becomes a reliable and inexpensive diagnostic tool.

Keywords:

Diabetes, artificial neural network, computer diagnostics, specificity, sensitivity, data classification, multilayer perceptron, back propagation of error, direct distribution network, training with teacher

На сегодняшний день в мире диабет считается одним из наиболее распространенных заболеваний. Согласно данных Всемирной организации здравоохранения, около 350 млн. человек всех возрастов и рас страдают разными формами диабета . Сахарный диабет не является следствием патологии какого-то конкретного органа, он возникает из-за общего сбоя в обмене веществ. Его признаки появляются со стороны органов и систем органов, наиболее чувствительных к этому процессу. Клинические признаки диабета зависят от типа заболевания, пола, возраста, уровня инсулина, артериального давления и других факторов. В работе рассматривается система ранней диагностики сахарного диабета обследуемого пациента использующая аппарат искусственных нейронных сетей.

Нейросетевые технологии призваны решать трудноформализуемые задачи, к которым, в частности, сводятся многие проблемы медицины. Это связано с тем, что исследователю часто предоставлено большое количество разнородного фактического материала, для которого еще не создана математическая модель. Хороший результаты показали модели искусственных нейронных сетей для диагностики психических расстройств , болезни Паркинсона и Хантингтона . Модели многослойных персептронов применяются для прогнозирования риска возникновения остеопороза . Логический вывод и обобщенная регрессия использованы для диагностирования гепатита B .

Одним из наиболее удобных инструментов для решения подобных задач являются искусственные нейронные сети - мощный и одновременно гибкий метод имитации процессов и явлений. Современные искусственные нейронные сети представляют собой программно-аппаратные средства создания специализированных моделей и устройств и позволяют решать широкий круг задач диагностики на основе применения алгоритмов теории распознавания образов. Отличительное свойство нейронных сетей состоит в их способности обучаться на основе экспериментальных данных предметной области. Применительно к медицинской тематике экспериментальные данные представляются в виде множества исходных признаков или параметров объекта и поставленного на основе них диагноза. Обучение нейронной сети представляет собой интерактивный процесс, в ходе которого нейронная сеть находит скрытые нелинейные зависимости между исходными параметрами и конечным диагнозом, а также оптимальную комбинацию весовых коэффициентов нейронов, соединяющих соседние слои, при которой погрешность определения класса образа стремится к минимуму . К достоинствам нейронных сетей следует отнести их относительную простоту, нелинейность, работу с нечеткой информацией, не критичность к исходным данным, способность обучаться на материале конкретных примеров. В процессе обучения на вход нейронной сети подается последовательность исходных параметров наряду с диагнозами, которые эти параметры характеризуют.

Для обучения нейронной сети необходимо иметь достаточное количество примеров для настройки адаптивной системы с заданной степенью достоверности. Если примеры относятся к разным диагностическим группам, то обученная таким образом искусственная нейронная сеть позволяет в последующем диагностировать и дифференцировать любой новый случай, представленный набором показателей, аналогичных тем на которых проводилось обучение нейронной сети. Несомненным достоинством нейронной модели является то, что при ее создании не нужно представлять весь набор сложных закономерностей описания диагностируемого феномена.

Вместе с тем, с применением нейронных сетей в практических задачах связан ряд трудностей. Одной из главных проблем применения нейросетевых технологий является заранее неизвестная степень сложности проектируемой нейронной сети, которой будет достаточно для достоверной постановки диагноза. Эта сложность может оказаться недопустимо высокой, что потребует усложнения архитектуры сетей. Простейшие однослойные нейронные сети способны решать только линейно разделяемые задачи . Это ограничение преодолимо при использовании многослойных нейронных сетей.

В данной работе использовалась модель многослойного персептрона (нейронная сеть прямого распространения) обученная на основе алгоритма обратного распространения ошибки. В качестве активационной функции в работе, использовалась логистическая активационная функция (рис. 1):

`F=1/(1+exp(-alphaY)`

где ` alpha` - параметр наклона логистической функции.

Рис. 1. Логистическая функция активации

Многослойный персептрон обладает высокой степенью связности, реализуемой посредством синаптических соединений. Изменение уровня связности сети требует изменения множества синаптических соединений или их весовых коэффициентов. Комбинация всех этих свойств наряду со способностью к обучению на собственном опыте обеспечивает вычислительную мощность многослойного персептрона.

Искусственная нейронная сеть содержала входной слой, один скрытый слой и выходной слой. Входной слой, нейронной сети, имеет 12 нейронов, выходной слой имеет два нейрона (рис. 2).

Рис. 2. Архитектура нейронной сети

Таблица 1. Параметры входного слоя нейронной сети

Параметр

Тип данных, единица измерения

Число (лет)

Физические нагрузки

Логический (да/ нет)

Логический (М / Ж)

Число беременностей

Наличие диабета у близких родственников

Логический (да/ нет)

Индекс массы тела

Число (кг/м 2)

Толщина кожи

Число (мм)

Уровень холестерина

Число, мг/дл

Диастолическое давление

Число, мм. рт. ст.

2-х часовой сывороточный инсулин

Число, мкЕд/мл

Наличие стресса, депрессии

Логический (да/ нет)

Уровень глюкозы в плазме крови

Число, мг/дл

Для проектирования нейронной сети был использован пакет Neural Network Toolbox из MATLAB 8.6 (R2015b). Пакет представляет набор функций и структур данных описывающих функции активации, алгоритмы обучения, установку синаптических весов и др.

Рис. 3. Схема работы алгоритма обратного распространения ошибки

Алгоритм обратного распространения ошибки (рис. 3) предполагает вычисление ошибки, как выходного слоя, так и каждого нейрона обучаемой сети, а также коррекцию весов нейронов в соответствии с их текущими значениями. На первом шаге данного алгоритма веса всех межнейронных связей инициализируются небольшими случайными значениями (от 0 до 1). После инициализации весов в процессе обучения нейронной сети выполняются следующие шаги:

  • прямое распространение сигнала;
  • вычисление ошибки нейронов последнего слоя;
  • обратное распространение ошибки.

Прямое распространение сигнала производится послойно, начиная со входного слоя, при этом рассчитывается сумма входных сигналов для каждого нейрона и при помощи функции активации генерируется отклик нейрона, который распространяется в следующий слой с учетом веса межнейронной связи согласно. В результате выполнения данного этапа мы получаем вектор выходных значений нейронной сети. Следующий этап обучения - вычисление ошибки нейронной сети как разницы между ожидаемым и действительным выходными значениями.

Полученные значения ошибок распространяются от последнего, выходного слоя нейронной сети, к первому. При этом вычисляются величины коррекции весов нейронов в зависимости от текущего значения веса связи, скорости обучения и ошибки, внесенной данным нейроном. После завершения данного этапа шаги описанного алгоритма повторяются до тех пор, пока ошибка выходного слоя не достигнет требуемого значения.

База обучающих и тестовых данных содержала 486 записей о пациентах, 243 из которых имели клинически установленный диагноз «сахарный диабет», другая часть пациентов была здорова.

Нейронная сеть была обучена на 240 выборках и протестирована на 146 выборках. Чувствительность разработанной нейросетевой модели составила 89.5%, специфичность 87.2%. Некоторая сложность теоретического обеспечения использования, трудоемкость и временные затраты по моделированию и обучению нейронных сетей компенсируется простотой их применения конечным пользователем. Если задача создания конкретной нейронной сети адекватной поставленной задаче и ее оптимальное обучение доступна лишь специалисту, то ее практическое применение конечным пользователем требует только навыков владения компьютером. Сложность интерпретации системы знаний обученной нейросетевой модели, является ненужной пользователю нейронной сети, так как для большинства конечных пользователей важно не понимание сущности работы нейронной сети, а ее результативность, информативность, безошибочность и быстродействие.

Библиография

.

фактов о диабете. [Электронный ресурс] Официальный сайт Всемирной организации здравоохранения http://www.who.int/features/factfiles/diabetes/ru/ (дата обращения: 13.01.2016)

.

Беребин М.A., Пашков С.В. Опыт применения искусственных нейронных сетей для целей дифференциальной диагностики и прогноза нарушений психической адаптации. Вестник Южно-Уральского государственного университета, 2006, №14, с.41-45.

.

Gil D., Johnsson M. Diagnosing Parkinson by using artificial neural networks and support vector machines. Global Journal of Computer Science and Technology, 2009, №9(4). pp.63-71.

.

Singh M., Singh M., Singh P. Artificial Neural Network based classification of Neuro-Degenerative diseases using Gait features. International Journal of Information Technology and Knowledge Management, 2013, Vol. 7, №1, pp. 27-30.

.
Факультет: вычислительной техники и информатики
Кафедра: компьютерных систем мониторинга
Специальность: компьютерный эколого-экономический мониторинг
Тема магистерской диссертации:
"Скрытая передача больших массивов информации путем стегокодирования WAV-файлов"
Научный руководитель: Губенко Наталья Евгеньевна, доцент, к.т.н.

Тезисы к докладу на конференции "Компьютерный мониторинг и информационые технологии 2008" на тему "Применение нейронных сетей в медицине"

Использование нейросетей в медицине, как правило, связано с системами для диагностики и дифференциальной диагностики заболеваний. Однако обученная нейросеть не только умеет распознавать примеры, но и хранит достаточно важную информацию. Поэтому одним из серьезных направлений применения нейронных сетей является интерпретация медицинских данных. Поиск глубинных закономерностей между получаемыми данными и патологическими процессами начинает отставать от разработки все новых и новых методов, поэтому применение для этой цели нейросетей может оказаться чрезвычайно выгодным.

Нейронные сети представляют собой нелинейные системы, позволяющие гораздо лучше классифицировать данные, чем обычно используемые линейные методы. В приложении к медицинской диагностике они дают возможность значительно повысить специфичность метода, не снижая его чувствительности.

Отличительное свойство нейросетей состоит в том, что они не программируются - не используют никаких правил вывода для постановки диагноза, а обучаются делать это на примерах. В этом смысле нейросети совсем не похожи на экспертные системы, разработка которых в 70-е годы происходила после временной "победы" Искусственного Интеллекта над тем подходом к моделированию памяти, распознавания образов и обобщения, который основывался на изучении нейронной организации мозга.

Одной из наиболее известных из разработанных экспертных систем, действие которых основывалось на знаниях, извлеченных у экспертов, и на реализации процедур вывода, была система MYCIN. Данную систему разработали в Стэнфорде в начале 70-х годов для диагностики септического шока. Половина больных умирала от него в течение суток, а врачи могли обнаруживать сепсис лишь в 50% случаев. MYCIN, казалось, была подлинным триумфом технологии экспертных систем - ведь она позволяла обнаружить сепсис в 100% случаев.

Примером программы диагностики служит пакет кардиодиагностики, разработанный фирмой RES Informatica совместно с Центром кардиологических исследований в Милане. Программа позволяет осуществлять неинвазивную кардиодиагностику на основе распознавания спектров тахограмм. Тахограмма представляет собой гистограмму интервалов между последовательными сердцебиениями, и ее спектр отражает баланс активностей симпатической и парасимпатической нервной системы человека, специфично изменяющейся при различных заболеваниях.

Так или иначе, уже сейчас можно констатировать, что нейронные сети превращаются в инструмент кардиодиагностики - в Англии, например, они используются в четырех госпиталях для предупреждения инфаркта миокарда.

Одно из главных направлений, в котором сейчас идут работы по использованию нейронных сетей, - диагностика рака молочной железы. Этот недуг - причина смерти каждой девятой женщины. Обнаружение опухоли осуществляется в ходе первичного рентгенографического анализа молочной железы (маммографии) и последующего анализа кусочка ткани новообразования (биопсии). Несмотря на существование общих правил дифференцирования доброкачественных и злокачественных новообразований, по данным маммографии, только от 10 до 20% результатов последующей хирургической биопсии действительно подтверждают наличие рака молочной железы. Опять мы имеем дело со случаем крайне низкой специфичности метода.

Исследователи из университета Дьюка обучили нейронную сеть распознавать маммограммы злокачественной ткани на основе восьми особенностей, с которыми обычно имеют дело радиологи. Оказалось, что сеть способна решать поставленную задачу с чувствительностью около 100% и специфичностью 59% (сравните с 10-20% у радиологов). Сколько женщин с доброкачественными опухолями можно не подвергать стрессу, связанному с проведением биопсии, если использовать эту нейронную сеть!

Нейросети можно использовать и для прогноза действия различных разрабатываемых средств лечения. Они уже успешно применяются в химии для прогноза свойств соединений на основе их молекулярной структуры. Исследователи из Национального института рака в США использовали нейросети для предсказания механизма действия препаратов, применяемых при химиотерапии злокачественных опухолей. Заметим, что существуют миллионы различных молекул, которые необходимо исследовать на предмет их антираковой активности. Для решения аналогичной задачи использовались и сети Кохонена. Эти обучаемые без учителя самоорганизующиеся нейросети разбивали вещества на заранее неизвестное число кластеров и поэтому дали исследователям возможность идентифицировать вещества, обладающие новыми цитотоксическими механизмами воздействия.

Диагностика и лечение онкологических заболеваний, а также разработка новых медикаментозных средств несомненно представляют собой важнейшую область применения нейросетевых технологий. Однако в последнее время среди исследователей и врачей растет осознание того факта, что будущие успехи должны быть тесно связаны с изучением молекулярных и генетических причин развития заболеваний.

Не случайно в апреле 1997 года эксперты Национального института здоровья (США) выступили с рекомендациями по усилению исследований, связанных с выявлением причин, вызывающих рак, и разработок, направленных на предупреждение болезней. Нейросети уже довольно давно активно применяются в анализе геномных последовательностей ДНК, в частности для распознавания промоторов - участков, предшествующих генам и связываемых с белком РНК-полимераза, который инициирует транскрипцию. Их используют для дифференциации кодирующих и некодирующих участков ДНК (экзонов и интронов) и предсказания структуры белков.

Прогностические нейросетевые модели могут использоваться в демографии и организации здравоохранения. Создана экспертная система, предсказывающая, умрет ли человек (в возрасте 55 лет и старше) в ближайшие 10 лет. Прогноз делается по результатам ответов на 18 вопросов анкеты. В анкету включены такие вопросы, как раса, пол, возраст, вредные привычки, семейное положение, семейный доход. 4 из 18 вопросов выявляют индекс массы тела (body mass index) в различные периоды жизни респондента. Индекс рассчитывается как отношение веса к квадрату роста (индекс более 27 кг/м считается тучностью). Повышенное внимание к этому показателю говорит о его значимости для прогноза жизни.

Литература

  1. Нейроинформатика / А.Н.Горбань, В.Л.Дунин-Барковский, А.Н.Кирдин и др. - Новосибирск: Наука. Сибирское предприятие РАН, 1998. - 296с.
  2. С.Короткий Нейронные сети: основные положения
  3. Е. Монахова, "Нейрохирурги" с Ордынки, PC Week/RE, №9, 1995

Поиски и изучение неявных алгоритмов, позволяющих автоматически накапливать и затем использовать опыт при обучении [5.3 ], продолжаются уже более 100 лет [5.4 ]. Однако первые серьезные попытки создания нейронных сетей были сделаны в 40-50-х годах, когда У.Маккалох и У.Питтс выдвинули основные положения теории работы головного мозга. С появлением дешевых ЭВМ произошел резкий скачок в этой области, которая в начале 80-х годов сформировалась в целую науку - нейроинформатику [5.5 , 5.6 , 5.7 ].

Неявные задачи медицины и биологии явились идеальным полем для применения нейросетевых технологий, и именно в этой области наблюдается наиболее яркий практический успех нейроинформационных методов.

Рассмотрим несколько наиболее интересных нейросетевых приложений для биологии и медицины, созданных различными авторами и школами.

Наибольший интерес для практического здравоохранения представляют системы для диагностики и дифференциальной диагностики заболеваний. При этом для принятия решений могут использоваться самые разнообразные данные - анамнез, клинический осмотр (создаются экспертные системы диагностики, ограничивающиеся только этим набором [5.8 ]), результаты лабораторных тестов и сложных функциональных методов. Список областей медицины, в которых начали применяться новые технологии, чрезвычайно обширен и продолжает расти.

Одним из наиболее интенсивно развиваемых направлений является применение нейросетей в кардиологии.

В Италии разработана чрезвычайно интересная экспертная система для диагностики и лечения артериальной гипертонии [5.9 ]. Система включает в себя три нейросетевых модуля, причем ответы одних являются входными данными для других. В начале исследования больному проводят измерение систолического и диастолического давления каждые полчаса в течение суток. Данные за каждый час усредняются. Таким образом, образуется массив из 48 величин артериального давления ( по 24 для систолического и диастолического). После этого первый модуль , состоящий из двух трехслойных нейросетей (в каждой из которых 2 входных, 4 "скрытых" и 24 выходных нейрона), на основании данных о поле и возрасте больного рассчитывает аналогичные "должные" величины и сравнивают их с реальными. Параллельно второй модуль (двухслойная нейросеть с 17 входными и 4 выходными нейронами) на основании клинических данных (симптоматика, анамнез) рассчитывает возможные сочетания гипотензивных лекарственных средств, которые могут быть использованы для лечения данного больного. Данные, снятые с выходов обоих модулей, вместе с клиническими данными подаются на вход последнего, третьего модуля (6 -слойная нейросеть ). Этот модуль оперирует 4 группами гипотензивных препаратов (диуретики, бетаадреноблокаторы, ингибиторы ангиотензина, блокаторы кальциевых каналов). Цель - назначить суточный (почасовой) график приема больным лекарств каждой (если требуется) из 4 групп. Поэтому этот модуль имеет 96 выходных нейронов (4 препарата х 24 часа). С каждого выходного нейрона снимается доза, соответствующая одному препарату, назначаемому на данный час суток. Естественно, что в реальной ситуации большинство выходных данных равны нулю. Таким образом, создается оптимальная для пациента схема лечения гипертонии. Нужно отметить, что система учитывает некоторые особенности приема препаратов больными, например, затруднение приема препаратов ночью (назначает ночной прием только в крайних случаях), запрет на назначение мочегонных лекарств на ночь.

Отличительной чертой системы является возможность пользователя (врача) передавать нейронной сети свой опыт . Для этого создателями программы предусмотрен специальный блок, который выводит на экран компьютера суточные кривые артериального давления и предлагает врачу ввести в компьютер суточную схему приема гипотензивных препаратов в необходимых, по его мнению, дозах. Введенный пример помещается в базу данных. В любое время можно инициировать доучивание нейронных сетей с новыми примерами.

Проводится комплекс исследований по использованию нейросетей для диагностики инфаркта миокарда [5.13 ,5.14 ,5.15 ]. Автор приводит данные по чувствительности (77,7% ) и специфичности (97,2% ) нейросетевого теста. В работе [5.16 ], кроме того, с помощью нейронной сети устанавливали диагностическую значимость клинических параметров при диагностике инфаркта миокарда.

Нейросети используются терапевтами для диагностики заболеваний печени по лабораторным данным исследования функций печени [5.19 ]; дифференциальной диагностики заболеваний печени [5.20 ] и желчного пузыря по УЗИ [5.21 ].

Нейропрограммы могут с успехом работать с медицинскими данными, относящимися к субъективным категориям, например, в психиатрии [5.22 ]. Оценка субъективных данных дает возможность распознавания психических симптомов и диагностики и изучения некоторых психиатрических симптомокомплексов.

Актуальная проблема диагностики злокачественных новообразований, возможно, получит новый уровень осмысления с началом применения нейроалгоритмов. Так, в работе [5.23 ] показана 80% -я точность ранней диагностики меланом кожи - одного из самых злокачественных заболеваний.

Одним из серьезных направлений применения нейронных сетей является интерпретация медицинских данных. В последние годы идет бурное развитие новых средств диагностики и лечения. При этом наблюдается "вторая волна" изучения и использования древних, старинных методов, и, наоборот, применение последних технических новшеств. Нередко и те и другие методы при использовании предоставляют врачу массу самых разнообразных данных. При этом встает проблема их грамотной и корректной интерпретации. Поиск глубинных закономерностей между получаемыми данными и патологическими процессами начинает отставать от разработки все новых и новых методов, поэтому применение для этой цели нейросетей может оказаться чрезвычайно выгодным.

по 5 точкам этой волны нейронная сеть оценивает состояние левой почки.

Классической проблемой в кардиологии является интерпретация электрокардиограмм, требующая значительного опыта врача. Сотрудники Университета Глазго (Великобритания) ведут исследования по применению нейросетей для ЭКГ -диагностики инфарктов миокарда [5.25 ]. Входными данными для сетей являются избранные параметры 12 -канальной электрокардиограммы и 12 -канальной векторкардиограммы (длины зубцов, расстояния между зубцами). Исследователи обучили огромное количество нейросетей (167 сетей для диагностики инфаркта миокарда передней стенки и 139 сетей для инфаркта нижней стенки) на массиве данных из 360 электрокардиограмм. Обученные сети затем тестировали отдельную выборку с заранее известными ответами (493 случая). Одновременно для получения отдельной серии ответов на тестируемой выборке был использован логический метод (с заранее заданным алгоритмом). Затем сравнивались результаты тестирования выборки лучшими нейросетями и с помощью логического алгоритма. Сравнение показало, что во многих случаях чувствительность и специфичность нейросетевого теста оказались выше, чем у логического метода. Авторы делают справедливый вывод , что в случаях, когда логический алгоритм решения задачи все-таки можно выстроить, разумно комбинировать в экспертных системах оба подхода.

Интерпретация 59% ).

Но и решать более важные задачи - например, искать новые лекарства. The Village обратился к экспертам, чтобы узнать, в чем заключаются особенности технологии и как ее используют отечественные компании и университеты.

Что такое нейронные сети?

Чтобы понять, какое место нейронные сети занимают в мире искусственного интеллекта и как они связаны с другими технологиями создания интеллектуальных систем, начнем с определений.

Нейронные сети - один из методов машинного обучения, основы которого зародились в 1943 году, еще до появления термина «искусственный интеллект». Представляют собой математическую модель, отдаленно напоминающую работу нервной системы животных.

По словам старшего научного сотрудника университета Иннополис Станислава Протасова, наиболее близким аналогом человеческого мозга являются сверточные нейронные сети, придуманные математиком Яном Лекуном. «Они лежат в основе многих приложений, претендующих на звание искусственного интеллекта, - например, в FindFace или Prisma», - отмечает он.

Машинное обучение - подраздел искусственного интеллекта на пересечении математики и компьютерных наук. Он изучает методы построения моделей и алгоритмов, основанных на принципе обучения. Машина анализирует скормленные ей примеры, выделяет закономерности, обобщает их и строит правила, с помощью которых решаются разные задачи - например, предсказания дальнейшего развития событий или распознавания и генерации изображений, текста и речи. Помимо нейросетей, здесь также применяются методы линейной регрессии, деревья решений и другие подходы.

Искусственный интеллект - раздел компьютерной науки о создании технологических средств для выполнения машинами задач, которые раньше считались исключительно прерогативой человека, а также обозначение таких разработок. Направление официально оформилось в 1956 году.

Александр Крайнов

Что можно назвать искусственным интеллектом, а что нет - вопрос договоренностей. Человечество по большому счету так и не пришло к однозначной формулировке, что такое интеллект вообще, не говоря уже об искусственном. Но если обобщить происходящее, то можно говорить о том, что искусственный интеллект - это глубокие нейронные сети, решающие сложные задачи на уровне, близком к уровню человека, и в той или иной степени самообучающиеся. При этом под самообучением здесь понимается способность самостоятельно извлекать полезный сигнал из сырых данных.

В каком состоянии сейчас находится отрасль?

По оценкам аналитического агентства Gartner, машинное обучение сейчас находится на пике завышенных ожиданий. Характерный для этого этапа ажиотаж вокруг новой технологии приводит к излишнему энтузиазму, который оборачивается неудачными попытками ее повсеместного использования. Предполагается, что на избавление от иллюзий отрасли понадобится от двух до пяти лет. По мнению российских экспертов, в скором времени нейросетям придется пройти проверку на прочность.

Сергей Негодяев

управляющий портфелем Фонда развития интернет-инициатив

Хотя ученые занимаются формализацией и разработкой нейросетей уже 70 лет, можно выделить два переломных момента в развитии этой технологии. Первый - 2007 год, когда в Университете Торонто создали алгоритмы глубокого обучения многослойных нейронных сетей. Второй момент, спровоцировавший сегодняшний бум, - это 2012 год, когда исследователи из того же университета применили глубинные нейросети и выиграли конкурс ImageNet, научившись распознавать объекты на фото и видео с минимумом ошибок.

Сейчас компьютерных мощностей хватает для решения если не любых, то подавляющего большинства задач на базе нейросетей. Теперь главное препятствие - нехватка размеченных данных. Условно говоря, чтобы система научилась распознавать закат на видео или фотографиях, ей надо скормить миллион снимков заката, указав, где именно он находится в кадре. Например, когда вы загружаете в Facebook фотографию, ваши друзья распознают на ней котика в лучах закатного солнца, а социальная сеть видит в ней набор меток: «животное», «кот», «деревянный», «пол», «вечер», «оранжевый». У кого данных для обучения окажется больше, у того нейросеть и будет умнее.

Андрей Калинин

руководитель «Поиска Mail.Ru»

Развлекательные приложения на основе нейросетей - например, наши Artisto или Vinci - это только вершина айсберга, а заодно отличный способ продемонстрировать их возможности широкой аудитории. На самом деле нейросети способны решать целый ряд сложнейших задач. Наиболее «горячие» направления сейчас - это автопилоты, голосовые помощники, чат-боты и медицина.

Александр Крайнов

глава службы компьютерного зрения «Яндекса»

Можно сказать, что бум нейросетей уже настал, но на пик он еще не вышел. Дальше будет только интереснее. Самые перспективные направления сегодня - это, пожалуй, компьютерное зрение, диалоговые системы, анализ текстов, робототехника, беспилотный транспорт и генерация контента - текстов, изображений, музыки.

Перспективные сферы для внедрения нейросетей

Транспорт

Робототехника

Биотехнологии

Сельское хозяйство

Интернет вещей

Медиа и развлечения

Лингвистика

Безопасность

Влад Шершульский

директор программ технологического сотрудничества Microsoft в России

Сегодня уже случилась нейронная революция. Иногда даже трудно отличить фантастику от реальности. Представьте себе автоматизированный комбайн со множеством камер. Он делает по 5 тысяч снимков в минуту и через нейросеть анализирует, сорняк перед ним или зараженное вредителями растение, после чего решает, как поступить дальше. Фантастика? Уже не совсем.

Борис Вольфсон

директор по развитию HeadHunter

Вокруг нейросетей есть определенный хайп и, на мой взгляд, немного завышенные ожидания. Мы еще пройдем через этап разочарования, прежде чем научимся их эффективно использовать. Многие прорывные результаты исследований пока не очень применимы в бизнесе. На практике зачастую разумнее использовать другие методы машинного обучения - например, различные алгоритмы, основанные на деревьях решений. Наверное, это выглядит не так захватывающе и футуристично, но эти подходы очень распространены.

Чему учат нейронные сети в России?

Участники рынка согласны, что многие достижения нейронных сетей пока применимы лишь в академической сфере. За ее пределами технология используется преимущественно в развлекательных приложениях, которые и подогревают интерес к теме. Тем не менее российские разработчики учат нейросети и решению социально-значимых и бизнес-задач. Остановимся подробнее на некоторых направлениях.

Наука и медицина

Школа анализа данных «Яндекса» участвует в эксперименте CRAYFIS совместно с представителями «Сколково», МФТИ, ВШЭ и американских университетов UCI и NYU. Его суть состоит в поиске космических частиц сверхвысокой энергии с помощью смартфонов. Данные с камер передаются ускоренным нейросетям , способным зафиксировать следы слабо взаимодействующих частиц на снимках.

Это не единственный международный эксперимент, в котором задействованы российские специалисты. Ученые университета Иннополис Мануэль Маццара и Леонард Йохард участвуют в проекте BioDynaMo . Заручившись поддержкой Intel и ЦЕРН, они хотят создать опытный образец, способный воспроизвести полномасштабную симуляцию мозговой коры. С его помощью планируется повысить эффективность и экономичность экспериментов, в которых требуется наличие живого человеческого мозга.

Профессор Иннополиса Ярослав Холодов участвовал в разработке компьютерной модели, способной в десятки раз быстрее предсказать образование белковых связей. С помощью этого алгоритма можно ускорить разработку вакцин и лекарств. В этой же сфере отметились разработчики из Mail.Ru Group, Insilico Medicine и МФТИ. Они использовали генеративные состязательные сети , обученные придумывать молекулярные структуры, для поиска веществ, которые могут оказаться полезными при различных болезнях - от онкологии до сердечно-сосудистых заболеваний.

Красота и здоровье

В 2015 году российская компания Youth Laboratories запустила первый международный конкурс красоты Beauty.AI . Фотографии участников в нем оценивались нейросетями. При определении победителей они учитывали пол, возраст, национальность, цвет кожи, симметричность лица и наличие или отсутствие у пользователей морщин. Последний фактор также подтолкнул организаторов к созданию сервиса RYNKL , позволяющего отследить, как старение влияет на кожу и как с ним борются различные препараты.

Также нейросети применяются в телемедицине. Российская компания «Мобильные медицинские технологии », управляющая проектами «Онлайн Доктор » и «Педиатр 24/7 », тестирует бота-диагноста, который будет полезен как пациентам, так и врачам. Первым он подскажет, к какому специалисту обратиться при тех или иных симптомах, а вторым поможет определить, чем именно болен пришедший.

Оптимизация бизнес-процессов и рекламы

Российский стартап Leadza сумел применить нейросети для более эффективного распределения бюджета на рекламу в Facebook и Instagram. Алгоритм анализирует результаты прошедших кампаний, строит прогноз ключевых метрик и на их основе автоматически перераспределяет расходы таким образом, чтобы интернет-магазины смогли получить больше клиентов за меньшую стоимость.

Команда GuaranaCam задействовала технологии машинного обучения для оценки эффективности размещения товаров и рекламных материалов в офлайне. Система работает на базе облака Microsoft Azure и анализирует покупательское поведение по камерам видеонаблюдения. Владельцы бизнеса получают отчет о состоянии торговли в режиме реального времени. Проект уже применяется в торговом центре «Мега Белая Дача».

На этом успешные отечественные примеры использования нейросетей в бизнесе не заканчиваются. Компания LogistiX , экспериментирующая с технологиями создания искусственного интеллекта с 2006 года, разработала систему оптимизации работы склада . В ее основе лежит обучающаяся нейронная сеть, которая анализирует полученные с фитнес-трекеров данные о работниках и перераспределяет между ними нагрузку. Теперь команда учит нейросети различать брак.

Холдинг «Белфингрупп » пошел еще дальше. Его «дочка» BFG-soft создала облачную платформу BFG-IS, позволяющую управлять предприятием с помощью его виртуальной модели. Последняя строится автоматически на основании собранных системой данных о производстве и не только показывает, как лучше организовать процессы с учетом заданных целей, но и прогнозирует последствия любых изменений - от замены оборудования до введения дополнительных смен. В конце 2016 года Фонд развития интернет-инициатив решил вложить в компанию 125 миллионов рублей.

Рекрутинг и управление персоналом

Российский агрегатор рекрутеров Stafory заканчивает обучение рекуррентной нейронной сети , способной не только давать односложные ответы на вопросы кандидатов, но и вести с ними полноценный разговор о заинтересовавшей вакансии. А команда портала SuperJob тестирует сервис, который предсказывает, какие из сотен однотипных резюме окажутся востребованы конкретным работодателем.

Транспорт

Российский разработчик интеллектуальных систем Cognitive Technologies применяет нейронные сети для распознавания транспортных средств, пешеходов, дорожных знаков, светофоров и других объектов, попадающих в кадр. Также компания собирает данные для обучения нейросети для беспилотного автомобиля . Речь идет о десятках тысяч эпизодов, описывающих реакцию водителей на те или иные критические ситуации на дорогах. В итоге система должна сформулировать оптимальные сценарии поведения авторобота. Такие же технологии применяются и для создания умного сельскохозяйственного транспорта.

Кроме того, нейронные сети могут использоваться в сфере транспорта и другим образом. Летом 2016 года «Яндекс» добавил в принадлежащую ему доску объявлений «Авто.ру » функцию автоматического определения модели машины по ее фото. На тот момент система знала 100 марок.

Психология и безопасность

Российский стартап NTechLab , обошедший Google в международном конкурсе алгоритмов распознавания лиц The MegaFace Benchmark , использовал технологии машинного обучения в приложении FindFace . Оно позволяет найти человека в социальных сетях по фотографии. Зачастую пользователи обращаются к сервису для выявления фейков, но он может быть полезен и правоохранителям. С его помощью уже установили личность нескольких преступников, в том числе захватчика Ситибанка в Москве. Бизнес-версия FindFace.Pro предоставляется компаниям, заинтересованным в идентификации клиентов. Сейчас систему доучивают определять пол, возраст и эмоции окружающих, что может быть полезно не только при общении с клиентами, но и при управлении персоналом.

Аналогичным образом нейросети применяются и еще одной российской компанией - VisionLabs . Она использует технологии распознавания лиц для обеспечения безопасности в банках и формирования специальных предложений для наиболее лояльных клиентов различных розничных точек.

В схожем направлении работает стартап «Эмотиан ». Он дорабатывает систему определения эмоционального состояния городов. Пока нейросеть вычисляет наиболее счастливые районы по публикациям в социальных сетях, однако в дальнейшем компания собирается учитывать и биометрические данные с камер.

Медиа и творчество

Одним из основных игроков на российском рынке нейронных сетей является «Яндекс». Компания использует машинное обучение не только в своих поисковых сервисах, но и в других продуктах. В 2015 году она запустила рекомендательную систему «Дзен », которая формирует ленту из новостей, статей, фотографий и видео, основываясь на интересах конкретного пользователя. Чем чаще он обращается к отобранным алгоритмом материалам, тем точнее нейросеть определяет, что еще ему может понравиться.

Кроме того, «Яндекс» экспериментирует и с творчеством. Сотрудники компании уже успели применить нейросетевой подход к поэзии , а затем и

Студенты Башкирского государственного медицинского университета решили применить нейросети для предсказания некоторых заболеваний. Молодые медики надеются, что их исследование принесет существенную пользу республиканской медицине. Подробностями авторы делятся с «Электрогазетой».

Нейросеть - это особое программное обеспечение, программный код, у которого есть определенные возможности и «умения». Нейронная сеть, как интеллектуальная система, способна выявлять сложные зависимости между входными и выходными данными, а также выполнять обобщения. По сути, такая программа (если ее эффективно обучить) может предсказывать болезни, - рассказывает студент третьего курса БГМУ Григорий Гололобов. - Начать исследования в данной области мы решили с язвенной болезни желудка и двенадцатиперстной кишки.

Почему именно это заболевание? Дело в том, что язва очень опасна своими осложнениями - перфорация желудка или кровотечение. Неожиданно возникшее осложнение может сильно ослабить больного и задержать выздоровление, а также может привести к летальному исходу. Нейронная сеть нужна, чтобы узнать - какова вероятность кровотечения у того или иного пациента. Если будет известно, что эта вероятность 50-60 процентов и выше, хирург сможет особенно внимательно следить за пациентом и заранее подготовиться к любым форс-мажорам. Особенно это актуально для молодых неопытных хирургов.

В своей работе мы использовали бесплатное программное обеспечение.

Итак, способна ли нейронная сеть предсказать язву и ее осложнения, и насколько достоверным будет диагноз? Первым этапом стало обучение нейронной сети. С целью тренировки в программу были загружены данные 200 реальных пациентов уфимских больниц. При этом входной информацией выступили жалобы пациентов, то есть так называемый анамнез (наличие болей, их локализация и интенсивность, уровень артериального давления, курит ли человек и т.д.), - целая совокупность параметров. А на выходе нейронная сеть должна была выдать диагноз - есть ли язва у человека, и какова вероятность осложнений. Стоит отметить, что выборка пациентов была поделена на две части. 70 процентов выборки мы использовали для обучения (тренировки) программы, а 30 процентов - для проверки.

Какими оказались промежуточные результаты? На сегодня точность предсказания составила в среднем 87 процентов. Наша нейронная сеть предсказывает язву и ее последствия у человека с очень высокой степенью достоверности. В дальнейшем мы планируем улучшить качество прогноза, и получить реально работающий инструмент для практикующих врачей. Для этого нужно больше пациентов и больше анамнеза. На текущем этапе нейросеть хорошо предсказывает саму язвенную болезнь. Но нужно научить программу более эффективно предсказывать осложнения. Этим мы будем заниматься на втором этапе.

Как пояснил собеседник «Электрогазеты», проект реализуется под руководством д.м.н., профессора БГМУ Марата Нуртдинова. Работа ведется в сотрудничестве с кафедрой вычислительной техники УГНТУ.

Наши московские и новосибирские коллеги уже активно используют нейронные сети для прогнозирования заболеваний и постановки диагнозов. Но в Башкирии мы являемся «первопроходцами», - добавляет Григорий Гололобов. - Единственный пока пример - аппараты ЭКГ с соответствующей программной «начинкой», которые на основе снятой кардиограммы выдают предварительный диагноз. Полагаю, что в ближайшие несколько лет нейросети прочно войдут в медицину. Нейросеть - весьма эффективная технология, которая может оказать существенную поддержку врачу. Ведь такое программное обеспечение, по сути, является интеллектуальной системой. Опять же, в дальнейшем можно будет внедрить нейронные программные комплексы не только в области диагностики язвенной болезни, но и других заболеваний.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top