Нейронные сети в медицине StatSoft Russia Основные идеи. Применение искусственных нейронных сетей для ранней диагностики заболевания сахарным диабетом Что такое нейронные сети в медицине

Нейронные сети в медицине StatSoft Russia Основные идеи. Применение искусственных нейронных сетей для ранней диагностики заболевания сахарным диабетом Что такое нейронные сети в медицине

Студенты Башкирского государственного медицинского университета решили применить нейросети для предсказания некоторых заболеваний. Молодые медики надеются, что их исследование принесет существенную пользу республиканской медицине. Подробностями авторы делятся с «Электрогазетой».

Нейросеть - это особое программное обеспечение, программный код, у которого есть определенные возможности и «умения». Нейронная сеть, как интеллектуальная система, способна выявлять сложные зависимости между входными и выходными данными, а также выполнять обобщения. По сути, такая программа (если ее эффективно обучить) может предсказывать болезни, - рассказывает студент третьего курса БГМУ Григорий Гололобов. - Начать исследования в данной области мы решили с язвенной болезни желудка и двенадцатиперстной кишки.

Почему именно это заболевание? Дело в том, что язва очень опасна своими осложнениями - перфорация желудка или кровотечение. Неожиданно возникшее осложнение может сильно ослабить больного и задержать выздоровление, а также может привести к летальному исходу. Нейронная сеть нужна, чтобы узнать - какова вероятность кровотечения у того или иного пациента. Если будет известно, что эта вероятность 50-60 процентов и выше, хирург сможет особенно внимательно следить за пациентом и заранее подготовиться к любым форс-мажорам. Особенно это актуально для молодых неопытных хирургов.

В своей работе мы использовали бесплатное программное обеспечение.

Итак, способна ли нейронная сеть предсказать язву и ее осложнения, и насколько достоверным будет диагноз? Первым этапом стало обучение нейронной сети. С целью тренировки в программу были загружены данные 200 реальных пациентов уфимских больниц. При этом входной информацией выступили жалобы пациентов, то есть так называемый анамнез (наличие болей, их локализация и интенсивность, уровень артериального давления, курит ли человек и т.д.), - целая совокупность параметров. А на выходе нейронная сеть должна была выдать диагноз - есть ли язва у человека, и какова вероятность осложнений. Стоит отметить, что выборка пациентов была поделена на две части. 70 процентов выборки мы использовали для обучения (тренировки) программы, а 30 процентов - для проверки.

Какими оказались промежуточные результаты? На сегодня точность предсказания составила в среднем 87 процентов. Наша нейронная сеть предсказывает язву и ее последствия у человека с очень высокой степенью достоверности. В дальнейшем мы планируем улучшить качество прогноза, и получить реально работающий инструмент для практикующих врачей. Для этого нужно больше пациентов и больше анамнеза. На текущем этапе нейросеть хорошо предсказывает саму язвенную болезнь. Но нужно научить программу более эффективно предсказывать осложнения. Этим мы будем заниматься на втором этапе.

Как пояснил собеседник «Электрогазеты», проект реализуется под руководством д.м.н., профессора БГМУ Марата Нуртдинова. Работа ведется в сотрудничестве с кафедрой вычислительной техники УГНТУ.

Наши московские и новосибирские коллеги уже активно используют нейронные сети для прогнозирования заболеваний и постановки диагнозов. Но в Башкирии мы являемся «первопроходцами», - добавляет Григорий Гололобов. - Единственный пока пример - аппараты ЭКГ с соответствующей программной «начинкой», которые на основе снятой кардиограммы выдают предварительный диагноз. Полагаю, что в ближайшие несколько лет нейросети прочно войдут в медицину. Нейросеть - весьма эффективная технология, которая может оказать существенную поддержку врачу. Ведь такое программное обеспечение, по сути, является интеллектуальной системой. Опять же, в дальнейшем можно будет внедрить нейронные программные комплексы не только в области диагностики язвенной болезни, но и других заболеваний.

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_1.jpg" alt=">Нейронные сети в медицине StatSoft Russia">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_2.jpg" alt=">Основные идеи нейросетевых методов анализа Простота и однородность отдельных элементов - «нейронов» Все основные"> Основные идеи нейросетевых методов анализа Простота и однородность отдельных элементов - «нейронов» Все основные свойства сети определяются структурой связей Избыточность системы гарантирует ее надежность как целого Связи формируются по неявным правилам в процессе «обучения»

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_3.jpg" alt=">Примеры искусственных нейронных сетей">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_4.jpg" alt=">Особенности нейросетевого подхода к анализу данных Предлагает стандартный способ решения многих нестандартных задач. Явное"> Особенности нейросетевого подхода к анализу данных Предлагает стандартный способ решения многих нестандартных задач. Явное описание модели заменяется созданием «образовательной среды». Приводит к успеху там, где отказывают традиционные методы и трудно создать явный алгоритм.

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_5.jpg" alt=">Для практического здравоохранения особый интерес представляют экспертные системы для диагностики заболеваний">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_6.jpg" alt=">Примеры применения нейронных сетей в медицине Выявление атеросклеротических бляшек с помощью анализа флюоресцентных спектров."> Примеры применения нейронных сетей в медицине Выявление атеросклеротических бляшек с помощью анализа флюоресцентных спектров. Диагностика заболеваний периферических сосудов. Диагностика инфаркта миокарда. Диагностика клапанных шумов сердца с помощью анализа акустических сигналов. Распознавание психических симптомов.

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_7.jpg" alt=">Экспертная система для лечения артериальной гипертонии (Италия) Модуль 1 Модуль 2 Модуль 3 Почасовые"> Экспертная система для лечения артериальной гипертонии (Италия) Модуль 1 Модуль 2 Модуль 3 Почасовые измерения давления Возраст и пол Характеристики состояния Характеристики лекарственных препаратов Структура почасового приема препаратов Другие клинические данные

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_8.jpg" alt=">Определение накопленной дозы радиоактивного облучения (Красноярская мед. академия) Классификация на 4 группы по"> Определение накопленной дозы радиоактивного облучения (Красноярская мед. академия) Классификация на 4 группы по величине накопленной дозы облучения 35 входных параметров Естественная Слабая Средняя Сильная Сеть обучалась на данных о пациентах, работающих в атомной промышленности. Со 100% правильностью такая сеть классифицирует состояние людей, в том числе и тех, кто не работает в данной отрасли.

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_9.jpg" alt=">Этапы нейросетевого анализа Исследование взаимосвязи переменных и понижение размерности Построение и обучение сетей"> Этапы нейросетевого анализа Исследование взаимосвязи переменных и понижение размерности Построение и обучение сетей разных типов Сравнение качества сетей и их статистических характеристик

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_10.jpg" alt=">Понижение размерности: отбор входных признаков Штраф за элемент, число популяций и поколений битовых"> Понижение размерности: отбор входных признаков Штраф за элемент, число популяций и поколений битовых строк Генетический алгоритм, пошаговое включение и исключение признаков

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_11.jpg" alt=">Понижение размерности: автоассоциативные сети Новые входные переменные для нейросетевой модели">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_12.jpg" alt=">Задача классификации состояния больных с ишемической болезнью">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_13.jpg" alt=">Нейронная сеть для диагностики развития ишемической болезни По набору показателей (48 переменных), "> Нейронная сеть для диагностики развития ишемической болезни По набору показателей (48 переменных), как номинальных (например, «слабая-умеренная-сильная боль»), так и непрерывных (например, артериальное давление или возраст), классифицируется состояние пациентов с ишемической болезнью сердца. Номинальные переменные Непрерывные переменные

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_14.jpg" alt=">Результаты классификации и анализ чувствительности Все наблюдения классифицированы правильно Анализ чувствительности позволяет утверждать,"> Результаты классификации и анализ чувствительности Все наблюдения классифицированы правильно Анализ чувствительности позволяет утверждать, что одним из важнейших факторов риска является привычка к курению.

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_15.jpg" alt=">Задача диагностики онкологического заболевания">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_16.jpg" alt=">Нейронные сети для диагностики онкологического заболевания Сеть на радиальных базисных функциях Многослойный персептрон">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_17.jpg" alt=">Результаты классификации Многослойный персептрон: 100% наблюдений классифицировано правильно Радиальные базисные функции: 95% наблюдений классифицировано"> Результаты классификации Многослойный персептрон: 100% наблюдений классифицировано правильно Радиальные базисные функции: 95% наблюдений классифицировано правильно

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_18.jpg" alt=">Настройка сети">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_19.jpg" alt=">Библиотеки функций пакета STATISTICA Neural Networks для построения, обучения и работы нейронных сетей"> Библиотеки функций пакета STATISTICA Neural Networks для построения, обучения и работы нейронных сетей позволяют эффективно встраивать нейросетевые модули в разрабатываемые экспертные системы для прогнозирования и диагностики заболеваний

7 июля 2017 в 22:30

Нейросети диагностируют проблемы с сердцем более точно, чем врачи

  • Медгаджеты ,
  • Здоровье гика ,

Человеческий фактор часто становится причиной возникновения проблем. Это касается производства, бытовых ситуаций, вождения и, конечно же, медицины. Ошибка врача может означать потерю здоровья или даже жизни пациентом, а врачи ошибаются не так уж и редко. Даже профессионал высшей пробы может делать ошибки - ведь специалист может быть уставшим, раздраженным, концентрируясь на проблеме хуже, чем обычно.

В этом случае на помощь могут прийти машины. Та же когнитивная система IBM Watson, например, вполне неплохо управляется с работой в медицинской сфере (онкология, чтение рентгеновских снимков и т.п.). Но есть и другие решения, предложенные независимыми исследователями. Одно из таких решений было создано учеными из Стэнфорда во главе с Эндрю Энджи, достаточно известным в своей сфере специалистом по искусственному интеллекту.

Он с коллегами разработал систему, которая способна диагностировать аритмию сердца по кардиограмме, причем компьютер делает это лучше, чем эксперт. Речь идет о нейросети, которая после обучения способна диагностировать аритмию с высокой степенью точности. При этом компьютер работает не только надежнее, но и быстрее нейросеть, так что задачу анализа медицинских снимков и результатов ЭКГ можно переложить на компьютер после окончательной «доводки» системы. Врачу же остается лишь проверять работу программно-аппаратной платформы, о которой идет речь и действовать в соответствии с окончательным диагнозом.

Этот проект показывает, насколько сильно компьютер может изменить медицину, улучшив различные аспекты этой сферы. Нейросети уже помогают врачам диагностировать рак кожи, рак груди, заболевания глаз. Теперь настала очередь и кардиологии.

«Мне очень нравится то, насколько быстро люди принимают идею, что глубокое обучение может помочь улучшить точность постановки диагноза врачом», - говорит Энджи. Он также считает, что на этом возможности компьютерных систем не исчерпываются, их можно применять и во многих других сферах.

Команда Стэнфорда потратила немало времени для обучения нейросети, с тем, чтобы система могла идентифицировать отклонения от нормы на данных ЭКГ. При этом аритмия весьма опасное заболевание, она может привести к внезапной смерти от остановки сердца. Проблема в том, что обнаружить аритмию не так легко, поэтому пациентам с подозрением на нее приходится иногда носить на себе ЭКГ датчик в течение нескольких недель. И даже после этого данных для диагностики отклонений может оказаться недостаточно.

Как уже говорилось выше, нейросеть пришлось обучать, причем на примере реальных показателей пациентов больниц. Самостоятельно набрать несколько десятков тысяч результатов измерений ЭКГ специалисты Стэнфорда были не в состоянии, поэтому они пригласили к партнерству iRhythm , компанию, которая производит портативные ЭКГ-гаджеты. Компания предоставила 30000 30-секундных записей результатов измерений работы сердечной мышцы пациентов, страдающих от разных форм аритмии. Для того, чтобы увеличить точность работы алгоритма, а также сравнить результаты работы компьютера с результатами диагностики врачей, использовались еще 300 записей. Их одновременно анализировали и машина, и врачи. Затем результаты оценивались специальным жюри, в которое вошли 3 кардиолога экстра-класса.

Глубокое обучение нейросети началось со «скармливания» огромного количества данных. Затем использовалась уже тонкая настройка для повышения точности диагностики.

Кроме специалистов, о которых уже говорилось выше, машинное обучение для создания систем, способных диагностировать аритмию, используют и другие группы. Например, Эрик Горовиц, управляющий директор Microsoft Research (сам он - медик) с коллегами работают примерно в том же направлении, что и специалисты из Стэнфорда. По их мнению, нейросети действительно способны улучшить качество медицинского обслуживания пациентов, помогая врачам тратить меньше времени на рутину и больше - на поиск эффективных методов лечения своих подопечных.


Правда, о масштабном внедрении нейросетей в больницы всего мира речь пока не идет. Это направление находится в зачаточном состоянии, но развивается все быстрее. Больницы США, Европы и других стран берут на вооружение новые технологии, работают с новыми методами диагностики заболеваний. Главная проблема в плане распространения упомянутых технологий - то, что нейросети представляют своего рода «черный ящик». Специалисты вводят данные и получают определенный результат. Но то, как этот результат был получен, какие алгоритмы и в какой последовательности задействованы могут не до конца понимать сами создатели таких систем. Если бы нейросети удалось сделать более прозрачными, а принцип их работы можно было бы легко объяснить практикующим медикам, тогда и темпы распространения этой технологии были бы куда выше.

Теги:

  • нейросети
  • врачи
  • медицина
Добавить метки Факультет: вычислительной техники и информатики
Кафедра: компьютерных систем мониторинга
Специальность: компьютерный эколого-экономический мониторинг
Тема магистерской диссертации:
"Скрытая передача больших массивов информации путем стегокодирования WAV-файлов"
Научный руководитель: Губенко Наталья Евгеньевна, доцент, к.т.н.

Тезисы к докладу на конференции "Компьютерный мониторинг и информационые технологии 2008" на тему "Применение нейронных сетей в медицине"

Использование нейросетей в медицине, как правило, связано с системами для диагностики и дифференциальной диагностики заболеваний. Однако обученная нейросеть не только умеет распознавать примеры, но и хранит достаточно важную информацию. Поэтому одним из серьезных направлений применения нейронных сетей является интерпретация медицинских данных. Поиск глубинных закономерностей между получаемыми данными и патологическими процессами начинает отставать от разработки все новых и новых методов, поэтому применение для этой цели нейросетей может оказаться чрезвычайно выгодным.

Нейронные сети представляют собой нелинейные системы, позволяющие гораздо лучше классифицировать данные, чем обычно используемые линейные методы. В приложении к медицинской диагностике они дают возможность значительно повысить специфичность метода, не снижая его чувствительности.

Отличительное свойство нейросетей состоит в том, что они не программируются - не используют никаких правил вывода для постановки диагноза, а обучаются делать это на примерах. В этом смысле нейросети совсем не похожи на экспертные системы, разработка которых в 70-е годы происходила после временной "победы" Искусственного Интеллекта над тем подходом к моделированию памяти, распознавания образов и обобщения, который основывался на изучении нейронной организации мозга.

Одной из наиболее известных из разработанных экспертных систем, действие которых основывалось на знаниях, извлеченных у экспертов, и на реализации процедур вывода, была система MYCIN. Данную систему разработали в Стэнфорде в начале 70-х годов для диагностики септического шока. Половина больных умирала от него в течение суток, а врачи могли обнаруживать сепсис лишь в 50% случаев. MYCIN, казалось, была подлинным триумфом технологии экспертных систем - ведь она позволяла обнаружить сепсис в 100% случаев.

Примером программы диагностики служит пакет кардиодиагностики, разработанный фирмой RES Informatica совместно с Центром кардиологических исследований в Милане. Программа позволяет осуществлять неинвазивную кардиодиагностику на основе распознавания спектров тахограмм. Тахограмма представляет собой гистограмму интервалов между последовательными сердцебиениями, и ее спектр отражает баланс активностей симпатической и парасимпатической нервной системы человека, специфично изменяющейся при различных заболеваниях.

Так или иначе, уже сейчас можно констатировать, что нейронные сети превращаются в инструмент кардиодиагностики - в Англии, например, они используются в четырех госпиталях для предупреждения инфаркта миокарда.

Одно из главных направлений, в котором сейчас идут работы по использованию нейронных сетей, - диагностика рака молочной железы. Этот недуг - причина смерти каждой девятой женщины. Обнаружение опухоли осуществляется в ходе первичного рентгенографического анализа молочной железы (маммографии) и последующего анализа кусочка ткани новообразования (биопсии). Несмотря на существование общих правил дифференцирования доброкачественных и злокачественных новообразований, по данным маммографии, только от 10 до 20% результатов последующей хирургической биопсии действительно подтверждают наличие рака молочной железы. Опять мы имеем дело со случаем крайне низкой специфичности метода.

Исследователи из университета Дьюка обучили нейронную сеть распознавать маммограммы злокачественной ткани на основе восьми особенностей, с которыми обычно имеют дело радиологи. Оказалось, что сеть способна решать поставленную задачу с чувствительностью около 100% и специфичностью 59% (сравните с 10-20% у радиологов). Сколько женщин с доброкачественными опухолями можно не подвергать стрессу, связанному с проведением биопсии, если использовать эту нейронную сеть!

Нейросети можно использовать и для прогноза действия различных разрабатываемых средств лечения. Они уже успешно применяются в химии для прогноза свойств соединений на основе их молекулярной структуры. Исследователи из Национального института рака в США использовали нейросети для предсказания механизма действия препаратов, применяемых при химиотерапии злокачественных опухолей. Заметим, что существуют миллионы различных молекул, которые необходимо исследовать на предмет их антираковой активности. Для решения аналогичной задачи использовались и сети Кохонена. Эти обучаемые без учителя самоорганизующиеся нейросети разбивали вещества на заранее неизвестное число кластеров и поэтому дали исследователям возможность идентифицировать вещества, обладающие новыми цитотоксическими механизмами воздействия.

Диагностика и лечение онкологических заболеваний, а также разработка новых медикаментозных средств несомненно представляют собой важнейшую область применения нейросетевых технологий. Однако в последнее время среди исследователей и врачей растет осознание того факта, что будущие успехи должны быть тесно связаны с изучением молекулярных и генетических причин развития заболеваний.

Не случайно в апреле 1997 года эксперты Национального института здоровья (США) выступили с рекомендациями по усилению исследований, связанных с выявлением причин, вызывающих рак, и разработок, направленных на предупреждение болезней. Нейросети уже довольно давно активно применяются в анализе геномных последовательностей ДНК, в частности для распознавания промоторов - участков, предшествующих генам и связываемых с белком РНК-полимераза, который инициирует транскрипцию. Их используют для дифференциации кодирующих и некодирующих участков ДНК (экзонов и интронов) и предсказания структуры белков.

Прогностические нейросетевые модели могут использоваться в демографии и организации здравоохранения. Создана экспертная система, предсказывающая, умрет ли человек (в возрасте 55 лет и старше) в ближайшие 10 лет. Прогноз делается по результатам ответов на 18 вопросов анкеты. В анкету включены такие вопросы, как раса, пол, возраст, вредные привычки, семейное положение, семейный доход. 4 из 18 вопросов выявляют индекс массы тела (body mass index) в различные периоды жизни респондента. Индекс рассчитывается как отношение веса к квадрату роста (индекс более 27 кг/м считается тучностью). Повышенное внимание к этому показателю говорит о его значимости для прогноза жизни.

Литература

  1. Нейроинформатика / А.Н.Горбань, В.Л.Дунин-Барковский, А.Н.Кирдин и др. - Новосибирск: Наука. Сибирское предприятие РАН, 1998. - 296с.
  2. С.Короткий Нейронные сети: основные положения
  3. Е. Монахова, "Нейрохирурги" с Ордынки, PC Week/RE, №9, 1995

Сегодня мы наблюдаем бум в развитии информационных технологий и их постепенное, а порою и революционное внедрение в нашу жизнь

Цифровизация, робототизация, искусственный интеллект, искусственные нейронные сети… Сколько новых понятий и терминов уже сегодня раздвигают горизонты возможного, заставляя задумываться и разбираться в них, искать их прикладное эффективное и безопасное применение. И все же, какими бы многообещающими не были новые технологии – все они являются продуктами жизнедеятельности человека, его разума, работы мозга и мышления.

Что такое нейрон?

Среднестатистический человеческий мозг – это около 86 млрд нейронов, соединенных многочисленными связями (в среднем несколько тысяч связей на один нейрон, однако это число может сильно колебаться). Нейроны – это специальные клетки, способные распространять электрохимические сигналы. Нейрон имеет разветвленную структуру ввода информации (дендриты), ядро и разветвляющийся выход (аксон). Аксоны клетки соединяются с дендритами других клеток с помощью синапсов. При активации нейрон посылает электрохимический сигнал по своему аксону. Через синапсы этот сигнал достигает других нейронов, которые могут в свою очередь активироваться. Нейрон активируется тогда, когда суммарный уровень сигналов, пришедших в его ядро из дендритов, превысит определенный уровень (порог активации).

Нейронные сети

Искусственные нейронные сети, искусственный интеллект, машинное обучение… Что означают все эти нынче модные направления и термины?

В общем смысле слова, нейронные сети (НС – Neural Networks) – это математические модели, работающие по принципу сетей нервных клеток животного организма. Искусственные НС (ИНС) могут быть реализованы как в программируемые, так и в аппаратные решения. Для простоты восприятия нейрон можно представить, как некую ячейку, у которой имеется множество входных отверстий и одно выходное. Каким образом многочисленные входящие сигналы формируются в выходящий, как раз и определяет алгоритм вычисления. На каждый вход нейрона подаются действующие значения, которые затем распространяются по межнейронным связям (синопсисам). У синапсов есть один параметр – вес, благодаря которому входная информация изменяется при переходе от одного нейрона к другому.

Тенденция времени

В последние несколько лет наблюдается взрыв интереса к ИНС. Исследователи – программисты и разработчики аппаратных моделей – создают все новые эффективные креативные программные и аппаратные воплощения, построенные по принципу организации и функционирования биологических нейронных сетей. Нейронные сети привлекательны с интуитивной точки зрения, ибо они основаны на биологической модели нервных систем. В будущем развитие таких нейробиологических моделей может привести к созданию действительно мыслящих компьютеров. А чтобы создать искусственный интеллект, необходимо построить систему с похожей архитектурой.

Где они применяются

ИНС благодаря способности к обучению, а также тому, что это обусловлено появлением различных способов ускорения их обучения, успешно применяются в самых различных областях нашей жизни: бизнесе, медицине, технике, геологии, физике и пр. ИНС, как исключительно мощный метод моделирования, позволяющий воспроизводить чрезвычайно сложные зависимости, находит все более многочисленные области применения: создание самообучающихся систем производственных процессов, беспилотные транспортные средства, системы распознавания образов, интеллектуальные охранные системы, робототехника, системы мониторинга качества, голосовые интерфейсы взаимодействия, системы аналитики и изобретения во многих других областях, где нужно решать задачи обработки накопленного огромного потока информации – распознавания, прогнозирования, классификации, управления. В настоящее время процесс обучения ИНС стал намного быстрее и проще: стали более мощными возможности технических средств (технологический рост объемов памяти, быстродействия; постоянное накопление баз данных и пр.). Начали активно разрабатываться так называемые «предобученные» нейросети, которые позволяют существенно ускорить процесс внедрения технологии.

Одни плюсы

Впечатляющий успех и интерес к ИНС определяются способностями справляться с такими задачами, как системы распознавания и классификации объектов на изображениях и ландшафтах в исследуемой области, голосовой интерфейс взаимодействия для интернета вещей, видеоаналитика, самообучающиеся системы, оптимизирующие управление материальными потоками или расположением объектов; интеллектуальные; самообучающиеся системы управления производственными процессами и устройствами (в том числе робототехническими), универсальный перевод «на лету» для конференций и персонального использования и пр. И если пока что рано говорить о том, смогут ли когда-то нейросети полностью воспроизвести возможности человеческого мозга, вероятность того, что в ближайшее десятилетие ИНС смогут заменить человека на четверти существующих профессий, все больше становится похожей на правду.

Искусственный интеллект

Что же такое искусственный интеллект? Под искусственным интеллектом (ИИ) разработчики понимают способность машины имитировать умное поведение людей, то есть – умение ориентироваться в меняющемся контексте и принимать с учетом этих изменений оптимальные, позволяющие достичь цели решения. Врачу бывает сложно верно диагностировать заболевание, особенно если у него не слишком много практики или конкретный случай далек от его профессионального опыта. Тут на помощь может прийти ИИ, имеющий доступ к базам с тысячами и миллионами историй болезни (и другой упорядоченной информацией, в том числе свежим статьям, учебникам, специализированной медицинской литературе). С помощью алгоритмов машинного обучения ИИ классифицирует конкретный кейс, быстро просканирует вышедшую за определенный интервал времени научную литературу по нужной теме, изучит имеющиеся в доступе похожие случаи и предложит план лечения. Более того, ИИ сможет обеспечить индивидуализированный подход, приняв во внимание сведения о генетических особенностях пациента, паттернах движения, собранных его носимыми устройствами, предыдущей истории болезней – всем анамнезе жизни. ИИ вероятно (по крайней мере, на текущем этапе развития технологий), не заменит врача, но может стать и уже становится полезным инструментом, помощником в деле диагностики и лечения.

Зачем он нужен в медицине

Медицина, ориентировавшаяся ранее в основном на лечение острых заболеваний, теперь сможет больше внимания уделять недугам хроническим, многие из которых не так давно и болезнями не считались. Уже сегодня быстро растут объемы медицинских данных, приходит сознание, что от скорости и качества анализа зависит здоровье и качество жизни пациента. Врачи часто сталкиваются с необходимостью лечить ожирение, депрессии, болезни пожилого возраста. Диабет, сердечная недостаточность, аутоиммунные расстройства все чаще диагностируются вне фазы обострения, на самых ранних стадиях, причем речь идет не только о поддерживающей терапии, но и о возможности полностью излечить, исправить эти системные сбои организма. Развивается превентивная медицина, позволяющая распознать предрасположенность к определенным типам заболеваний еще до их проявления, и необходимой актуальности своевременно принять меры. И все это – работа для ИИ.

Прогноз для стоматологии

Исследователи, занимающиеся ИНС, делают прогнозы, что уже в ближайшее время быстро будет развиваться применение нейронных сетей и в стоматологии. Это направление позволит проводить более быстрый анализ большого количества необходимой профессиональной прицельно-ориентированной информации, а главное – сможет направлять и давать подсказки врачам в решении сложных клинических задач.

Материал подготовила по данным
интернет-источников Галина Масис




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top