Обзор методов статистического анализа данных. Статистические методы анализа информации

Обзор методов статистического анализа данных. Статистические методы анализа информации

Курс знакомит студентов с основными задачами и методами прикладной статистики .

Цели курса - связать теорию и практику, научить студентов «видеть» статистические задачи в различных предметных областях и правильно применять методы прикладной статистики, показать на практических примерах возможности и ограничения статистических методов. Курс имеет скорее методологическую, чем математическую направленность и не содержит доказательств теорем.

Каждый метод описывается по единой схеме:

  • постановка задачи;
  • примеры прикладных задач из области биологии, экономики, социологии, производства, медицины;
  • базовые предположения и границы применимости;
  • описание метода (для методов проверки статистических гипотез: нулевая гипотеза и альтернативы, статистика, её нулевое распределение);
  • достоинства, недостатки, ограничения, «подводные камни»;
  • сравнение с другими методами.

Курс читается студентам 4 курса кафедры математических методов прогнозирования ВМиК МГУ с 2007 года и студентам 4 курса факультета управления и прикладной математики МФТИ с 2011 года. Предполагается, что студенты уже прослушали курсы теории вероятностей и математической статистики.

Программа курса

Введение

Обзор необходимых сведений из теории вероятностей и математической статистики.

  • Понятия простой выборки и статистики . Примеры статистик: моменты , асимметрия и эксцесс , вариационный ряд и порядковые статистики, эмпирическое распределение .
  • Статистические точечные оценки и их свойства: несмещённость , состоятельность , оптимальность , робастность .
  • Интервальные оценки , понятия доверительного интервала и уровня доверия . Доверительные интервалы для среднего и медианы.
  • Часто используемые распределения: нормальное, хи-квадрат, Фишера, Стьюдента, Бернулли, биномиальное, Пуассона.
  • Проверка статистических гипотез , основные понятия: уровень значимости , достигаемый уровень значимости (p-value), ошибки I и II рода. Односторонние и двусторонние альтернативы.
  • Свойства достигаемых уровней значимости. Статистическая и практическая значимость.
  • Свойства критериев: несмещённость , состоятельность , мощность .

Параметрическая проверка гипотез

  • Критерии нормальности: критерий хи-квадрат (Пирсона), критерий Шапиро-Уилка , критерии, основанные на различиях между эмпирической и теоретической функциями распределения, критерий Колмогорова-Смирнова (Лиллиефорса). Упрощённая проверка нормальности по асимметрии и эксцессу: критерий Харке-Бера.
  • Нормальные параметрические критерии для проверки гипотез: гипотезы о положении , гипотезы о рассеивании .
  • Гипотезы о средних: t- и z-критерии Стьюдента для одной и двух выборок, связанные выборки
  • Гипотезы о дисперсиях: критерии хи-квадрат и Фишера .
  • Гипотезы о значениях параметра распределения Бернулли: сравнение значения параметра с заданным, сравнение параметров распределений двух выборок (случаи связанных и независимых выборок).
  • Доверительный интервал для параметра распределения Бернулли: Вальда, Уилсона. Доверительные интервалы Уилсона для разности параметров двух выборок.

Непараметрическая проверка гипотез

Множественная проверка гипотез

Дисперсионный анализ (ANOVA)

  • Однофакторная модель. Независимые выборки: критерии Фишера, Краскела-Уоллиса , Джонкхиера . Связанные выборки: критерии Фишера, Фридмана и Пейджа . Предположение сферичности.
  • Модель со случайным эффектом, разделение дисперсии.
  • Модель с фиксированным эффектом, уточнение различий: методы LSD и HSD, критерии Неменьи и Даннета .
  • Проверка гипотезы о равенстве дисперсий: критерии Бартлета и Флайнера-Киллиана .
  • Двухфакторная модель. Взаимодействие факторов, его интерпретация. Двухфакторный нормальный анализ . Иерархический дизайн.

Анализ зависимостей

Линейный регрессионный анализ

Обобщения линейной регрессии

  • Обобщённые линейные модели. Связующая функция. Оценка параметров методом максимального правдоподобия.
  • Доверительные интервалы и оценка значимости коэффициентов, критерии Вальда и отношения правдоподобия.
  • Меры качества обобщённых линейных моделей: аномальность, информационные критерии.
  • Постановка задачи логистической регрессии . Логит, интерпретация коэффициентов логистической регрессии.
  • Проверка линейности логита: сглаженные диаграммы рассеяния, дробные полиномы.
  • Классификация на основе логистической регрессии: чувствительность, специфичность, выбор порога.
  • Регрессия счётного признака. Пуассоновская модель.
  • Предположение о равенстве матожидания и дисперсии и его проверка. Отрицательная биномиальная модель. Устойчивая оценка дисперсии коэффициентов.

Анализ временных рядов

Последовательный анализ

[Вальд, Mukhopadhyay]

  • Применение в задачах проверки гипотез о значениях параметра биномиального распределения: сравнение значения с заданным, сравнение двух значений.
  • Применение в задачах проверки гипотез о значениях параметров нормального распределения: сравнение значения среднего с заданными (симметричный и несимметричный варианты), сравнение значения дисперсии с заданным.
  • Последовательные доверительные интервалы для среднего нормальной совокупности с неизвестной дисперсией (двухэтапная, последовательная процедуры). Процедуры для разности средних двух нормальных совокупностей, случаи равных и неравных дисперсий.
  • Непараметрические последовательные доверительные интервалы для среднего и медианы.

Анализ причинно-следственных связей

  • Неразрешимость парадокса Симпсона в рамках классической статистики.
  • Причинные графы, цепочки, вилки, коллайдеры. D-разделимость.
  • Интервенции. Оценка эффекта по обзервационным данным. Хирургия графа и формула корректировки (adjustment formula).
  • Правило причинного эффекта. Варианты для отсутствия родителей: правило задней двери, правило передней двери.
  • Propensity score, обратное вероятностное взвешивание.
  • Графы в линейных моделях. Связь со структурными уравнениями.

Литература

  1. Вальд, А. Последовательный анализ. - М.: Физматлит, 1960.
  2. Лагутин, М.Б. Наглядная математическая статистика. В двух томах. - М.: П-центр, 2003.
  3. Кобзарь, А.И. Прикладная математическая статистика. - М.: Физматлит, 2006.
  4. Agresti, A. Categorical Data Analysis. - Hoboken: John Wiley & Sons, 2013.
  5. Bonnini, S., Corain, L., Marozzi, M., Salmaso S. Nonparametric Hypothesis Testing: Rank and Permutation Methods with Applications in R. - Hoboken: John Wiley & Sons, 2014.
  6. Bretz, F., Hothorn, T., Westfall, P. Multiple Comparisons Using R. - Boca Raton: Chapman and Hall/CRC, 2010.
  7. Cameron, A.A., Trivedi, P.K. Regression Analysis of Count Data. - Cambridge: Cambridge University Press, 2013.
  8. Dickhaus, T. Simultaneous Statistical Inference With Applications in the Life Sciences. - Heidelberg: Springer, 2014.
  9. Good, P. Permutation, Parametric and Bootstrap Tests of Hypotheses: A Practical Guide to Resampling Methods for Testing Hypotheses. - New York: Springer, 2005.
  10. Hastie, T. , Tibshirani, R. , Friedman, J. The Elements of Statistical Learning, 2nd edition . - Springer, 2009. - 533 p. ()
  11. Hosmer, D.W., Lemeshow S., Sturdivant, R.X. Applied Logistic Regression. - Hoboken: John Wiley & Sons, 2013.
  12. Hyndman, R.J., Athanasopoulos G. Forecasting: principles and practice. - OTexts, 2015. https://www.otexts.org/book/fpp
  13. Kanji, G.K. 100 statistical tests. - London: SAGE Publications, 2006.
  14. Mukhopadhyay, N., de Silva, B. M. Sequential methods and their applications. - Boca Raton: Chapman and Hall/CRC, 2009.
  15. Olsson, U. Generalized Linear Models: An Applied Approach. - Lund: Studentlitteratur, 2004.
  16. Pearl J., Glymour M., Jewell N.P. Causal Inference in Statistics: A Primer. - Chichester: John Wiley & Sons, 2016.
  17. Tabachnick, B.G., Fidell, L.S. Using Multivariate Statistics. - Boston: Pearson Education, 2012.
  18. Wooldridge, J. Introductory Econometrics: A Modern Approach. - Mason: South-Western Cengage Learning, 2013.

Клиентов, потребителей, – это не просто сбор информации, а полноценное исследование. А целью всякого исследования является научно обоснованная интерпретация изученных фактов. Первичный материал необходимо обработать, а именно упорядочить и проанализировать.После опроса респондентов происходит анализ данных исследования. Это ключевой этап. Он представляет собой совокупность приемов и методов, направленных на то, чтобы проверить, насколько были верны предположения и гипотезы, а также ответить на заданные вопросы. Данный этап является, пожалуй, наиболее сложным с точки зрения интеллектуальных усилий и профессиональной квалификации, однако позволяет получить максимум полезной информации из собранных данных. Методы анализа данных многообразны. Выбор конкретного метода зависит, в первую очередь, от того, на какие вопросы мы хотим получить ответ. Можно выделить два класса процедур анализа:

  • одномерные (дескриптивные) и
  • многомерные.

Целью одномерного анализа является описание одной характеристики выборки в определенный момент времени. Рассмотрим более подробно.

Одномерные типы анализа данных

Количественные исследования

Дескриптивный анализ

Дескриптивные (или описательные) статистики являются базовым и наиболее общим методом анализа данных. Представьте, что вы проводите опрос с целью составления портрета потребителя товара. Респонденты указывают свой пол, возраст, семейное и профессиональное положение, потребительские предпочтения и т.д., а описательные статистики позволяют получить информацию, на основе которой будет строиться весь портрет. В дополнение к числовым характеристикам создаются разнообразные графики, помогающие визуально представить результаты опроса. Всё это многообразие вторичных данных объединяется понятием «дескриптивный анализ». Полученные в ходе исследования числовые данные наиболее часто представляются в итоговых отчетах в виде частотных таблиц. В таблицах могут быть представлены разные виды частот. Давайте рассмотрим на примере: Потенциальный спрос на товар

  1. Абсолютная частота показывает, сколько раз тот или иной ответ повторяется в выборке. Например, 23 человека купили бы предложенный товар стоимостью 5000 руб., 41 человек – стоимостью 4500 руб. и 56 человек – 4399 руб.
  2. Относительная частота показывает, какую долю данное значение составляет от всего объема выборки (23 человека – 19,2%, 41 – 34,2%, 56 – 46,6%).
  3. Кумулятивная или накопленная частота показывает долю элементов выборки, не превышающих определенное значение. Например, изменение процента респондентов, готовых приобрести тот или иной товар при уменьшении цены на него (19,2% респондентов готовы купить товар за 5000 руб., 53,4% — от 4500 до 5000 руб., и 100% — от 4399 до 5000 руб.).

Наряду с частотами, дескриптивный анализ предполагает расчет различных описательных статистик. Соответствуя своему названию, они предоставляют основную информацию о полученных данных. Уточним, использование конкретной статистики зависит от того, в каких шкалах представлена исходная информация. Номинальная шкала используется для фиксации объектов, не имеющих ранжированного порядка (пол, место жительства, предпочитаемая марка и т.д.). Для подобного рода массива данных нельзя рассчитать каких-либо значимых статистических показателей, кроме моды — наиболее часто встречающегося значения переменной. Несколько лучше в плане анализа ситуация обстоит с порядковой шкалой . Здесь становится возможным, наряду с модой, расчет медианы – значения, разбивающего выборку на две равные части. Например, при наличии нескольких ценовых интервалов на товар (500-700 руб. руб., 700-900, 900-1100 руб.) медиана позволяет установить точную стоимость, дороже или дешевле которой потребители готовы приобретать или, наоборот, отказаться от покупки. Наиболее богатыми на все возможные статистики являются количественные шкалы , которые представляют собой ряды числовых значений, имеющих равные интервалы между собой и поддающихся измерению. Примерами подобных шкал могут служить уровень дохода, возраст, время, отводимое на покупки и т.д. В данном случае становятся доступными следующие информационные меры : среднее, размах, стандартное отклонение, стандартная ошибка среднего. Конечно, язык цифр является довольно «сухим» и для многих весьма непонятным. По этой причине дескриптивный анализ дополняется визуализацией данных путем построения различных диаграмм и графиков, как, например: гистограммы, линейные, круговые или точечные диаграммы.

Таблицы сопряженности и корреляции

Таблицы сопряженности – это средство представления распределения двух переменных, предназначенное для исследования связи между ними. Таблицы сопряженности можно рассматривать как частный тип дескриптивного анализа. В них также является возможным представление информации в виде абсолютных и относительных частот, графическая визуализация в виде гистограмм или точечных диаграмм. Наиболее эффективно таблицы сопряженности проявляют себя в определении наличия взаимосвязи между номинальными переменными (например, между полом и фактом потребления какого-либо продукта). В общем виде таблица сопряженности выглядит так. Зависимость между полом и пользованием страховыми услугами

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • 3. Ряды динамики
  • Литература

1. Абсолютные и относительные величины

В результате сводки и группировки статистического материала в руках исследователя оказывается самая разнообразная информация об изучаемых явлениях и процессах. Однако, останавливаться на полученных результатах было бы большой ошибкой, потому что, даже сгруппированные по заданным признакам и отраженные в табличной или графической форме, эти данные пока являются только своего рода иллюстрацией, промежуточным результатом, который должен быть подвергнут анализу - в данном случае, статистическому. Статистический анализ - это представление изучаемого объекта в качестве расчлененной системы, т.е. комплекса элементов и связей, образующих в своем взаимодействии органическое целое .

В результате такого анализа должна быть построена модель изучаемого объекта, причем, поскольку речь идет о статистике, при построении модели должны быть использованы статистические значимые элементы и связи.

Собственно, на выявление таких значимых элементов и связей и направлен статистический анализ.

Абсолютные показатели (величины) - величины суммарные, подсчитанные или взятые из сводных статистических отчетов без всяких преобразований. Абсолютные показатели всегда именные и отражаются в тех единицах измерения, которые были заданы при составлении программы статистического наблюдения (количество возбужденных уголовных дел, количество совершенных преступлений, количество разводов и т.д.).

Абсолютные показатели являются базовыми для любых дальнейших статистических операций, однако сами они для анализа малопригодны. По абсолютным показателям, например, трудно судить об уровне преступности в разных городах или регионах и практически нельзя ответить на вопрос, где преступность выше, а где ниже, так как города или регионы могут существенно различаться численности населения, территории и другим важным параметрам.

Относительные величины в статистике представляют собой обобщающие показатели, которые раскрывают числовую форму соотношения двух сопоставляемых статистических величин. При исчислении относительных величин наиболее часто сравнивают две абсолютные, но можно сопоставлять и средние, и относительные величины, получая новые относительные показатели. Самый простой пример вычисления относительной величины - ответ на вопрос: во сколько раз одно число больше другого?

Приступая к рассмотрению относительных величин, необходимо учитывать следующее. В принципе, сравнивать можно все, что угодно, даже линейные размеры листа бумаги А4 с количеством продукции, выпускаемой Ломоносовским фарфоровым заводом. Однако, такое сравнение ничего нам не даст. Важнейшее условие для плодотворного вычисления относительных величин можно сформулировать следующим образом:

1. единицы измерения сравниваемых величин должны быть одними и теми же или вполне сопоставимыми. Числа преступлений, уголовных дел и осужденных - показатели коррелируемые, т.е. взаимосвязанные, но не сопоставимые по единицам измерения. В одном уголовном деле может быть рассмотрено несколько преступлений и осуждена группа лиц; несколько осужденных могут совершить одно преступление и, наоборот, один осужденный - множество деяний. Числа преступлений, дел и осужденных сопоставимы с численностью населения, количеством персонала системы уголовной юстиции, уровнем жизни народа и другими данными одного и того же года. Более того, в течение одного года рассматриваемые показатели вполне сопоставимы и между собой.

2. Сопоставляемые данные обязательно должны соответствовать друг другу по времени или территории их получения либо по тому и другому параметрам вместе.

Абсолютная величина, с которой сравниваются другие в е личины, называется основанием или базой сравнения, а сравн и ваемый показатель - величиной сравнения . Например, при расчете отношения динамики преступности в России в 2000-2010 гг. данные 2000 г. будут базовыми. Они могут приниматься за единицу (тогда относительная величина будет выражена в форме коэффициента), за 100 (в процентах). В зависимости от размерности сравниваемых величин выбирают наиболее удобную, показательную и наглядную форму выражения относительной величины.

Если сравниваемая величина намного превосходит основание, получаемое отношение лучше выразить в коэффициентах. Например, преступность за определённый период (в годах) увеличилась в 2,6 раза. Выражение в разах в данном случае будет показательнее, чем в процентах. В процентах относительные величины выражаются тогда, когда величина сравнения не сильно отличается от базы.

Относительные величины, применяемые в статистике, в том числе и правовой, бывают разных видов. В правовой статистике применяются следующие виды относительных величин:

1. отношения, характеризующие структуру совокупности, или отношения распределения;

2. отношения части к целому, или отношения интенсивности;

3. отношения, характеризующие динамику;

4. отношения степени и сравнения.

Относительная величина распределения - это относительная величина, выражаемая в процентах отдельных частей совокупности изученных явлений (преступлений, преступников, гражданских дел, исков, причин, мер предупреждения и т.д.) к их общему итогу, принимаемому за 100% . Это - самый распространенный (и простой) вид относительных данных, применяемых в статистике. Это, например, структура преступности (по видам преступлений), структура судимости (по видам преступлений, по возрасту осужденных) и т.д.

статистический анализ абсолютная величина

Отношение интенсивности (отношение части к целому) - обобщающая относительная величина, которая отражает распространенность определенного признака в наблюдаемой совокупности.

Самый распространенный показатель интенсивности, применяемый в правовой статистике - интенсивности преступности. Интенсивность преступности обычно отражается посредством коэффициента преступности, т.е. числа преступлений на 100 или 10 тыс. жителей.

КП= (П*100000)/Н

где П - абсолютное число учтенных преступлений, Н - абсолютная численность населения.

Обязательное условие, определяющее саму возможность вычисления таких показателей, как было сказано выше - все используемые абсолютные показатели берутся на одной территории и за один промежуток времени.

Отношения, характеризующие динамику , представляют собой обобщающие относительные величины, показывающие изменение во времени тех или иных показателей правовой статистики . За временной интервал обычно принимается год.

За основание (базу), равное 1, или 100%, принимаются сведения об изучаемом признаке определенного года, который был чем-то характерен для изучаемого явления. Данные базового года выполняют роль неподвижной базы, к которой процентируются показатели последующих лет.

Задачи статистического анализа часто требуют ежегодных (или по иным периодам) сопоставлений, когда за базу принимаются данные каждого предыдущего года (месяца или другого периода). Подобная база называется подвижной . Обычно это используется при анализе временных рядов (рядов динамики).

Отношения степени и сравнения позволяют сопоставлять различные показатели в целях выявления, какая величина насколько больше другой, в какой мере одно явление отличается от другого или схоже с ним, что имеется общего и отличительно в наблюдаемых статистических процессах и т.д.

Индекс - это специально созданный относительный показатель сравнения (во времени, пространстве, при сравнении с прогнозом и т.д.), показывающий, во сколько раз уровень изучаемого явления в одних условиях отличается от уровня того же явления в других условиях. Наиболее распространены индексы в экономической статистике, хотя они играют определенную роль и при анализе правовых явлений.

Без индексов не обойтись в случаях, когда необходимо сопоставить несоизмеримые показатели, простое суммирование которых невозможно. Поэтому обычно индексы определяют как числа-показатели для измерения средней динамики совокупности разнородных элементов .

В статистике индексы обычно обозначают буквой I (i). Прописная буква или заглавная - зависит от того, идет ли речь об индивидуальном (частном) индексе или он общем.

Индивидуальные индексы (i) отражают отношение показателя текущего периода к соответствующему показателю сравниваемого периода.

Сводные индексы используются при анализе соотношения сложных социально-экономических явлений и состоят из двух частей: собственно индексируемой величины и соизмерителя ("веса").

2. Средние величины и их применение в правовой статистике

Результатом обработки абсолютных и относительных показателей является построение рядов распределения. Ряд распределения - это упорядоченные по качественным или количественным признакам распределения единиц совокупности . Анализ этих рядов лежит в основе любого статистического анализа, каким бы сложным в дальнейшем он не оказался.

Ряд распределения может быть построен на основании качественных или количественных признаков. В первом случае он называется атрибутивным , во втором - вариационным . При этом различия количественного признака называется вариацией , а сам этот признак - вариантой . Именно с вариационными рядами чаще всего приходится иметь дело правовой статистике.

Вариационный ряд всегда состоит из двух колонок (граф). В одной указывается значение количественного признака в порядке возрастания, которые, собственно, и называют вариантами, которые обозначаются x . В другой колонке (графе) указывается число единиц, которые свойственны той или иной варианте. Они называются частотами и обозначаются латинской буквой f .

Таблица 2.1

Варианта x

Частота f

Частота проявления того или иного признака очень важна при вычислении других значимых статистических показателей, а именно - средних и показателей вариации.

Вариационные ряды, в свою очередь, могут быть дискретными или интервальными . Дискретные ряды, как следует из названия, построены на основании дискретно варьирующих признаков, а интервальными - на основании непрерывных вариаций. Так, например, распределение правонарушителей по возрасту может быть как дискретным (18, 19,20 лет и т.д.), так и непрерывным (до 18 лет, 18-25 лет, 25-30 лет и т.д.). Причем сами интервальные ряды могут строиться как по дискретному, так и по непрерывному принципу. В первом случае границы смежных интервалов не повторяются; в нашем примере интервалы будут выглядеть так: до 18 лет, 18-25, 26-30, 31-35 и т.д. Такой ряд называется непрерывный дискретный ряд . Интервальный ряд с непрерывной вариацией предполагает совпадение верхней границы предыдущего интервала с нижней границей последующей.

Самый первый показатель, описывающий вариационные ряды - это средние величины . Они играют важную роль в правовой статистике, поскольку только с их помощью можно охарактеризовать совокупности по количественному варьирующему признаку, по которому можно их сравнивать. С помощью средних величин можно сравнивать интересующие нас совокупности юридически значимых явлений по тем или иным количественным признакам и делать из этих сравнений необходимые выводы.

Средние величины отражают самую общую тенденцию (закономерность ), присущую всей массе изучаемых явлений. Она проявляется в типичной количественной характеристике, т.е. в средней величине всех имеющихся (варьирующих) показателей.

Статистикой разработано много видов средних величин: средняя арифметическая, геометрическая, кубическая, гармоническая и т.д. Однако в правовой статистике они практически не применяются, поэтому мы будем рассматривать только два вида средние - среднюю арифметическую и среднюю геометрическую.

Самая распространенная и хорошо известная средняя - это средняя арифметическая . Для ее расчета высчитывается сумма показателей и делится на общее число показателей. Например, семья из 4-х человек состоит из родителей возрастом 38 и 40 лет и двоих детей возрастом 7год и 10 лет. Мы суммируем возраст: 38+40+7+10 и полученную сумму 95 делим на 4. Полученный средний возраст семьи - 23,75 года. Или рассчитаем среднемесячную нагрузку следователей, если в отделе из 8 человек за месяц раскрыто 25 дел. Делим 25 на 8 и получаем 3,125 дела в месяц на следователя.

В правовой статистике средняя арифметическая используется при расчете нагрузки сотрудников (следователей, прокуроров, судей и т.д.), расчете абсолютного прироста преступности, расчете выборки и т.д.

Однако в приведенным примере среднемесячная нагрузка на следователя рассчитана неверно. Дело в том, что простая средняя арифметическая не учитывает частоту изучаемого признака. В нашем примере среднемесячная нагрузка на следователя столь же корректна и информативна, как "средняя температура по больнице" из известного анекдота, которая, как известно, комнатная. Для того, чтобы при расчете средней арифметической учитывать частоту проявлений изучаемого признака, используется так средняя арифметическая взвешенная илисредняя для дискретных вариационных рядов. (Дискретный вариационный ряд - последовательность изменения признака по дискретным (прерывистым) показателям).

Средняя арифметическая взвешенная (средняя взвешенная) не имеет принципиальных отличий от простой средней арифметической. В ней суммирование одного и того же значения заменено умножением этого значения на его частоту, т.е. в этом случае каждое значение (варианта) взвешивается по частоте встречаемости.

Так, вычисляя по среднюю нагрузку следователей, мы должны умножим число дел на число следователей, который расследовали именно такое количество дел. Обычно такие расчеты удобно представлять в виде таблиц:

Таблица 2.2

Число дел

(варианта х )

Число следователей (частота f )

Произведение вариант

на частоты (х f )

2. Вычислим собственно среднюю взвешенную по формуле:

где x - число уголовных дел, а f - число следователей.

Таким образом, средняя взвешенная равна не 3,125, а 4,375. Если вдуматься, то так и должно быть: нагрузка на каждого отдельного следователя возрастает за счет того, что один следователь в нашем гипотетическом отделе оказался бездельником - или, наоборот, расследовал особо важное и сложное дело. Но вопрос интерпретации результатов статистического исследования будет рассматриваться в следующей теме. В некоторых случаях, а именно - в случаях сгруппированных частот дискретного распределения - вычисление средней, на первый взгляд, неочевидно. Предположим, нам необходимо вычислить среднюю арифметическую для распределения лиц, осужденных за хулиганство, по возрасту. Распределение выглядит следующим образом:

Таблица 2.3

(варианта х )

Число осужденных (частота f )

Середина интервала

Произведение вариант

на частоты (х f )

(21-18) /2+18=19,5

Далее средняя высчитывается по общему правилу и составляет для данного дискретного ряда 23,6 года. В случае т. н. открытых рядов, то есть в ситуациях, когда крайние интервалы определяются "менее x " или "больше x ", величина крайних интервалов задается аналогично другим интервалам.

3. Ряды динамики

Общественные явления, изучаемые статистикой, находятся в постоянном развитии и изменении. Социально-правовые показатели могут быть представлены не только в статической форме, отражающей определенное явление, но и как процесс, происходящий во времени и пространстве, а также в виде взаимодействия исследуемых признаков. Иными словами, динамические ряды показывают развитие признака, т.е. его изменение во времени, пространстве или в зависимости от условий среды.

Данный ряд представляет собой последовательность средних величин в указанные периоды времени (за каждый календарный год).

Для более глубокого изучения общественных явлений и их анализа простого сопоставления уровней ряда динамики недостаточно, необходимо исчислять производные показатели ряда динамики: абсолютный прирост, темп роста, темп прироста, средние темпы роста и прироста, абсолютное содержание одного процента прироста.

Расчет показателей рядов динамики осуществляется на основе сравнения их уровней. При этом возможны два способа сопоставления уровней динамического ряда:

базисные показатели, когда все последующие уровни сравнивают с некоторым начальным, принятым за базу;

цепные показатели, когда каждый последующий уровень ряда динамики сопоставляют с предыдущим.

Абсолютный прирост показывает, на сколько единиц уровень текущего периода больше или меньше уровня базисного или предыдущего периода за конкретный промежуток времени.

Абсолютный прирост (П) исчисляется как разность между сравниваемыми уровнями.

Базисный абсолютный прирост:

П б = y i - y баз . (ф.1).

Цепной абсолютный прирост:

П ц = y i - y i -1 (ф.2).

Темп роста (Тр) показывает, во сколько раз (на сколько процентов) уровень текущего периода больше или меньше уровня базисного или предыдущего периода:

Базисный темп роста:

(ф.3)

Цепной темп роста:

(ф.4)

Темп прироста (Тпр) показывает, на сколько процентов уровень текущего периода больше или меньше уровня базисного или предыдущего периода, принятого за базу сравнения, и вычисляется как отношение абсолютного прироста к абсолютному уровню, принятому за базу.

Темп прироста можно также рассчитать путем вычитания из темпа роста 100%.

Базисный темп прироста:

или (ф.5)

Цепной темп прироста:

или (ф.6)

Средний темп роста исчисляется по формуле средней геометрической из темпов роста ряда динамики:

(ф.7)

где - средний темп роста;

- темпы роста для отдельных периодов;

n - число темпов роста.

Подобные задачи с показателем корня больше трех, как правило, решаются при помощи логарифмирования. Из алгебры известно, что логарифм корня равен логарифму подкоренной величины, деленной на показатель корня, и что логарифм произведения нескольких сомножителей равен сумме логарифмов этих сомножителей.

Таким образом, средние темпы роста исчисляются путем извлечения корня n степени из произведений индивидуальных n - цепных темпов роста. Средние темпы прироста представляют собой разность между средним темпом роста и единицей (), или 100%, когда темп роста выражен в процентах:

или

При отсутствии в динамическом ряду промежуточных уровней средние темпы роста и прироста определяются по следующей формуле:

(ф.8)

где - конечный уровень динамического ряда;

- начальный уровень динамического ряда;

n - число уровней (дат).

Очевидно, что показатели средних темпов роста и прироста, исчисленные по формулам (ф.7 и ф.8), имеют одинаковые числовые значения.

Абсолютное содержание 1% прироста показывает, какое абсолютное значение содержит 1% прироста и исчисляется как отношение абсолютного прироста к темпу прироста.

Абсолютное содержание 1% прироста:

базисные: (ф.9)

цепные: (ф.10)

Вычисление и анализ абсолютного значения каждого процента прироста способствуют более глубокому пониманию характера развития исследуемого явления. Данные нашего примера показывают, что, несмотря на колебания темпов роста и прироста за отдельные годы, базисные показатели абсолютного содержания 1% прироста остаются неизменными, в то время как цепные показатели, характеризующие изменения абсолютного значения одного процента прироста в каждом последующем году по сравнению с предыдущим, непрерывно возрастают.

При построении, обработке и анализе рядов динамики часто возникает потребность в определении средних уровней изучаемых явлений за определенные промежутки времени. Средняя хронологическая интервального ряда исчисляется при равных интервалах по формуле средней арифметической простой, при неравных интервалах - по средней арифметической взвешенной:

где - средний уровень интервального ряда;

- исходные уровни ряда;

n - число уровней.

Для моментного ряда динамики при условии равенства промежутков времени между датами исчисление среднего уровня производится по формуле средней хронологической:

(ф.11)

где - средняя хронологическая величина;

y 1 ,., y n - абсолютный уровень ряда;

n - число абсолютных уровней ряда динамики.

Средняя хронологическая из уровней моментного ряда динамики равняется сумме показателей этого ряда, деленной на число показателей без одного; при этом начальный и конечный уровни должны быть взяты в половинном размере, так как число дат (моментов) обычно бывает наединицу больше, чем число периодов.

В зависимости от содержания и формы представления исходных данных (интервальные или моментные ряды динамики, равные или нет временные интервалы) для вычисления различных социальных показателей, например, среднегодовое количество преступлений и правонарушений (по видам), среднего размера остатков оборотных средств, среднесписочного числа правонарушителей и т.п., используют соответствующие аналитические выражения.

4. Статистические методы изучения взаимосвязей

В предыдущих вопросах мы рассматривали, если можно так сказать, анализ "одномерных" распределений - вариационных рядов. Это очень важный, но далеко не единственный вид статистического анализа. Анализ вариационных рядов является основанием для более "продвинутых" видов статистического анализа, в первую очередь - для изучения взаимосвязей . В результате такого исследования вскрываются причинно-следственные отношения между явлениями, что позволяет определить, изменении каких признаков влияет на вариации изучаемых явлений и процессов. При этом признаки, обуславливающие изменение других, называются факторными (факторами), а признаки, изменяющиеся под их воздействием - результативными.

В статистической науке различают два вида связей между различными признаками и их сведениями - функциональную связь (жестко-детерминированную) и статистическую (стохастическую).

Для функциональных связей характерно полное соответствие между изменением факторного признака и изменением результативной величины. Эта взаимосвязь одинаково проявляется у всех единиц любой совокупности. Самый простой пример: повышение температуры отражается на объеме ртути в градуснике. При этом температура окружающей среды выступает в качестве фактора, а объем ртути - в качестве результативного признака.

Функциональные взаимосвязи характерны для явлений, изучаемых такими науками, как химия, физика, механика, в которых есть возможность ставить "чистые" эксперименты, при которых устраняется влияние посторонних факторов. Дело в том, что функциональная связь между двумя возможна только в том случае, если вторая величина (результативный признак) зависит только и исключительно от первой. В общественных явлениях такое наблюдается крайне редко.

Социально-правовые процессы, представляющие собой результат одновременного воздействия большого количества факторов, описываются посредством статистических связей, то есть связей стохастически (случайно ) детерминированных , когда разным значениям одной переменной соответствуют разные значения другой переменной.

Наиболее важный (и распространенный) случай стохастической зависимости - корреляционная зависимость . При такой зависимости причина определяет следствие не однозначно, а лишь с определенной долей вероятности. Выявлению таких связей посвящен отдельный вид статистического анализа - корреляционный анализ.

Основная задача корреляционного анализа - на основе строго математических приемов установить количественное выражение зависимости, существующей между исследуемыми признаками. Существует несколько подходов к тому, как именно вычисляется корреляция и, соответственно, несколько видов коэффициентов корреляции: коэффициент сопряженности А.А. Чупрова (для измерения связи между качественнымипризнаками), коэффициент ассоциации К. Пирсона, а также коэффициенты ранговой корреляции Спирмена и Кендалла. В общем случае такие коэффициенты показывают, с какой вероятностью проявляются изучаемые взаимосвязи. Соответственно, чем коэффициент выше, тем более выраженной является связь между признаками.

Между изучаемыми факторами может существовать как прямая, так и обратная корреляционная зависимость. Прямая корреляционная зависимость наблюдается в случаях, когда изменению значений фактора соответствуют такие же изменения значения результативного признака, то есть, когда увеличивается значение факторного признака, увеличивается и значение результативного, и наоборот. Например, между криминогенными факторами и преступностью существует прямая корреляционная зависимость (со знаком "+"). Если же увеличение значений одного признака вызывает обратные изменения значений другого, то такая связь называется обратной . Например, чем выше социальный контроль в обществе, тем ниже преступность (связь со знаком "-").

И прямые, и обратные связи могут быть прямолинейными и криволинейными.

Прямолинейные (линейные) связи проявляются тогда, когда с увеличением значений признака-фактора происходит возрастание (прямая) или уменьшение (обратная) величины признака-следствия. Математически такая связь выражается уравнением регрессии: у = а + b х, где у - признак-следствие; а и b - соответствующие коэффициенты связи; х - признак-фактор.

Криволинейные связи носят иной характер. Возрастание величины факторного признака оказывает неравномерное влияние на величину результирующего признака. Вначале эта связь может быть прямой, а затем - обратной. Известный пример - связь преступлений с возрастом правонарушителей. Сначала криминальная активность лиц растет прямо пропорционально увеличению возраста правонарушителей (приблизительно до 30 лет), а затем с увеличением возраста преступная активность снижается. Причем вершина кривой распределения правонарушителей по возрасту сдвинута от средней влево (к более молодому возрасту) и является асимметричной.

Корреляционные прямолинейные связи могут быть одн о факторными , когда исследуется связь между одним признаком-фактором и одним признаком-следствием (парная корреляция). Они могут быть и многофакторными, когда исследуется влияние многих взаимодействующих между собой признаков-факторов на признак-следствие (множественная корреляция).

Но, какой бы из коэффициентов корреляции не использовался, какая бы корреляция не исследовалась, установить связь между признаками, исходя только из статистических показателей, невозможно. Первоначальный анализ показателей - это всегда анализ качественный , в ходе которого изучается и уясняется социально-правовая природа явления. При этом используются те научные методы и подходы, которые характерны для отрасли науки, изучающей данное явление (социологии, права, психологии и т.д.). Затем анализ группировок и средних величин позволяет выдвинуть гипотезы, построить модели, определить тип связи и зависимости. Только после этого определяется количественная характеристика зависимости - собственно, коэффициент корреляции.

Литература

1. Аванесов Г.А. Основы криминологического прогнозирования. Учебное пособие. М.: ВШ МВД СССР, 1970.

2. Аврутин К.Е., Гилинский Я.И. Криминологический анализ преступности в регионе: методология, методика, техника. Л., 1991.

3. Адамов Е. и др. Экономика и статистика фирм: Учебник / Под ред. С.Д. Ильенковой. М.: Финансы и статистика, 2008.

4. Балакина Н.Н. Статистика: Учеб. - метод. комплекс. Хабаровск: ИВЭСЭП, филиал в г. Хабаровске, 2008.

5. Блувштейн Ю.Д., Волков Г.И. Динамические ряды преступности: Учебное пособие. Минск, 1984.

6. Боровиков В.П., Боровиков И.П. STATISTICA - Статистический анализ и обработка данных в среде Windows. М.: Информационно-издательский дом "Филинъ”, 1997.

7. Бородин С.В. Борьба с преступностью: теоретическая модель комплексной программы. М.: Наука, 1990.

8. Вопросы статистики // Ежемесячный научно-информационный журнал Госкомстата РФ.М., 2002-2009 гг.

9. Гусаров В.М. Статистика: Учеб. пособие для вузов. М.: ЮНИТИ-ДАНА, 2009.

10. Добрынина Н.В., Нименья И.Н. Статистика: Учеб. - метод. пособие. СПб.: СПбГИЭУ, 2009.

11. Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник для вузов / Под ред.И. И. Елисеевой.4-е изд. М.: Финансы и статистика, 1999.

12. Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник. - М.: Финансы и статистика, 1995.

13. Еремина Т., Матятина В., Плущевская Ю. Проблемы развития секторов российской экономики // Вопросы экономики. 2009. № 7.

14. Ефимова М.Р., Ганченко О.И., Петрова Е.В. Практикум по общей теории статистики: Учеб. пособие.2-е изд., перераб. и доп. М.: Финансы и статистика, 2009.

15. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики: Учебник. - М.: ИНФРА-М, 1998.

16. Кириллов Л.А. Криминологическое изучение и предупреждение преступности органами внутренних дел М., 1992.

17. Косоплечев Н.П., Методы криминологического исследования. М., 1984.

18. Ли Д.А. Преступность в России: системный анализ. М., 1997.

19. Ли Д.А. Уголовно-статистический учет: структурно-функциональные закономерности. М.: Информационно-издательское агентство "Русский мир”, 1998.

20. Макарова Н.В., Трофимец В.Я. Статистика в Excel: Учеб. пособие. М.: Финансы и статистика, 2009.

21. Нестеров Л.И. Новые веяния в статистике национального богатства // Вопросы статистики. 2008. № 11.

22. Петрова Е.В. и др. Практикум по статистике транспорта: Учеб. пособие. М.: Финансы и статистика, 2008.

23. Преступность в России в девяностых годах и некоторые аспект законности и борьбы с нею. М., 1995.

24. Преступность, статистика, закон // Под ред. проф. А.И. Долговой. М.: Криминологическая ассоциация, 1997.

25. Ростов К.Т. Преступность в регионах России (социально-криминологический анализ). СПб.: СПб академия МВД России, 1998.

26. Руководство для переписчика о порядке проведения Всероссийской переписи населения 2002 года и заполнения переписных документов. М.: ПИК "Офсет", 2003.

27. Савюк Л.К. Правовая статистика: Учебник. М.: Юристъ, 1999.

28. Салин В.Н., Шпаковская Е.П. Социально-экономическая статистика: Учебник для вузов. М.: Гарданика Юрист, 2008.

29. Сиденко А.В., Попов Г.Ю., Матвеева В.М. Статистика: Учебник. М.: Дело и Сервис, 2008.

30. Социальная профилактика правонарушений: советы, рекомендации // Под ред. Д.А. Керимова. М., 1989.

31. Социальная статистика: Учебник для вузов // Под ред. И.И. Елисеевой. 3-е изд. М.: Финансы и статистика, 2009.

Размещено на Allbest.ru

Подобные документы

    Рассмотрение основных методов статистического анализа. Исследование Кунгурского муниципального района. Проведение расчетов по показателям ежегодника. Анализ демографии и социально-экономического развития данного района по результатам применения.

    курсовая работа , добавлен 24.06.2015

    Средняя величина – свободная характеристика закономерностей процесса в тех условиях, в которых он протекает. Формы и методы расчета средних величин. Применение средних величин на практике: расчет дифференциации заработной платы по отраслям экономики.

    курсовая работа , добавлен 04.12.2007

    Статистические методы анализа разводов. Статистический анализ разводов в Амурской области. Анализ динамики и структуры разводов. Группировка городов и районов Амурской области по количеству разводов за год. Расчет средних величин и показателей вариации.

    курсовая работа , добавлен 12.04.2014

    Аспекты статистического анализа обеспеченности жильем. Применение статистических методов для анализа обеспеченности жильем населения. Анализ однородности совокупности районов по коэффициенту демографической нагрузки. Корреляционно-регрессионный анализ.

    курсовая работа , добавлен 18.01.2009

    Организация государственной статистики в России. Требования, предъявляемые к собираемым данным. Формы, виды и способы статистического наблюдения. Подготовка статистического наблюдения. Ошибки статистического наблюдения. Методы контроля за статистикой.

    реферат , добавлен 02.12.2007

    Разработка программы наблюдения уголовно-правовой статистики, ее основные этапы и предъявляемые требования, методы и порядок реализации. Определение состояния преступности в исследуемом районе. Правила оформления результатов статистического наблюдения.

    контрольная работа , добавлен 18.05.2010

    Классификация статистической документации. Виды документов: письменные, иконографические, статистические и фонетические. Методы и способы анализа материалов: неформализованные (традиционные) и формализованные. Порядок осуществления контент-анализа.

    презентация , добавлен 16.02.2014

    Понятие средней величины. Метод средних величин в изучении общественных явлений. Актуальность применения метода средних величин в изучении общественных явлений обеспечивается возможностью перехода от единичного к общему, от случайного к закономерному.

    курсовая работа , добавлен 13.01.2009

    Понятие статистического наблюдения. Анализ прямолинейных и криволинейных корреляционных связей. Знакомство с формулами и величинами статистического наблюдения. Анализ расчетов взаимосвязи индексов, построение гистограммы, элементы ряда распределения.

    контрольная работа , добавлен 27.03.2012

    Характеристика основных показателей статистического анализа социальной обусловленности общественного здоровья в Российской Федерации. Уровни оценки здоровья с точки зрения социальной медицины. Классификация детской части населения по группам здоровья.

Объектом исследования в прикладной статистике являются статистические данные, полученные в результате наблюдений или экспериментов. Статистические данные - это совокупность объектов (наблюдений, случаев) и признаков (переменных), их характеризующих. Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Статистические методы анализа данных, относящиеся к группе а), обычно называют методами прикладной статистики.

Числовые статистические данные - это числа, вектора, функции. Их можно складывать, умножать на коэффициенты. Поэтому в числовой статистике большое значение имеют разнообразные суммы. Математический аппарат анализа сумм случайных элементов выборки - это (классические) законы больших чисел и центральные предельные теоремы.

Нечисловые статистические данные - это категоризованные данные, вектора разнотипных признаков, бинарные отношения, множества, нечеткие множества и др. Их нельзя складывать и умножать на коэффициенты.

Статистический анализ данных, как правило, включает в себя целый ряд процедур и алгоритмов, выполняемых последовательно, параллельно или по более сложной схеме. В частности, можно выделить следующие этапы:

планирование статистического исследования;

организация сбора необходимых статистических данных по оптимальной или рациональной программе (планирование выборки, создание организационной структуры и подбор команды статистиков, подготовка кадров, которые будут заниматься сбором данных, а также контролеров данных и т.п.);

непосредственный сбор данных и их фиксация на тех или иных носителях (с контролем качества сбора и отбраковкой ошибочных данных по соображениям предметной области);

первичное описание данных (расчет различных выборочных характеристик, функций распределения, непараметрических оценок плотности, построение гистограмм, корреляционных полей, различных таблиц и диаграмм и т.д.),

оценивание тех или иных числовых или нечисловых характеристик и параметров распределений (например, непараметрическое интервальное оценивание коэффициента вариации или восстановление зависимости между откликом и факторами, т.е. оценивание функции),

проверка статистических гипотез (иногда их цепочек - после проверки предыдущей гипотезы принимается решение о проверке той или иной последующей гипотезы),

более углубленное изучение, т.е. применение различных алгоритмов многомерного статистического анализа, алгоритмов диагностики и построения классификации, статистики нечисловых и интервальных данных, анализа временных рядов и др.;

проверка устойчивости полученных оценок и выводов относительно допустимых отклонений исходных данных и предпосылок используемых вероятностно-статистических моделей, в частности, изучение свойств оценок методом размножения выборок;

применение полученных статистических результатов в прикладных целях (например, для диагностики конкретных материалов, построения прогнозов, выбора инвестиционного проекта из предложенных вариантов, нахождения оптимальных режима осуществления технологического процесса, подведения итогов испытаний образцов технических устройств и др.),

составление итоговых отчетов, в частности, предназначенных для тех, кто не является специалистами в статистических методах анализа данных, в том числе для руководства - "лиц, принимающих решения".

К методам относят:

Корреляционный анализ. Между переменными (случайными величинами) может существовать функциональная связь, проявляющаяся в том, что одна из них определяется как функция от другой. Но между переменными может существовать и связь другого рода, проявляющаяся в том, что одна из них реагирует на изменение другой изменением своего закона распределения. Такую связь называют стохастической. В качестве меры зависимости между переменными используется коэффициент корреляции (r), который изменяется в пределах от - 1 до +1. Если коэффициент корреляции отрицательный, это означает, что с увеличением значений одной переменной значения другой убывают. Если переменные независимы, то коэффициент корреляции равен 0 (обратное утверждение верно только для переменных, имеющих нормальное распределение). Но если коэффициент корреляции не равен 0 (переменные называются некоррелированными), то это значит, что между переменными существует зависимость. Чем ближе значение r к 1, тем зависимость сильнее. Коэффициент корреляции достигает своих предельных значений +1 или - 1, тогда и только тогда, когда зависимость между переменными линейная. Корреляционный анализ позволяет установить силу и направление стохастической взаимосвязи между переменными (случайными величинами).

Регрессионный анализ. В регрессионном анализе моделируется взаимосвязь одной случайной переменной от одной или нескольких других случайных переменных. При этом, первая переменная называется зависимой, а остальные - независимыми. Выбор или назначение зависимой и независимых переменных является произвольным (условным) и осуществляется исследователем в зависимости от решаемой им задачи. Независимые переменные называются факторами, регрессорами или предикторами, а зависимая переменная - результативным признаком, или откликом.

Если число предикторов равно 1, регрессию называют простой, или однофакторной, если число предикторов больше 1 - множественной или многофакторной. В общем случае регрессионную модель можно записать следующим образом:

y = f (x 1 , x 2 , …, x n),

где y - зависимая переменная (отклик), x i (i = 1,…, n) - предикторы (факторы), n - число предикторов.

Канонический анализ. Канонический анализ предназначен для анализа зависимостей между двумя списками признаков (независимых переменных), характеризующих объекты. Например, можно изучить зависимость между различными неблагоприятными факторами и появлением определенной группы симптомов заболевания, или взаимосвязь между двумя группами клинико-лабораторных показателей (синдромов) больного. Канонический анализ является обобщением множественной корреляции как меры связи между одной переменной и множеством других переменных.

Методы сравнения средних. В прикладных исследованиях часто встречаются случаи, когда средний результат некоторого признака одной серии экспериментов отличается от среднего результата другой серии. Так как средние это результаты измерений, то, как правило, они всегда различаются, вопрос в том, можно ли объяснить обнаруженное расхождение средних неизбежными случайными ошибками эксперимента или оно вызвано определенными причинами. Сравнение средних результата один из способов выявления зависимостей между переменными признаками, характеризующими исследуемую совокупность объектов (наблюдений). Если при разбиении объектов исследования на подгруппы при помощи категориальной независимой переменной (предиктора) верна гипотеза о неравенстве средних некоторой зависимой переменной в подгруппах, то это означает, что существует стохастическая взаимосвязь между этой зависимой переменной и категориальным предиктором.

Частотный анализ. Таблицы частот, или как еще их называют одновходовые таблицы, представляют собой простейший метод анализа категориальных переменных. Данный вид статистического исследования часто используют как одну из процедур разведочного анализа, чтобы посмотреть, каким образом различные группы наблюдений распределены в выборке, или как распределено значение признака на интервале от минимального до максимального значения. Кросстабуляция (сопряжение) - процесс объединения двух (или нескольких) таблиц частот так, что каждая ячейка в построенной таблице представляется единственной комбинацией значений или уровней табулированных переменных. Кросстабуляция позволяет совместить частоты появления наблюдений на разных уровнях рассматриваемых факторов.

Анализ соответствий. Анализ соответствий по сравнению с частотным анализом содержит более мощные описательные и разведочные методы анализа двухвходовых и многовходовых таблиц. Метод, так же, как и таблицы сопряженности, позволяет исследовать структуру и взаимосвязь группирующих переменных, включенных в таблицу.

Кластерный анализ. Кластерный анализ - это метод классификационного анализа; его основное назначение - разбиение множества исследуемых объектов и признаков на однородные в некотором смысле группы, или кластеры. Это многомерный статистический метод, поэтому предполагается, что исходные данные могут быть значительного объема, т.е. существенно большим может быть как количество объектов исследования (наблюдений), так и признаков, характеризующих эти объекты. Большое достоинство кластерного анализа в том, что он дает возможность производить разбиение объектов не по одному признаку, а по ряду признаков. Кроме того, кластерный анализ в отличие от большинства математико-статистических методов не накладывает никаких ограничений на вид рассматриваемых объектов и позволяет исследовать множество исходных данных практически произвольной природы.

Дискриминантный анализ. Дискриминантный анализ включает статистические методы классификации многомерных наблюдений в ситуации, когда исследователь обладает так называемыми обучающими выборками. Этот вид анализа является многомерным, так как использует несколько признаков объекта, число которых может быть сколь угодно большим. Цель дискриминантного анализ состоит в том, чтобы на основе измерения различных характеристик (признаков) объекта классифицировать его, т.е. отнести к одной из нескольких заданных групп (классов) некоторым оптимальным способом. При этом предполагается, что исходные данные наряду с признаками объектов содержат категориальную (группирующую) переменную, которая определяет принадлежность объекта к той или иной группе. Факторный анализ. Факторный анализ - один из наиболее популярных многомерных статистических методов. Если кластерный и дискриминантный методы классифицируют наблюдения, разделяя их на группы однородности, то факторный анализ классифицирует признаки (переменные), описывающие наблюдения. Поэтому главная цель факторного анализа - сокращение числа переменных на основе классификация переменных и определения структуры взаимосвязей между ними.

Деревья классификации. Деревья классификации - это метод классификационного анализа, позволяющий предсказывать принадлежность объектов к тому или иному классу в зависимости от соответствующих значений признаков, характеризующих объекты. Признаки называются независимыми переменными, а переменная, указывающая на принадлежность объектов к классам, называется зависимой. В отличие от классического дискриминантного анализа, деревья классификации способны выполнять одномерное ветвление по переменными различных типов категориальным, порядковым, интервальным. Не накладываются какие-либо ограничения на закон распределения количественных переменных. По аналогии с дискриминантным анализом метод дает возможность анализировать вклады отдельных переменных в процедуру классификации.

Анализ главных компонент и классификация. Метод анализ главных компонент и классификация позволяет решить эту задачу и служит для достижения двух целей:

уменьшение общего числа переменных (редукция данных) для того, чтобы получить "главные" и "некоррелирующие" переменные;

классификация переменных и наблюдений, при помощи строящегося факторного пространства.

Решение основной задачи метода достигается созданием векторного пространства латентных (скрытых) переменных (факторов) с размерностью меньше исходной. Исходная размерность определяется числом переменных для анализа в исходных данных.

Многомерное шкалирование. Метод можно рассматривать как альтернативу факторному анализу, в котором достигается сокращение числа переменных, путем выделения латентных (непосредственно не наблюдаемых) факторов, объясняющих связи между наблюдаемыми переменными. Цель многомерного шкалирования - поиск и интерпретация латентных переменных, дающих возможность пользователю объяснить сходства между объектами, заданными точками в исходном пространстве признаков. Показателями сходства объектов на практике могут быть расстояния или степени связи между ними. В факторном анализе сходства между переменными выражаются с помощью матрицы коэффициентов корреляций. В многомерном шкалировании в качестве исходных данных можно использовать произвольный тип матрицы сходства объектов: расстояния, корреляции и т.д.

Моделирование структурными уравнениями (причинное моделирование). Объектом моделирования структурными уравнениями являются сложные системы, внутренняя структура которых не известна ("черный ящик"). Основная идея моделирования структурными уравнениями состоит в том, что можно проверить, связаны ли переменные Y и X линейной зависимостью Y = aX, анализируя их дисперсии и ковариации. Эта идея основана на простом свойстве среднего и дисперсии: если умножить каждое число на некоторую константу k, среднее значение также умножится на k, при этом стандартное отклонение умножится на модуль k.

Временные ряды. Временные ряды - это наиболее интенсивно развивающееся, перспективное направление математической статистики. Под временным (динамическим) рядом подразумевается последовательность наблюдений некоторого признака Х (случайной величины) в последовательные равноотстоящие моменты t. Отдельные наблюдения называются уровнями ряда и обозначаются хt, t = 1, …, n. При исследовании временного ряда выделяются несколько составляющих:

x t =u t +y t +c t +e t , t = 1, …, n,

где u t - тренд, плавно меняющаяся компонента, описывающая чистое влияние долговременных факторов (убыль населения, уменьшение доходов и т.д.); - сезонная компонента, отражающая повторяемость процессов в течение не очень длительного периода (дня, недели, месяца и т.д.); сt - циклическая компонента, отражающая повторяемость процессов в течение длительных периодов времени свыше одного года; t - случайная компонента, отражающая влияние не поддающихся учету и регистрации случайных факторов. Первые три компоненты представляют собой детерминированные составляющие.

Нейронные сети. Нейронные сети представляют собой вычислительную систему, архитектура которой имеет аналогию с построением нервной ткани из нейронов. На нейроны самого нижнего слоя подаются значения входных параметров, на основании которых нужно принимать определенные решения.

Планирование экспериментов. Искусство располагать наблюдения в определенном порядке или проводить специально спланированные проверки с целью полного использования возможностей этих методов и составляет содержание предмета "планирование эксперимента".

Карты контроля качества. Качество продукции и услуг формируется в процессе научных исследований, конструкторских и технологических разработок, обеспечивается хорошей организацией производства и услуг. Но изготовление продукции и оказание услуг независимо от их вида всегда связано с определенным непостоянством условий производства и предоставления. Это приводит к некоторой вариабельности признаков их качества. Поэтому, актуальными являются вопросы разработки методов контроля качества, которые позволят своевременно выявить признаки нарушения технологического процесса или оказания услуг.

Различные единицы статистической совокупности, имеющие определенное сходство межу собой по достаточно важным признакам, объединяются в группы при помощи метода группировки. Такой прием позволяет "сжать" информацию, полученную в ходе наблюдения, и на этой основе установить закономерности, присущие изучаемому явлению.

Метод группировок применяется для решения различных задач, важнейшими из которых являются:

1. выделение социально-экономических типов

2. определение структуры однотипных совокупностей

3. вскрытие связей и закономерностей между отдельными признаками общественных явлений

В связи с этим существуют 3 вида группировок: типологические, структурные и аналитические. Группировки различают по форме проведения.

Типологическая группировка представляет собой разделение исследуемой качественно разнородной статистической совокупности на классы, социально-экономические типы, однородные группы единиц.

Структурные группировки разделяют однородную в качественном отношении совокупность единиц по определенным, существенным признакам на группы, характеризующие ее состав и внутреннюю структуру.

Аналитические группировки обеспечивают установление взаимосвязи и взаимозависимости между исследуемыми социально-экономическими явлениями и признаками, их характеризующими. Посредством этого вида группировок устанавливаются и изучаются причинно-следственные связи между признаками однородных явлений, определяются факторы развития статистической совокупности.

Под методами статистического анализа понимаются приемы прикладной математики, которые используются для повышения объективности и достоверности получаемых данных, для обработки экспериментальных результатов. В дифференциальной психологии наиболее часто применяются три таких метода – дисперсионный, корреляционный и факторный анализ .

1. Дисперсионный анализ позволяет определить меру индивидуального варьирования показателей (так как, известно, что при одинаковых средних показателях размах распределения может существенно отличаться). Для некоторых исследовательских и практических задач именно дисперсия дает основную информацию. Например, представим себе, что средний балл, полученный школьниками за контрольную работу по алгебре, составляет «4» и для мальчиков, и для девочек. Но у мальчиков присутствуют и тройки, и пятерки, а все девочки активно списывали друг у друга и в результате получили по четверке. Понятно, что итог одинаков в каждой группе, а психолого-педагогический смысл, стоящий за средним баллом, совершенно различен.

2. Корреляционный анализ удостоверяет наличие связи, зависимости между изучаемыми переменными. При этом подтверждается одновременность проявления этих признаков, но не их причинная обусловленность. Если две какие-либо характеристики, полученные для одного и того же объекта, имеют тенденцию изменяться совместно, так что имеется возможность предсказать одну из них по значению другой, то говорят, что эти характеристики коррелируют друг с другом. Например, отмечается, что удовлетворенность браком у супругов отрицательно коррелирует с тревожностью. Это значит, что чем больше они довольны семейной жизнью, тем спокойнее себя ощущают. Однако на основании этого факта мы не можем узнать, спокойны ли они по той причине, что дома все в порядке, или довольны совместной жизнью потому, что обладают низкой тревожностью и общим позитивным отношением к жизни.

Математически наличие зависимости между признаками выражается в показателе коэффициента корреляции: два одинаковых признака связаны между собой коэффициентом «1»; два различных – коэффициентом «0». Степень связанности характеристик лежит в диапазоне от 0,01 до 0,99. Близкие к нулю корреляции не могут подтверждать наличие зависимости между переменными. Соотношение может быть как позитивным (+1), так и негативным (-1). Отрицательный коэффициент корреляции означает, что при увеличении значения одного признака, значение другого признака уменьшается. Коэффициент корреляции был предложен Карлом Спирменом для измерения соотношения между двумя интеллектуальными показателями (1901). Сходное открытие сделал и один из учеников Ф. Гальтона Карл Пирсон .

3. Факторный анализ – это группа методов, предназначенных для определения свойств, которые нельзя наблюдать и измерять непосредственно. Идея факторного анализа принадлежит К. Спирмену, который предложил выявлять общие закономерности на основе анализа матрицы коэффициентов корреляции. В том случае, если по результатам подсчета коэффициентов корреляции будут прослеживаться особо плотные связи между несколькими показателями (корреляционные плеяды), можно предположить, что за ними стоит общий фактор – переменная более высокого уровня обобщения.

При использовании такого способа структурирования и обобщения психологической информации появляется возможность получить компактное описание объекта измерения, выделить наиболее существенные и независимые друг от друга характеристики. Данная возможность позволяет использовать факторный анализ для решения следующих психодиагностических задач:

- «концептуальная чистка» (уточнение психологического содержания изучаемых феноменов);

Конструирование тестов;

Проверка психометрических свойств опросников (особенно в тех случаях, когда опросники применяются в новых культурах или популяциях).

В дифференциальной психологии методы факторного анализа широко используется при изучении структуры индивидуальности, а также ее отдельных составляющих, таких, например, как темперамент, интеллект и личность. Выявленные факторы рассматриваются в качестве устойчивых и относительно независимых свойств, характеризующих изучаемую структуру.

При этом принимаются во внимания разные уровни обобщения информации, в соответствии с которыми выделяют три типа факторов:

Общие факторы, объединяющие в себе все измерения данного свойства, например общий фактор интеллекта или общий фактор активности;

Групповые факторы, включающие в себя не все, но значительное число измерений данного свойства;

Специфические или уникальные факторы, относящиеся лишь к одному типу измерений .

В качестве ограничений факторного анализа стоит отметить относительную субъективность его методов. Результаты факторизации зависят от природы и количества переменных, подвергающихся анализу. Решение о выборе формы факторного анализа и тех переменных, которые должны быть включены в исходную матрицу, принимается, исходя из этих параметров, а также из теоретических позиций каждого исследователя. В итоге создаются модели индивидуальности, отличающиеся не только по количеству выделенных факторов, но и по характеру связей, обнаруженных между ними.

Как отмечает польский исследователь Ян Стреляу, использование этого метода имеет существенные изъяны. У разных авторов количество и качество выделяемых факторов разное, хотя исходный материал, образующий основу для выделения факторов остается неизменным. Как правило, исследователи расходятся уже в исходном пункте – выборе данных, подлежащих факторному анализу. Это приводит к тому, что содержание выделенных структур индивидуальности существенно отличается друг от друга. Изъян заложен в самом методе, который является произвольным и зависит от интуиции и настойчивости исследователя .

Для того чтобы грамотно использовать методы статистического анализа, необходимо быть уверенным в нормальности распределения изучаемого качества.

Нормальное распределение появилось благодаря исследованиям интеллекта. Ф. Гальтон был первым, кто обнаружил, что различия в интеллекте могут быть измерены количественно через установление степени выраженности этих характеристик у разных людей. Он предположил, что эти различия нормально распределены в популяции, т.е. небольшие группы людей обладают высоким (14%) или низким (14%) уровнем интеллекта, а большая часть выборки (68%) занимает положение в середине (1869). На крайние проявления приходится 4% (по 2% на каждый полюс).

В графическом изображении нормальное распределение имеет форму купола: отдельные значения переменной располагаются симметрично относительно центра. При этом центральное значение совпадает с медианой– точкой, выше которой находится ровно половина переменных, и ниже – также ровно половина.

Наряду с нормальным распределением часто встречаются асимметричные распределения и бимодальные. Тем не менее, даже при условии нормального распределения существует вероятность того, что полученные результаты окажутся случайными. Эта вероятность называется «уровнем значимости». Например, несмотря на высокие значения, коэффициент корреляции может иметь разный уровень значимости – вплоть до «нулевого». Уровень значимости зависит от объема выборки и разброса значений.

Аналогичным образом различные или сходные на вид показатели не всегда являются статистическими значимыми. Существуют разные способы выявления значимости различий. Их выбор зависит от характера распределения экспериментальных данных, зависимости или независимости переменных, а также от степени необходимой точности, которая определяется задачами исследования.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top