Передача информации нейронами в головном мозге. Нейроны головного мозга — рождение и жизнь

Передача информации нейронами в головном мозге. Нейроны головного мозга — рождение и жизнь

Нейрон (от греч. neuron - нерв) - это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более 100 миллиардов нейронов.

Функции нейронов Как и другие клетки, нейроны должны обеспечивать поддержание собственной структуры и функций, приспосабливаться к изменяющимся условиям и оказывать регулирующее влияние на соседние клетки. Однако основная функция нейронов - это переработка информации: получение, проведение и передача другим клеткам. Получение информации происходит через синапсы с рецепторами сенсорных органов или другими нейронами, или непосредственно из внешней среды с помощью специализированных дендритов. Проведение информации происходит по аксонам, передача - через синапсы.

Строение нейрона

Тело клетки Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов (билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в них находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Аксон - обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты - как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами. Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии. Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик - образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Синапс Синапс - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона, другие - гиперполяризацию; первые являются возбуждающими, вторые - тормозящими. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Структурная классификация нейронов

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

  • Безаксонные нейроны - небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.
  • Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.
  • Биполярные нейроны - нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • Мультиполярные нейроны - Нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе
  • Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (т. е. находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация нейронов По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние - неультиматные.

Ассоциативные нейроны (вставочные или интернейроны) - эта группа нейронов осуществляет связь между эфферентными и афферентными, их делят на комиссуральные и проекционные (головной мозг).

Морфологическая классификация нейронов Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

  1. учитывают размеры и форму тела нейрона,
  2. количество и характер ветвления отростков,
  3. длину нейрона и наличие специализированные оболочки.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120-150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет от 150 мкм до 120 см. По количеству отростков выделяют следующие морфологические типы нейронов: - униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге; - псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях; - биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях; - мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Развитие и рост нейрона Нейрон развивается из небольшой клетки - предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему. Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона. Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне.

Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки. Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Нейрон - электрически возбудимая клетка, которая обрабатывает, хранит и передает информацию с помощью электрических и химических сигналов. Клетка содержит ядро, тело клетки и отростки (дендриты и аксоны). В головном мозге человека насчитывается в среднем около 65 миллиардов нейронов. Нейроны соединяются между собой, формируя таким образом человеческие функции мозга, память, отделы и сознание.

Видите это изображение выше? С помощью этого странного изображения нейробиологи Массачусетского технологического института смогли активировать отдельные нейроны мозга. Используя лучшую из доступных модель зрительной нейронной сети мозга, ученые разработали новый способ точного управления отдельными нейронами и их популяциями в середине этой сети. В ходе испытания на животных команда показала, что информация, полученная из вычислительной модели, позволила им создавать изображения, которые сильно активировали определенные нейроны мозга.

Свежий вкусен сам по себе, из винограда делают замечательные , а если высушить виноград — получится сладкий изюм. Но какие ещё плюсы несёт в себе эта ягода с богатейшей историей? Исследователи из Школы медицины на горе Синай пришли к выводу, что на основе винограда можно создать эффективное и безопасное средство против депрессии, которое будет обладать минимальными побочными эффектами для здоровья человека.

Нейронные связи головного мозга обуславливают сложное поведение. Нейроны — маленькие вычислительные машины, способные оказывать влияние, только объединившись в сети.

Контроль простейших элементов поведения (например, рефлексов) не требует большого количества нейронов, но даже рефлексы часто сопровождает осознание человеком срабатывания рефлекса. Сознательное же восприятие сенсорных стимулов (и все высшие функции нервной системы) зависит от огромного числа связей между нейронами.

Нейронные связи делают нас такими, какие мы есть. Их качество влияет на работу внутренних органов, на интеллектуальные способности и эмоциональную стабильность.

"Проводка"

Нейронные связи головного мозга — проводка нервной системы. Работа нервной системы основана на способности нейрона воспринимать, обрабатывать и передавать информацию другим клеткам.

Информация передается через Поведение человека и функционирование его организма полностью зависит от передачи и получения импульсов нейронами через отростки.

У нейрона два типа отростков: аксон и дендрит. Аксон у нейрона всегда один, именно по нему нейрон передает импульс другим клеткам. Получает же импульс через дендриты, которых может быть несколько.

К дендритам "подведено" множество (иногда десятки тысяч) аксонов других нейронов. Дендрит и аксон контактируют через синапс.

Нейрон и синапсы

Щель между дендритом и аксоном — синапс. Т.к. аксон "источник" импульса, дендрит "принимающий", а синаптическая щель — место взаимодействия: нейрон, от которого идет аксон, называют пресинаптическим; нейрон, от которого идет дендрит, — постсинаптическим.

Синапсы могут формироваться и между аксоном и телом нейрона, и между двумя аксонами или двумя дендритами. Многие синаптические связи образованы дендритным шипиком и аксоном. Шипики очень пластичны, обладают множеством форм, могут быстро исчезать и формироваться. Они чувствительны к химическим и физическим воздействиям (травмы, инфекционные заболевания).

В синапсах чаще всего информация передается посредством медиаторов (химических веществ). Молекулы медиатора высвобождаются на пресинаптической клетке, пересекают синаптическую щель и связываются с мембранными рецепторами постсинаптической клетки. Медиаторы могут передавать возбуждающий или тормозящий (ингибирующий) сигнал.

Нейронные связи головного мозга представляют собой соединение нейронов через синаптические связи. Синапсы — функциональная и структурная единица нервной системы. Количество синаптических связей — ключевой показатель для работы мозга.

Рецепторы

Рецепторы вспоминают каждый раз, когда говорят про наркотическую или алкогольную зависимость. Почему же человеку необходимо руководствоваться принципом умеренности?

Рецептор на постсинаптической мембране — белок, настроенный на молекулы медиатора. Когда человек искусственно (наркотиками, например) стимулирует выброс медиаторов в синаптическую щель, синапс пытается вернуть равновесие: снижает количество рецепторов или их чувствительность. Из-за этого естественные уровни концентрации медиаторов в синапсе перестают оказывать действие на нейронные структуры.

Например, курящие люди никотином изменяют восприимчивость рецепторов к ацетилхолину, происходит десенсибилизация (уменьшение чувствительности) рецепторов. Естественный уровень ацетилхолина оказывается недостаточным для рецепторов с пониженной чувствительность. Т.к. ацетилхолин задействован во многих процессах, в том числе, связанных с концентрацией внимания и ощущением комфорта, курящий не может получить полезные эффекты работы нервной системы без никотина.

Впрочем, чувствительность рецепторов постепенно восстанавливается. Хотя это может занимать долгое время, синапс приходит в норму, и человеку больше не требуются сторонние стимуляторы.

Развитие нейронных сетей

Долговременные изменения нейронных связей происходят при различных болезнях (психических и неврологических — шизофрения, аутизм, эпилепсия, болезнях Хантингтона, Альцгеймера и Паркинсона). Синаптические связи и внутренние свойства нейронов изменяются, что приводит к нарушению работы нервной системы.

За развитие синаптических связей отвечает активность нейронов. "Используй или потеряешь" — принцип, лежащий в основе мозга. Чем чаще "действуют" нейроны, тем больше между ними связей, чем реже, тем меньше связей. Когда нейрон теряет все свои связи, он погибает.

Когда средний уровень активности нейронов падает (например, вследствие травмы), нейроны строят новые контакты, с количеством синапсов растет активность нейронов. Верно и обратное: как только уровень активности становится больше привычного уровня, количество синаптических соединений уменьшается. Подобные формы гомеостаза часто встречаются в природе, например, при регуляции температуры тела и уровня сахара в крови.

М. Бутс M. Butz отметил:

Формирование новых синапсов обусловлено стремлением нейронов поддерживать заданный уровень электрической активности...

Генри Маркрам, который участвует в проекте по созданию нейронной симуляции мозга, подчеркивает перспективы развития отрасли для изучения нарушения, восстановления и развития нейронных связей. Группа исследователей уже оцифровала 31 тысячу нейронов крысы. Нейронные связи мозга крысы представлены в видео ниже.

Нейропластичность

Развитие нейронных связей в головном мозге сопряжено с созданием новых синапсов и модификацией существующих. Возможность модификаций обусловлена синаптической пластичностью — изменением "мощности" синапса в ответ на активацию рецепторов на постсинаптической клетке.

Человек может запоминать информацию и обучаться благодаря пластичности мозга. Нарушение нейронных связей головного мозга вследствие черепно-мозговых травм и нейродегенеративных заболеваний благодаря нейропластичности не становится фатальным.

Нейропластичность обусловлена необходимостью изменяться в ответ на новые условия жизни, но она может как решать проблемы человека, так и создавать их. Изменение мощности синапса, например, при курении — это тоже отражение От наркотиков и обсессивно-компульсивного расстройства так сложно избавиться именно из-за неадаптивного изменения синапсов в нейронных сетях.

На нейропластичность большое влияние оказывают нейротрофические факторы. Н. В. Гуляева подчеркивает, что различные нарушения нейронных связей происходят на фоне снижения уровней нейротрофинов. Нормализация уровня нейротрофинов приводит к восстановлению нейронных связей головного мозга.

Все эффективные лекарства, используемые для лечения болезней мозга, независимо от их структуры, если они эффективны, они тем или иным механизмом нормализуют локальные уровни нейротрофических факторов.

Оптимизация уровней нейротрофинов пока не может осуществляться путем прямой их доставки в мозг. Зато человек может опосредованно влиять на уровни нейротрофинов через физические и когнитивные нагрузки.

Физические нагрузки

Обзоры исследований показывают, что упражнения улучшают настроение и познавательные способности. Данные свидетельствуют о том, что эти эффекты обусловлены изменением уровня нейротрофического фактора (BDNF) и оздоровлением сердечно-сосудистой системы.

Высокие уровни BDNF были связаны с лучшими показателями пространственных способностей, эпизодической и Низкий уровень BDNF, особенно у пожилых людей, коррелировал с атрофией гиппокампа и нарушениями памяти, что может быть связано с когнитивными проблемами, возникающими при болезни Альцгеймера.

Изучая возможности по лечению и профилактике Альцгеймера, исследователи часто говорят о незаменимости физических упражнений для людей. Так, исследования показывают, что регулярная ходьба влияет на размер гиппокампа и улучшает память.

Физические нагрузки увеличивают скорость нейрогенеза. Появление новых нейронов — важное условие для переучивания (приобретения нового опыта и стирания старого).

Когнитивные нагрузки

Нейронные связи головного мозга развиваются, когда человек находится в обогащенной стимулами среде. Новый опыт — ключ к увеличению нейронных связей.

Новый опыт — это конфликт, когда проблема не решается теми средствами, которые уже есть у мозга. Поэтому ему приходится создавать новые связи, новые шаблоны поведения, что связано с увеличением плотности шипиков, количества дендритов и синапсов.

Обучение новым навыкам приводит к образованию новых шипиков и дестабилизации старых соединений шипиков с аксонами. Человек вырабатывает новые привычки, а старые исчезают. Некоторые исследования связывают когнитивные расстройства (СДВГ, аутизм, умственную отсталость) с отклонениями в развитии шипиков.

Шипики очень пластичны. Количество, форма и размер шипиков связаны с мотивацией, обучением и памятью.

Время, требующееся на изменения их формы и размера, измеряется буквально в часах. Но это значит также, что настолько же быстро новые соединения могут исчезать. Поэтому лучше всего отдавать предпочтение кратким, но частым когнитивным нагрузкам, чем длительным и редким.

Образ жизни

Диета может повышать когнитивные способности и защищать нейронные связи головного мозга от повреждений, содействовать их восстановлению после болезней и противодействовать последствиям старения. На здоровье мозга, по всей видимости, оказывают положительное влияние:

— омега-3 (рыба, семена льна, киви, орехи);

— куркумин (карри);

— флавоноиды (какао, зеленый чай, цитрусовые, темный шоколад);

— витамины группы В;

— витамин Е (авокадо, орехи, арахис, шпинат, пшеничная мука);

— холин (куриное мясо, телятина, яичные желтки).

Большинство перечисленных продуктов опосредованно влияют на нейротрофины. Позитивное влияние диеты усиливается при наличии физических упражнений. Кроме того, умеренное ограничение количества калорий в рационе стимулирует экспрессию нейротрофинов.

Для восстановления и развития нейронных связей полезно исключение насыщенных жиров и рафинированного сахара. Продукты с добавленными сахарами снижают уровни нейротрофинов, что негативно сказывается на нейропластичности. А высокое содержание насыщенных жиров в еде даже тормозит восстановление мозга после черепно-мозговых травм.

Среди негативных факторов, затрагивающих нейронные связи: курение и стресс. Курение и длительный стресс в последнее время ассоциируют с нейродегенеративными изменениями. Хотя непродолжительный стресс может быть катализатором нейропластичности.

Функционирование нейронных связей зависит и ото сна. Возможно, даже больше, чем от всех остальных перечисленных факторов. Потому что сам по себе сон — "это цена, которую мы платим за пластичность мозга" (Sleep is the price we pay for brain plasticity. Ch. Cirelli - Ч. Цирелли).

Резюме

Как улучшить нейронные связи головного мозга? Положительное влияние оказывают:

  • физические упражнения;
  • задачи и трудности;
  • полноценный сон;
  • сбалансированная диета.

Негативно воздействуют:

  • жирная пища и сахар;
  • курение;
  • длительный стресс.

Мозг чрезвычайно пластичен, но "лепить" из него что-то очень сложно. Он не любит тратить энергию на бесполезные вещи. Быстрее всего развитие новых связей происходит в ситуации конфликта, когда человек не способен решить задачу известными методами.

Главный компонент мозга человека или другого млекопитающего – нейрон (другое название – неврон). Именно эти клетки образуют нервную ткань. Наличие невронов помогает приспособиться к условиям окружающей среды, чувствовать, мыслить. С их помощью передается сигнал в нужный участок тела. Для этой цели используются нейромедиаторы. Зная строение нейрона, его особенности, можно понять суть многих заболеваний и процессов в тканях мозга.

В рефлекторных дугах именно нейроны отвечают за рефлексы, регуляцию функций организма. Трудно найти в организме другой вид клеток, который отличался бы таким многообразием форм, размеров, функций, строения, реактивности. Мы выясним каждое различие, проведем их сравнение. В нервной ткани содержатся нейроны и нейроглия. Подробно рассмотрим строение и функции нейрона.

Благодаря своему строению нейрон является уникальной клеткой с высокой специализацией. Он не только проводит электрические импульсы, но и генерирует их. В ходе онтогенеза нейроны утратили возможность размножаться. При этом в организме присутствуют разновидности нейронов, каждой из которых отводится своя функция.

Нейроны покрыты крайне тонкой и при этом очень чувствительной мембраной. Ее называют нейролеммой. Все нервные волокна, а точнее их аксоны, покрыты миелином. Миелиновая оболочка состоит из глиальных клеток. Контакт между двумя нейронами называется синапс.

Строение

Внешне нейроны очень необычны. У них есть отростки, количество которых может варьироваться от одного до множества. Каждый участок выполняет свою функцию. По форме нейрон напоминает звезду, которая находится в постоянном движении. Его формируют:

  • сома (тело);
  • дендриты и аксоны (отростки).

Аксон и дендрит есть в строении любого нейрона взрослого организма. Именно они проводят биоэлектрические сигналы, без которых не могут происходить никакие процессы в человеческом теле.

Выделяют разные виды нейронов. Их отличие кроется в форме, размере, количестве дендритов. Мы подробно рассмотрим строение и виды нейронов, разделение их на группы, проведем сравнение типов. Зная виды нейронов и их функции, легко понять, как устроен мозг и ЦНС.

Анатомия невронов отличается сложностью. Каждый вид имеет свои особенности строения, свойства. Ими заполнено все пространство головного и спинного мозга. В теле каждого человека встречается несколько видов. Они могут участвовать в разных процессах. При этом данные клетки в процессе эволюции утратили способность к делению. Их количество и связь относительно стабильны.

Нейрон – это конечный пункт, который подает и принимает биоэлектрический сигнал. Эти клетки обеспечивают абсолютно все процессы в теле и имеют первостепенную важность для организма.

В теле нервных волокон содержится нейроплазма и чаще всего одно ядро. Отростки специализируются на определенных функциях. Они делятся на два вида – дендриты и аксоны. Название дендритов связано с формой отростков. Они действительно похожи на дерево, которое сильно ветвится. Размер отростков – от пары микрометров до 1-1,5 м. Клетка с аксоном без дендритов встречается только на стадии эмбрионального развития.

Задача отростков – воспринимать поступающие раздражения и проводить импульс к телу непосредственно нейрона. Аксон нейрона отводит от его тела нервные импульсы. У неврона лишь один аксон, но он может иметь ветви. При этом появляется несколько нервных окончаний (два и больше). Дендритов может быть много.

По аксону постоянно курсируют пузырьки, которые содержат ферменты, нейросекреты, гликопротеиды. Они направляются от центра. Скорость движения некоторых из них – 1-3 мм в сутки. Такой ток называют медленным. Если же скорость движения 5-10 мм в час, подобный ток относят к быстрому.

Если веточки аксона отходят от тела неврона, то дендрит ветвится. У него много веточек, а конечные являются самыми тонкими. В среднем насчитывается 5-15 дендритов. Они существенно увеличивают поверхность нервных волокон. Именно благодаря дендритам, невроны легко контактируют с другими нервными клетками. Клетки с множеством дендритов называют мультиполярными. Их в мозге больше всего.

А вот биполярные располагаются в сетчатке и аппарате внутреннего уха. У них лишь один аксон и дендрит.

Не существует нервных клеток, у которых вовсе нет отростков. В организме взрослого человека присутствуют невроны, у которых минимум есть по одному аксону и дендриту. Лишь у нейробластов эмбриона есть единственный отросток – аксон. В будущем на смену таким клеткам приходят полноценные.

В нейронах, как и во множестве других клеток, присутствуют органеллы. Это постоянные составляющие, без которых они не способны существовать. Органеллы расположены глубоко внутри клеток, в цитоплазме.

У невронов есть крупное круглое ядро, в котором содержится деконденсированный хроматин. В каждом ядре имеется 1-2 довольно крупных ядрышка. В ядрах в большинстве случаев содержится диплоидный набор хромосом. Задача ядра – регулировать непосредственный синтез белков. В нервных клетках синтезируется много РНК и белков.

Нейроплазма содержит развитую структуру внутреннего метаболизма. Тут много митохондрий, рибосом, есть комплекс Гольджи. Также есть субстанция Ниссля, которая синтезирует белок нервных клеток. Данная субстанция находится вокруг ядра, а также на периферии тела, в дендритах. Без всех этих компонентов не получится передать или принять биоэлектрический сигнал.

В цитоплазме нервных волокон имеются элементы опорно-двигательной системы. Они располагаются в теле и отростках. Нейроплазма постоянно обновляет свой белковый состав. Она перемещается двумя механизмами – медленным и быстрым.

Постоянное обновление белков в невронах можно рассматривать, как модификацию внутриклеточной регенерации. Популяция их при этом не меняется, так как они не делятся.

Форма

У невронов могут быть разные формы тела: звездчатые, веретенообразные, шаровидные, в форме груши, пирамиды и т.д. Они составляют различные отделы головного и спинного мозга:

  • звездчатые – это мотонейроны спинного мозга;
  • шаровидные создают чувствительные клетки спинномозговых узлов;
  • пирамидные составляют кору головного мозга;
  • грушевидные создают ткань мозжечка;
  • веретенообразные входят в состав ткани коры больших полушарий.

Есть и другая классификация. Она делит нейроны по строению отростков и их числу:

  • униполярные (отросток лишь один);
  • биполярные (есть пара отростков);
  • мультиполярные (отростков много).

Униполярные структуры не имеют дендритов, они не встречаются у взрослых, а наблюдаются в ходе развития эмбриона. У взрослых есть псевдоуниполярные клетки, у которых есть один аксон. Он разветвляется на два отростка в месте выхода из клеточного тела.

У биполярных невронов по одному дендриту и аксону. Их можно найти в сетчатке глаз. Они передают импульс от фоторецепторов к ганглионарным клеткам. Именно клетки ганглии образуют зрительный нерв.

Большую часть нервной системы составляют невроны с мультиполярной структурой. У них много дендритов.

Размеры

Разные типы нейронов могут существенно отличаться по размерам (5-120 мкм). Есть очень короткие, а есть просто гигантские. Средний размер – 10-30 мкм. Самые большие из них – мотонейроны (они есть в спинном мозге) и пирамиды Беца (этих гигантов можно найти в больших полушариях мозга). Перечисленные типы нейронов относятся к двигательным или эфферентным. Они столь велики потому, что должны принимать очень много аксонов от остальных нервных волокон.

Удивительно, но отдельные мотонейроны, расположенные в спинном мозге, имеют около 10-ти тыс. синапсисов. Бывает, что длина одного отростка достигает 1-1,5 м.

Классификация по функциям

Существует также классификация нейронов, которая учитывает их функции. В ней выделяют нейроны:

  • чувствительные;
  • вставочные;
  • двигательные.

Благодаря «двигательным» клеткам приказы отправляются к мышцам и железам. Они отправляют импульсы от центра к периферии. А вот по чувствительным клеткам сигнал отправляется от периферии непосредственно к центру.

Итак, нейроны классифицируют по:

  • форме;
  • функциям;
  • числу отростков.

Невроны могут быть не только в головном, но и в спинном мозге. Они также присутствуют в сетчатке глаз. Данные клетки выполняют сразу несколько функций, они обеспечивают:

  • восприятие внешней среды;
  • раздражение внутренней среды.

Нейроны участвуют в процессе возбуждения и торможения мозга. Полученные сигналы отправляются в ЦНС благодаря работе чувствительных нейронов. Тут импульс перехватывается и передается через волокно в нужную зону. Его анализирует множество вставочных нейронов головного или спинного мозга. Дальнейшую работу выполняет двигательный нейрон.

Нейроглия

Невроны не способны делиться, потому и появилось утверждение, что нервные клетки не восстанавливаются. Именно поэтому их следует оберегать с особой тщательностью. С основной функцией «няни» справляется нейроглия. Она находится между нервными волокнами.

Эти мелкие клетки отделяют нейроны друг от друга, удерживают их на своем месте. У них длинный список функций. Благодаря нейроглии сохраняется постоянная система установленных связей, обеспечивается расположение, питание и восстановление нейронов, выделяются отдельные медиаторы, фагоцитируется генетически чужое.

Организм человека представляет собой сложную систему, в работе которой принимает участие множество отдельных блоков и компонентов. Внешне устройство тела видится элементарным и даже примитивным. Однако если заглянуть глубже и попытаться выявить схемы, по которым происходит взаимодействие между разными органами, то на первый план выйдет нервная система. Нейрон, являющийся основной функциональной единицей этой структуры, выступает в качестве передатчика химических и электрических импульсов. Несмотря на внешнее сходство с другими клетками, он выполняет более сложные и ответственные задачи, поддержка которых важна для психофизической деятельности человека. Для понимания особенностей данного рецептора стоит разобраться с его устройством, принципами работы и задачами.

Что такое нейроны?

Нейрон является специализированной клеткой, которая способна принимать и обрабатывать информацию в процессе взаимодействия с другими структурно-функциональными единицами нервной системы. Количество данных рецепторов в мозге составляет 10 11 (сто миллиардов). При этом один нейрон может содержать более 10 тысяч синапсов - чувствительных окончаний, посредством которых и происходят С учетом того, что данные элементы могут рассматриваться в качестве блоков, способных хранить информацию, можно сделать вывод о содержать огромные объемы информации. Также нейроном называется структурная единица нервной системы, обеспечивающая работу органов чувств. То есть рассматривать данную клетку следует как многофункциональный элемент, предназначенный для решения различных задач.

Особенности нейронной клетки

Виды нейронов

Основная классификация предполагает разделение нейронов по структурному признаку. В частности, ученые выделяют безаксонные, псевдоуниполярные, униполярные, мультиполярные и биполярные нейроны. Надо сказать, что некоторые из этих видов пока мало изучены. Это относится к безаксонным клеткам, которые группируются в области спинного мозга. Также ведутся споры в отношении униполярных нейронов. Есть мнения, что подобные клетки и вовсе не присутствуют в теле человека. Если же говорить о том, какие нейроны преобладают в организме высших существ, то на первый план выйдут мультиполярные рецепторы. Это клетки, располагающие сетью дендритов и одним аксоном. Можно сказать, это классический нейрон, наиболее часто встречающийся в нервной системе.

Заключение

Нейронные клетки являются неотъемлемой составляющей человеческого организма. Именно благодаря этим рецепторам обеспечивается ежедневное функционирование сотен и тысяч химических передатчиков в теле человека. На современном этапе развития наука дает ответ на вопрос о том, что такое нейроны, но при этом оставляет и пространство для будущих открытий. К примеру, на сегодняшний день есть разные мнения относительно некоторых нюансов работы, роста и развития клеток этого типа. Но в любом случае изучение нейронов является одной из главнейших задач нейрофизиологии. Достаточно сказать, что новые открытия в этой области способны пролить свет на более эффективные способы лечения многих психических заболеваний. Кроме того, глубокое понимание принципов работы нейронов позволит разрабатывать средства, стимулирующие умственную деятельность и улучшающие память в новом поколении.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top