Синдром бронкса. Синдром броун-секара: причины, симптомы, лечение

Синдром бронкса. Синдром броун-секара: причины, симптомы, лечение

Биосинтез мочевины

I. Цель изучения: знать конечные продукты обмена белков в организме, основные источники образования аммиака, пути его обезвреживания из организма.

II. Уметь количественно определять содержание мочевины по цветной реакции с диацетилмонооксимом в сыворотке крови; познакомиться с физико-химическими свойствами мочевины.

III. Исходный уровень знаний: качественные реакции на аммиак (неорганическая химия).

IV. Ответить на вопросы контрольных итоговых билетов по теме: «Распад простых белков. Метаболизм аминокислот, конечные продукты азотистого обмена».

1. Конечными продуктами распада азотсодержащих веществ являются углекислый газ, вода и аммиак, в отличие от углеводов и липидов. Источником аммиака в организме являются аминокислоты, азотистые основания, амины. Аммиак образуется в результате прямого и непрямого дезаминирования аминокислот, (основной источник) гидролитического дезаминирования азотистых оснований, инактивации биогенных аминов.

2. Аммиак токсичен и его действие проявляется в нескольких функциональных системах: а) легко проникая через мембраны (нарушая трансмембранный перенос Na + и К +) в митохондриях связывается с α-кетоглутаратом и другими кетокислотами (ЦТК), образуя аминокислоты; в этих процессах используются и восстановительные эквиваленты (NADH+H +).

б) при высоких концентрациях аммиака глутамат и аспартат образуют амиды, используя и АТФ нарушая все тот же ЦТК, являющийся главным энергетическим источником работы мозга. в) Накопление глутамата в мозге повышает осмотическое давление, что ведет к развитию отека. г) Повышение концентрации аммиака в крови (N – 0.4 – 0.7 мг/л) сдвигает рН в щелочную сторону, повышая сродство О 2 к гемоглобину, что вызывает гипоксию нервной ткани. д) Уменьшение концентрации α-кетоглутарата вызывает угнетение обмена аминокислот (синтеза нейромедиаторов), ускорение синтеза оксалоацетата из пирувата, что связано с повышенным использованием СО 2 .

3. Гипераммониемия прежде всего отрицательно действует на мозг и сопровождается тошнотой, головокружением, потерей сознания, отставанием умственного развития (при хронической форме).

4. Основной реакцией связывания аммиака во всех клетках является синтез глутамина под действием глутаминсинтетазы в митохондриях, где используется для этой цели АТФ. Глутамин облегченной диффузией поступает в кровь и транспортируется в кишечник и почки. В кишечнике под действием глутаминазы образуется глутамат, который трансаминируется с пируватом, превращая его в аланин, поглощаемый печенью; 5% аммиака удаляется через кишечник, остальные 90% выводятся почками.

5. В почках также идет гидролиз глутамина с образованием аммиака под действием глутаминазы, которая активируется ацидозом. В просвете канальцев аммиак нейтрализует кислые продукты обмена образуя аммонийные соли для выведения, одновременно сокращая потери К + и Na + . (N – 0,5г солей аммония в сутки).

6. Высокий уровень глутамина в крови обуславливает его использование во многих анаболических реакциях в качестве донора азота (синтез азотистых оснований и др.)

7. Наиболее значительные количества аммиака обезвреживаются в печени синтезом мочевины (86% азота в моче) в количестве ~25 г/сутки. Биосинтез мочевины – циклический процесс, где ключевым веществом является орнитин, присоединяющий карбомоил, образованный из NH 3 и CO 2 при активации 2АТФ. Образованный цитруллин в митохондриях транспортируется в цитозоль для введения второго атома азота из аспартата с образованием аргинина. Аргинин гидролизуется аргиназой и превращается снова в орнитин, а вторым продуктом гидролиза является мочевина, которая по сути дела в этом цикле образовалась из двух атомов азота (источники –NH 3 и аспартат) и одного атома углерода (из СО 2). Энергией обеспечивают 3АТФ (2-при образовании карбомолфосфата и 1 при образовании аргининосукцината).

8. Орнитиновый цикл тесно связан с ЦТК, т.к. аспартат образуется при трансаминировании ЩУК из ЦТК, а фумарат, оставшийся из аспартата после удаления NH 3 , возвращается в ЦТК и, при превращении его в ЩУК, образуются 3 АТФ, обеспечивающие биосинтез молекулы мочевины.

9. Наследственные нарушения орнитинового цикла (цитруллинемия, аргининосукцинатурия, гипераргининемия) ведут к гиперамминиемии и в тяжелых случаях могут привести к печеночной коме.

10. Норма мочевины в крови 2,5-8,3 ммоль/л. Понижение наблюдается при болезнях печени, повышение – результат почечной недостаточности.

Лабораторная работа

I. Цель изучения: знать конечные продукты обмена белков в организме, основные источники образования аммиака, пути его обезвреживания из организма.

II. Уметь количественно определять содержание мочевины по цветной реакции с диацетилмонооксимом в сыворотке крови; познакомиться с физико-химическими свойствами мочевины.

III. Исходный уровень знаний: качественные реакции на аммиак (неорганическая химия).

IV. Ответить на вопросы контрольных итоговых билетов по теме: «Распад простых белков. Метаболизм аминокислот, конечные продукты азотистого обмена».

1. Конечными продуктами распада азотсодержащих веществ являются углекислый газ, вода и аммиак, в отличие от углеводов и липидов. Источником аммиака в организме являются аминокислоты, азотистые основания, амины. Аммиак образуется в результате прямого и непрямого дезаминирования аминокислот, (основной источник) гидролитического дезаминирования азотистых оснований, инактивации биогенных аминов.

2. Аммиак токсичен и его действие проявляется в нескольких функциональных системах: а) легко проникая через мембраны (нарушая трансмембранный перенос Na + и К +) в митохондриях связывается с α-кетоглутаратом и другими кетокислотами (ЦТК), образуя аминокислоты; в этих процессах используются и восстановительные эквиваленты (NADH+H +).

б) при высоких концентрациях аммиака глутамат и аспартат образуют амиды, используя и АТФ нарушая все тот же ЦТК, являющийся главным энергетическим источником работы мозга. в) Накопление глутамата в мозге повышает осмотическое давление, что ведет к развитию отека. г) Повышение концентрации аммиака в крови (N – 0.4 – 0.7 мг/л) сдвигает рН в щелочную сторону, повышая сродство О 2 к гемоглобину, что вызывает гипоксию нервной ткани. д) Уменьшение концентрации α-кетоглутарата вызывает угнетение обмена аминокислот (синтеза нейромедиаторов), ускорение синтеза оксалоацетата из пирувата, что связано с повышенным использованием СО 2 .

3. Гипераммониемия прежде всего отрицательно действует на мозг и сопровождается тошнотой, головокружением, потерей сознания, отставанием умственного развития (при хронической форме).

4. Основной реакцией связывания аммиака во всех клетках является синтез глутамина под действием глутаминсинтетазы в митохондриях, где используется для этой цели АТФ. Глутамин облегченной диффузией поступает в кровь и транспортируется в кишечник и почки. В кишечнике под действием глутаминазы образуется глутамат, который трансаминируется с пируватом, превращая его в аланин, поглощаемый печенью; 5% аммиака удаляется через кишечник, остальные 90% выводятся почками.

5. В почках также идет гидролиз глутамина с образованием аммиака под действием глутаминазы, которая активируется ацидозом. В просвете канальцев аммиак нейтрализует кислые продукты обмена образуя аммонийные соли для выведения, одновременно сокращая потери К + и Na + . (N – 0,5г солей аммония в сутки).

6. Высокий уровень глутамина в крови обуславливает его использование во многих анаболических реакциях в качестве донора азота (синтез азотистых оснований и др.)

7. Наиболее значительные количества аммиака обезвреживаются в печени синтезом мочевины (86% азота в моче) в количестве ~25 г/сутки. Биосинтез мочевины – циклический процесс, где ключевым веществом является орнитин, присоединяющий карбомоил, образованный из NH 3 и CO 2 при активации 2АТФ. Образованный цитруллин в митохондриях транспортируется в цитозоль для введения второго атома азота из аспартата с образованием аргинина. Аргинин гидролизуется аргиназой и превращается снова в орнитин, а вторым продуктом гидролиза является мочевина, которая по сути дела в этом цикле образовалась из двух атомов азота (источники –NH 3 и аспартат) и одного атома углерода (из СО 2). Энергией обеспечивают 3АТФ (2-при образовании карбомолфосфата и 1 при образовании аргининосукцината).

8. Орнитиновый цикл тесно связан с ЦТК, т.к. аспартат образуется при трансаминировании ЩУК из ЦТК, а фумарат, оставшийся из аспартата после удаления NH 3 , возвращается в ЦТК и, при превращении его в ЩУК, образуются 3 АТФ, обеспечивающие биосинтез молекулы мочевины.

9. Наследственные нарушения орнитинового цикла (цитруллинемия, аргининосукцинатурия, гипераргининемия) ведут к гиперамминиемии и в тяжелых случаях могут привести к печеночной коме.

10. Норма мочевины в крови 2,5-8,3 ммоль/л. Понижение наблюдается при болезнях печени, повышение – результат почечной недостаточности.

Лабораторная работа

Выделительная система взрослых амфибий представлена парой туловищных почек - мезонефросов, которые располагаются по бокам крестцового отдела позвоночного столба, но, в отличие от рыб, они не имеют лентовидной формы, а овальные и весьма компактны. Мочеточником является вольфов проток (у самцов он одновременно выполняет функцию семяпровода), который впадает в клоаку. У высших наземных форм в клоаку открывается обширный мочевой пузырь, куда из клоаки поступает моча и временно накапливается. Когда пузырь переполняется, он опорожняет свое содержимое все в ту же клоаку, и оттуда моча выводится наружу.

Почки амфибий удаляют из крови продукты обмена и поддерживают водно-солевой баланс (равновесие). Количество нефронов в почке зависит от того, насколько тесно связано животное с водой. У преимущественно водных хвостатых амфибий в обеих почках находится около 400 - 500 нефронов, а у бесхвостых - около 2000. Это объясняют тем, что водные амфибии часть продуктов обмена выделяют через жабры и покровы тела в окружающую воду. Окончательным продуктом азотистого обмена у амфибий является мочевина.

Через почки удаляется излишняя вода, которая поступает в тело животного через кожу, при этом из мочи обратно всасываются (ре- абсорбируются) соли, поэтому большая часть ионов - до 99% - возвращается в кровь.

У водных личинок амфибий основным продуктом азотистого обмена является не мочевина, а аммиак, который в виде раствора выводится через жабры и кожу.

Половая система. Мужская половая система представлена двумя округлыми семенниками, расположенными вблизи почек (374) и подвешенными на брыжейке. Для земноводных характерно наличие жировых тел различной формы, расположенных над семенниками. Эти тела служат источником питательных веществ для сперматогенеза, и поэтому осенью жировые тела имеют значительно более крупные размеры, чем весной, когда образуется много гамет.

Посредством множества тонких семявыносящих канальцев, которые отходят от семенника, половые продукты проходят через переднюю часть почки и попадают в вольфов проток, который у амфибий (так же как и у хрящевых рыб) совмещает функции мочеточника и семяпровода. Вольфовы протоки впадают в клоаку, но незадолго до этого каждый из них образует небольшое расширение - семенной пузырек, в котором сперма временно накапливается. Подобно семенникам и жировым телам, семенные пузырьки уменьшаются вне периода размножения. Собственных половых протоков в мужской половой системе амфибий нет, у большинства видов также отсутствуют копулятивные органы.

Женская половая система образована двумя яичниками, подвешенными на брыжейке, над которыми лежат жировые тела (375). Размер яичников существенно меняется в зависимости от сезона, значительно увеличиваясь к периоду размножения. Весной яичники особенно велики, через тонкую стенку просвечивают крупные яйца, богатые желтком.

Созревшие яйца выходят из яичника через разрыв фолликулярной оболочки и оказываются в полости тела, откуда затем поступают в воронку яйцевода. У самок амфибий яйцеводом служит парный мюллеров проток, который одним концом (воронкой) открывается в полость тела, а другим - в клоаку. В период размножения яйцеводы сильно удлиняются, стенки их утолщаются.

Для многих амфибий характерно брачное поведение, часто сопровождающееся голосовыми сигналами (самцы некоторых лягушек могут при этом издавать чрезвычайно громкие звуки). Это необходимо для стимуляции одновременного выхода половых продуктов у половых партнеров. Оплодотворение может быть внутренним или наружным.

Развитие подавляющего большинства амфибий проходит в воде, некоторые виды приспособились вынашивать оплодотворенные яйца в своем теле. Яйца содержат относительно немного желтка (мезолецитальные яйца), поэтому происходит радиальное дробление, т. е. борозды дробления в процессе деления блас- томеров проходят через все яйцо.

Для амфибий характерно развитие с метаморфозом, при этом из яйца выходит личинка, которая по своей организации значительно ближе к рыбам, чем к взрослым амфибиям. Она имеет характерную рыбообразную форму, поэтому перемещается с помощью продольных изгибов тела. Органами дыхания сначала служат наружные жабры, представляющие собой выросты кожи, позже прорываются жаберные щели, открывая внутренние жабры, а наружные жабры после этого редуцируются. Конечности на ранних этапах отсутствуют. У хвостатых амфибий весь личиночный период функционируют наружные жабры, а внутренние не развиваются.

В ходе развития личинки амфибий у нее перестраиваются внутренние системы: дыхательная, кровеносная, выделительная и пищеварительная . Постепенно развиваются конечности. Метаморфоз завершается формированием миниатюрной копии взрослой особи, у бесхвостых при этом редуцируется хвост.

Для амбистом характерна неотения, т. е. у них размножаются личинки, которые длительное время принимали за самостоятельный вид, поэтому у них есть свое название - аксолотль. Такая личинка имеет более крупные, чем взрослая особь, размеры. Другой интересной группой амфибий являются протеи, постоянно живущие в воде, которые в течение всей жизни сохраняют наружные жабры, т. е. сохраняют признаки личинки.

Казалось бы, такое вещество, как мочевая кислота, трудно сочетается с кровью. Вот в моче – другое дело, там ей место быть. Между тем, в организме постоянно идут различные обменные процессы с образованием солей, кислот, щелочей и других химических соединений, которые выводятся мочой и желудочно-кишечным трактом из организма, поступая туда из кровеносного русла.

Мочевая кислота (МК) тоже присутствует в крови, она образуется в небольших количествах из пуриновых оснований. Необходимые организму пуриновые основания, в основном, поступают извне, с пищевыми продуктами, и используются в синтезе нуклеиновых кислот, хотя в некоторых количествах вырабатываются организмом тоже. Что касается мочевой кислоты, то она является конечным продуктом пуринового обмена и сама по себе организму, в общем-то, не нужна. Ее повышенный уровень (гиперурикемия) указывает на нарушение пуринового обмена и может грозить отложением ненужных человеку солей в суставах и других тканях, вызывая не только неприятные ощущения, но и тяжелые болезни.

Норма мочевой кислоты и повышенная концентрация

Норма мочевой кислоты в крови у мужчин не должна превышать 7,0 мг/дл (70,0 мг/л) или находится в пределах 0,24 – 0,50 ммоль/л. У женщин норма несколько ниже – до 5,7 мг/дл (57 мг/л) или 0,16 – 0,44 ммоль/л соответственно.

Образованная в ходе пуринового обмена МК должна раствориться в плазме, чтобы в дальнейшем уйти через почки, однако плазма не может растворить мочевой кислоты более чем 0,42 ммоль/л. С мочой из организма в норме удаляется 2,36 – 5,90 ммоль/сутки (250 – 750 мг/сут).

При своей высокой концентрации мочевая кислота образует соль (урат натрия), которая откладывается в тофусы (своеобразные узелки) в различных видах тканей, обладающих сродством к МК. Чаще всего тофусы можно наблюдать на ушных раковинах, кистях рук, стопах, но излюбленным местом являются поверхности суставов (локоть, голеностоп) и сухожильные влагалища. В редких случаях они способны сливаться и образовывать язвы, из которых в виде белой сухой массы выходят кристаллы уратов. Иногда ураты обнаруживаются в синовиальных сумках, вызывая воспаление, боль, ограничение подвижности (синовит). Соли мочевой кислоты можно найти в костях с развитием деструктивных изменений костных тканей.

Уровень мочевой кислоты в крови зависит от ее продукции в ходе пуринового обмена, клубочковой фильтрации и реабсорбции, а также канальцевой секреции. Чаще всего повышенная концентрация МК является следствием неправильного питания, особенно, это касается людей, имеющих наследственную патологию (аутосомно-доминантные или связанные с Х-хромосомой ферментопатии), при которой увеличивается выработка мочевой кислоты в организме или замедляется ее выведение. Генетически обусловленная гиперурикемия называется первичной , вторичная вытекает из ряда других патологических состояний или формируется под воздействием образа жизни.

Таким образом, можно сделать вывод, что причинами повышения мочевой кислоты в крови (излишняя продукция или замедленное выведение) являются:

  • Генетический фактор;
  • Неправильное питание;
  • Почечная недостаточность (нарушение клубочковой фильтрации, уменьшение канальцевой секреции – МК из кровяного русла не переходит в мочу);
  • Ускоренный обмен нуклеотидов ( , лимфо- и миелопролиферативные болезни, гемолитическая ).
  • Применение салициловых препаратов и .

Главные причины повышения…

Одной из причин повышения мочевой кислоты в крови медицина называет неправильное питание, а именно, потребление неразумного количества продуктов, аккумулирующих пуриновые вещества. Это – копчености (рыба и мясо), консервы (особенно – шпроты), печень говяжья и свиная, почки, жареные мясные блюда, грибочки и другие всякие вкусности. Большая любовь к этим продуктам приводит к тому, что нужные организму пуриновые основания усваиваются, а конечный продукт – мочевая кислота, оказывается лишней.

Следует отметить, что продукты животного происхождения, играющие не последнюю роль в возрастании концентрации мочевой кислоты, поскольку несут пуриновые основания, как правило, содержат большое количество холестерина . Увлекаясь такими любимыми блюдами, не соблюдая меры, человек может наносить двойной удар по своему организму .

Диета, обедненная пуринами, состоит из молочных продуктов, груш и яблок, огурцов (не маринованных, конечно), ягод, картофеля и других овощей в свежем виде. Консервация, жарка или всякое «колдовство» над полуфабрикатами заметно ухудшают качество пищи в этом плане (содержание пуринов в еде и накопление мочевой кислоты в организме).

…И главные проявления

Лишняя мочевая кислота разносится по организму, где выражение ее поведения может иметь несколько вариантов:

  1. Кристаллы уратов откладываются и образуют микротофусы в хрящевых, костных и соединительных тканях, вызывая подагрические заболевания. Накопленные в хряще ураты, нередко освобождаются из тофусов. Обычно этому предшествует воздействие провоцирующих гиперурикемию факторов, например, новое поступление пуринов и, соответственно, мочевой кислоты. Кристаллы солей захватываются лейкоцитами (фагоцитоз) и обнаруживаются в синовиальной жидкости суставов (синовит). Это – острый приступ подагрического артрита .
  2. Ураты, попадая в почки, могут откладываться в интерстициальной почечной ткани и приводить к формированию подагрической нефропатии, а следом – и почечной недостаточности. Первыми симптомами болезни можно считать перманентно низкий удельный вес мочи с появлением в ней белка и повышение артериального давления (артериальная гипертензия), в дальнейшем происходят изменения органов выделительной системы, развивается пиелонефрит. Завершением процесса считают формирование почечной недостаточности .
  3. Повышенное содержание мочевой кислоты, образование солей (ураты и кальциевые конкременты) при ее задержке в почках + повышенная кислотность мочи в большинстве случаев приводит к развитию почечнокаменной болезни.

Все движения и превращения мочевой кислоты, обусловливающие ее поведение в целом, могут быть взаимосвязаны или существовать изолированно (как у кого пойдет).

Мочевая кислота и подагра

Рассуждая о пуринах, мочевой кислоте, диете, никак не получается обойти вниманием такую неприятную болезнь, как подагра . В большинстве случаев ее связывают с МК, к тому же редкой ее назвать трудно.

Подагра преимущественно развивается у лиц мужского пола зрелого возраста, иной раз имеет семейный характер. Повышенный уровень мочевой кислоты (гиперурикемия) в наблюдается задолго до появления симптомов заболевания.

Первый приступ подагры тоже яркостью клинической картины не отличается, всего-то – заболел большой палец какой-нибудь ноги, а дней через пять человек опять чувствует себя вполне здоровым и забывает об этом досадном недоразумении. Следующая атака может проявиться через большой промежуток времени и протекает более выраженно:

Лечить болезнь непросто, а иногда и не безобидно для организма в целом. Терапия, направленная на проявление патологических изменений включает:

  1. При остром приступе – колхицин, который снижает интенсивность болей, но склонен накапливаться в белых клетках крови, препятствовать их передвижению и фагоцитозу, а, следовательно, участию в воспалительном процессе. Колхицин угнетает кроветворение;
  2. Нестероидные противовоспалительные препараты – НПВП, обладающие обезболивающим и противовоспалительным эффектом, но негативно влияющие на органы пищеварительного тракта;
  3. Диакарб препятствует камнеобразованию (участвует в их растворении);
  4. Противоподагрические препараты пробенецид и сульфинпиразон способствуют усиленному выведению МК с мочой, но применяются с осторожностью при изменениях в мочевыводящих путях, параллельно назначают большое потребление жидкости, диакарб и отщелачивающие препараты. Аллопуринол снижает продукцию МК, способствует обратному развитию тофусов и исчезновению других симптомов подагры, поэтому, наверное, этот препарат один из лучших средств лечения подагры.

Эффективность лечения пациент может значительно повысить, если возьмется за диету, содержащую минимальное количество пуринов (только для нужд организма, а не для накопления).

Диета при гиперурикемии

Малокалорийная диета (лучше всего подходит стол №5, если у пациента все в порядке с весом), мясо и рыбка – без фанатизма, граммов 300 в недельку и не более. Это поможет больному снизить мочевую кислоту в крови, жить полноценной жизнью, не мучаясь приступами подагрического артрита. Пациентам с признаками этой болезни, имеющим лишний вес, рекомендуется использовать стол №8, не забывая разгружаться каждую неделю, но при этом помнить, что полное голодание запрещено. Отсутствие еды в самом начале диеты быстренько поднимет уровень МК и обострит процесс. А вот о дополнительном поступлении аскорбиновой кислоты и витаминов группы В следует подумать всерьез.

Все дни, пока будет длиться обострение заболевания, должны протекать без употребления мясных и рыбных блюд. Пища должна быть не твердой, впрочем, лучше вообще потреблять ее в жидком виде (молоко, фруктовые кисели и компоты, соки из фруктов и овощей, супы на овощном бульоне, каша-«размазня»). Кроме этого, пациент должен много пить (не меньше 2 литров в сутки).

Следует иметь в виду, что значительное количество пуриновых оснований имеется в таких деликатесах, как:

Напротив, минимальная концентрация пуринов отмечается в:

Это краткий список продуктов, которые запрещены или разрешены пациентам, обнаружившим первые признаки подагры и повышенную мочевую кислоту в анализе крови. Снизить мочевую кислоту в крови поможет вторая часть списка (молоко, овощи и фрукты).

Мочевая кислота понижена. Что это может значить?

Мочевая кислота в крови понижена, в первую очередь, при использовании противоподагрических средств, что абсолютно естественно, ведь они снижают синтез МК.

Кроме этого, причиной понижения уровня мочевой кислоты может стать уменьшение канальцевой реабсорбции, наследственно обусловленное снижение продукции МК и в редких случаях – гепатиты и анемия.

Между тем, пониженный уровень конечного продукта метаболизма пуринов (ровно, как и повышенный) в моче связан с более широким кругом патологических состояний, однако анализ мочи на содержание МК не такой уж и частый, он обычно интересует узких специалистов, занимающихся какой-то конкретной проблемой. Для самодиагностики пациентам он вряд ли может пригодиться.

Видео: мочевая кислота в суставах, мнение врача

Мочевая кислота -- бесцветные кристаллы, плохо растворимы в воде, этаноле, диэтиловом эфире, растворимы в растворах щелочей, горячей серной кислоте и глицерине.

Мочевая кислота была открыта Карлом Шееле (1776) в составе мочевых камней и названа им каменной кислотой -- acide lithique, затем она была найдена им в моче. Название мочевой кислоты дано Фуркруа, её элементарный состав установлен Либихом.

Является двухосновной кислотой (pK1 = 5.75, pK2 = 10.3), образует кислые и средние соли -- ураты.

В водных растворах мочевая кислота существует в двух формах: лактамной (7,9-дигидро-1H-пурин-2,6,8(3H)-трион) и лактимной (2,6,8-тригидроксипурин) с преобладанием лактамной:

Легко алкилируется сначала по положению N-9, затем по N-3 и N-1, под действием POCl3 образует 2,6,8-трихлорпурин.

Азотной кислотой мочевая кислота окисляется до аллоксана, под действием перманганата калия в нейтральной и щелочной среде либо перекиси водорода из мочевой кислоты образуются сначала аллантоин, затем гидантоин и парабановая кислота.

Первым мочевую кислоту удалось синтезировать Горбачёвскому в 1882 году при нагревании гликоколя (амидоуксусной кислоты) с мочевиной до 200--230 °С.

NH2-CH2-COOH + 3CO(NH2)2 = C5H4N4O3+ 3NH3 + 2H2O

Однако такая реакция протекает весьма сложно, и выход продукта ничтожен. Синтез мочевой кислоты возможен при взаимодействии хлоруксусной и трихлормолочной кислот с мочевиной. Наиболее ясным по механизму является синтез Беренда и Роозена (1888 г.), при котором изодиалуровая кислота конденсируется с мочевиной. Мочевую кислоту можно выделить из гуано, где её содержится до 25 %. Для этого гуано необходимо нагреть с серной кислотой (1 ч), затем разбавить водой (12-15 ч), отфильтровать, растворить в слабом растворе едкого калия, отфильтровать, осадить соляной кислотой.

Метод синтеза заключается в конденсации мочевины с цианоуксусным эфиром и дальнейшей изомеризации продукта в урамил (аминобарбитуровую кислоту), дальнейшей конденсации урамила с изоцианатами, изотиоцианатами или цианатом калия.

У человека и приматов -- конечный продукт обмена пуринов образующийся в результате ферментативного окисления ксантина под действием ксантиноксидазы; у остальных млекопитающих мочевая кислота превращается в аллантоин. Небольшие количества мочевой кислоты содержатся в тканях (мозг, печень, кровь), а также в моче и поте млекопитающих и человека. При некоторых нарушениях обмена веществ происходит накопление мочевой кислоты и её кислых солей (уратов) в организме (камни в почках и мочевом пузыре, подагрические отложения, гиперурикемия). У птиц, ряда пресмыкающихся и большинства наземных насекомых мочевая кислота -- конечный продукт не только пуринового, но и белкового обмена. Система биосинтеза мочевой кислоты (а не мочевины, как у большинства позвоночных) в качестве механизма связывания в организме более токсичного продукта азотистого обмена -- аммиака -- развилась у этих животных в связи с характерным для них ограниченным водным балансом (мочевая кислота выводится из организма с минимальным количеством воды или даже в твёрдом виде). Высохшие экскременты птиц (гуано) содержат до 25 % мочевой кислоты. Обнаружена она и в ряде растений. Повышенное содержание мочевой кислоты в организме (крови) человека -- гиперурикемия. При гиперурикемии возможны точечные (похожи на укусы комара) проявления аллергии. Отложения кристаллов урата натрия (соль мочевой кислоты) в суставах называется подагрой.

Мочевая кислота -- исходный продукт для промышленного синтеза кофеина. Синтез мурексида.

Мочевая кислота - это конечный продукт метаболизма пуринов, дальше пурины не распадаются.

Пурины необходимы организму для синтеза нуклеиновых кислот - ДНК и РНК, энергетических молекул АТФ и коферментов.

Источники мочевой кислоты:

  • -- из пуринов пищи
  • -- из распавшихся клеток организма - в результате естественной старости или заболевания
  • -- мочевую кислоту могут синтезировать практически все клетки человеческого тела

Каждый день с продуктами питания (печень, мясо, рыба рис, горох) человек потребляет пурины. В клетках печени и слизистой оболочки кишечника присутствует фермент - ксантиноксидаза, превращающий пурины в мочевую кислоту. Не смотря на то, что мочевая кислота является конечным продуктом обмена, ее нельзя назвать «лишней» в организме. Она необходима для защиты клеток от кислых радикалов, поскольку умеет их связывать.

Общий «запас» мочевой кислоты в организме - 1 грамм, каждый день выделяется 1,5 грамма, из которых 40% пищевого происхождения.

Выведение мочевой кислоты на 75-80% обеспечивают почки, оставшиеся 20-25% -- желудочно-кишечный тракт, где ее частично потребляют кишечные бактерии.

Соли мочевой кислоты называются уратами, являя собой союз мочевой кислоты с натрием (90%) или калием (10%). Мочевая кислота мало растворима в воде, а организм на 60% состоит из воды.

Ураты выпадают в осадок при закислении среды и снижении температуры. Именно поэтому главными болевыми точками при подагре -- болезни высокого уровня мочевой кислоты -- являются отдаленные суставы (большой палец ноги), «косточки» на стопах, уши, локти. Начало болей провоцируется охлаждением.

Повышение кислотности внутренней среды организма бывает и у спортсменов и при сахаром диабете при лактатацидозе, что диктует необходимость контроля мочевой кислоты.

Уровень мочевой кислоты определяют в крови и моче. В поту ее концентрация совсем ничтожна и анализировать общедоступными методиками ее невозможно.

Усиленное образование мочевой кислоты непосредственно в почках бывает при злоупотреблении алкоголем и в печени - как результат обмена некоторых сахаров.

Мочевая кислота в крови - урикемия, а в моче - урикозурия. Повышение мочевой кислоты в крови - гиперурикемия, снижение - гипоурикемия.

По уровню мочевой кислоты в крови диагноз подагры не ставят, нужны симптомы и изменения на рентген-снимках. Если мочевой кислоты в крови больше нормы, а симптомов нет - ставится диагноз «Безсимптомная гиперурикемия». Но, без анализа мочевой кислоты в крови диагноз подагры нельзя считать полностью правомочным.

Нормы мочевой кислоты в крови (в мкмоль/л)

новорожденные -140-340

дети до 15 лет -- 140-340

мужчины до 65 лет -- 220-420

женщины до 65 лет -- 40-340

после 65 лет - до 500




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top