Транспортной функцией крови обладает. Единую систему крови

Транспортной функцией крови обладает. Единую систему крови

Суть этой функции сводится к следующему процессу: в случае повреждения среднего или тонкого кровеносного сосуда (при сдавливании или надрезе ткани) и возникновения наружного или внутреннего кровотечения на месте разрушения сосуда образуется сгусток крови. Именно он препятствует значительной кровопотере. Под воздействием высвобождаемых нервных импульсов и химических веществ просвет сосуда сокращается. Если так случилось, что была повреждена эндотелиальная выстилка кровеносных сосудов, расположенный под эндотелием коллаген обнажается. На него достаточно быстро налипают тромбоциты, которые циркулируют в крови.

Гомеостатическая и защитная функции

Изучая кровь, ее состав и функции, стоит обратить внимание на процесс гомеостаза. Суть его сводится к сохранению водно-солевого и ионного баланса (следствие осмотического давления), и поддержанию pH внутренней среды организма.

Что касается защитной функции, то ее суть заключается в защите организма посредством иммунных антител, фагоцитарной активности лейкоцитов и антибактериальных веществ.

Система крови

К можно отнести сердце и сосуды: кровеносные и лимфатические. Ключевая задача системы крови - это своевременное и полноценное снабжение органов и тканей всеми необходимыми для жизнедеятельности элементами. Движение крови по системе сосудов обеспечивается посредством нагнетательной деятельности сердца. Углубляясь в тему: «Значение, состав и функции крови» стоит определить тот факт, что непосредственно сама кровь двигается по сосудам непрерывно и поэтому способна поддерживать все жизненно важные функции, о которых шла речь выше (транспортная, защитная и др.).

Ключевым органом в системе крови является сердце. Оно имеет структуру полого мышечного органа и посредством вертикальной цельной перегородки делится на левую и правую половины. Есть еще одна перегородка - горизонтальная. Ее задача сводится к разделению сердца на 2 верхние полости (предсердия) и 2 нижние (желудочки).

Изучая состав и функции крови человека, важно понимать принцип действия кругов кровообращения. В системе крови функционируют два круга движения: большой и малый. Это означает, что кровь внутри организма двигается по двум замкнутым системам сосудов, которые соединяются с сердцем.

В качестве начальной точки большого круга выступает аорта, отходящая от левого желудочка. Именно она дает начало мелким, средним и крупным артериям. Они (артерии), в свою очередь, разветвляются на артериолы, завершающиеся капиллярами. Непосредственно сами капилляры образуют широкую сеть, которая пронизывает все ткани и органы. Именно в этой сети происходит отдача питательных веществ и кислорода клеткам, равно как и процесс получения продуктов метаболизма (углекислого газа в том числе).

От нижней части туловища кровь поступает в от верхней, соответственно, в верхнюю. Именно эти две полые вены и завершают большой круг кровообращения, попадая в правое предсердие.

Касаясь малого круга кровообращения, стоит отметить, что он начинается легочным стволом, отходящим от правого желудочка и несущим в легкие венозную кровь. Сам легочный ствол разделяется на две ветви, которые идут к правому и левому артерии делятся на более мелкие артериолы и капилляры, переходящие впоследствии в венулы, образующие вены. Ключевая задача малого круга кровообращения заключается в обеспечении регенерации газового состава в легких.

Изучая состав крови и функции крови, нетрудно прийти к выводу, что она имеет крайне важное значение для тканей и внутренних органов. Поэтому в случае серьёзной кровопотери или нарушения кровотока появляется реальная угроза жизни человека.

Нормальная жизнедеятельность клеток организма возможна только при условии постоянства его внутренней среды. Истинной внутренней средой организма является межклеточная (интерстициальная) жидкость, которая непосредственно контактирует с клетками. Однако постоянство межклеточной жидкости во многом определяется составом крови и лимфы, поэтому в широком понимании внутренней среды в ее состав включают: межклеточную жидкость, кровь и лимфу, спиномозговую, суставную и плевральную жидкость . Между , межклеточной жидкостью и лимфой осуществляется постоянный обмен, направленный на обеспечение непрерывного поступления к клеткам необходимых веществ и удаление оттуда продуктов их жизнедеятельности.

Постоянство химического состава и физико-химических свойств внутренней среды называют гомеостазом.

Гомеостаз — это динамическое постоянство внутренней среды, который характеризуется множеством относительно постоянных количественных показателей, получивших название физиологических, или биологических, констант. Эти константы обеспечивают оптимальные (наилучшие) условия жизнедеятельности клеток организма, а с другой — отражают его нормальное состояние.

Важнейшим компонентом внутренней среды организма является кровь. В понятии системы крови по Лангу входят кровь, регулирующий ней рогу моральный аппарат, а также органы, в которых происходит образование и разрушение клеток крови (костный мозг, лимфатические узлы, вилочковая железа, селезенка и печень).

Функции крови

Кровь выполняет следующие функции.

Транспортная функция — заключается в транспорте кровью различных веществ (энергии и информации, в них заключенных) и тепла в пределах организма.

Дыхательная функция — кровь переносит дыхательные газы — кислород (0 2) и углекислый газ (СО?) — как в физически растворенном, так и химически связанном виде. Кислород доставляется от легких к потребляющим его клеткам органов и тканей, а углекислый газ — наоборот от клеток к легким.

Питательная функция — кровь переносит также мигательные вещества от органов, где они всасываются или депонируются, к месту их потребления.

Выделительная (экскреторная) функция — при биологическом окислении питательных веществ, в клетках образуются, кроме СО 2 , другие конечные продукты обмена (мочевина, мочевая кислота), которые транспортируются кровью к выделительным органам: почкам, легким, потовым железам, кишечнику. Кровью осуществляются также транспорт гормонов, других сигнальных молекул и биологически активных веществ.

Терморегулирующая функция — благодаря своей высокой теплоемкости кровь обеспечивает перенос тепла и его перераспределение в организме. Кровью переносится около 70% тепла, образующегося во внутренних органах в кожу и легкие, что обеспечивает рассеяние ими тепла в окружающую среду.

Гомеостатическая функция — кровь участвует в водно- солевом обмене в организме и обеспечивает поддержание постоянства его внутренней среды — гомеостаза.

Защитная функция заключается прежде всего в обеспечении иммунных реакций, а также создании кровяных и тканевых барьеров против чужеродных веществ, микроорганизмов, дефектных клеток собственного организма. Вторым проявлением защитной функции крови являетcя ее участие в поддержании своего жидкого агрегатного состояния (текучести), а также остановке кровотечения при повреждении стенок сосудов и восстановлении их проходимости после репарации дефектов.

Система крови и её функции

Представление о крови как системе создал наш соотечественник Г.Ф. Ланг в 1939 г. В эту систему он включил четыре части:

  • периферическая кровь, циркулирующая по сосудам;
  • органы кроветворения (красный костный мозг, лимфатические узлы и селезенка);
  • органы кроверазрушения;
  • регулирующий нейрогуморальный аппарат.

Система крови представляет собой одну из систем жизнеобеспечения организма и выполняет множество функций:

  • транспортная - циркулируя по сосудам, кровь осуществляет транспортную функцию, которая определяет ряд других;
  • дыхательная — связывание и перенос кислорода и углекислого газа;
  • трофическая (питательная) - кровь обеспечивает все клетки организма питательными веществами: глюкозой, аминокислотами, жирами, минеральными веществами, водой;
  • экскреторная (выделительная) - кровь уносит из тканей «шлаки» — конечные продукты метаболизма: мочевину, мочевую кислоту и другие вещества, удаляемые из организма органами выделения;
  • терморегуляторная — кровь охлаждает энергоемкие органы и согревает органы, теряющие тепло. В организме имеются механизмы, которые обеспечивают быстрое сужение сосудов кожи при понижении температуры окружающего воздуха и расширение сосудов при повышении. Это приводит к уменьшению или увеличению потери тепла, так как плазма состоит на 90-92% из воды и обладает вследствие этого высокой теплопроводностью и удельной теплоемкостью;
  • гомеостатическая - кровь поддерживает стабильность ряда констант гомеостаза — , осмотического давления и др.;
  • обеспечение водно-солевого обмена между кровью и тканями — в артериальной части капилляров жидкость и соли поступают в ткани, а в венозной части капилляров возвращаются в кровь;
  • защитная - кровь является важнейшим фактором иммунитета, т.е. защиты организма от живых тел и генетически чужеродных веществ. Это определяется фагоцитарной активностью лейкоцитов (клеточный иммунитет) и наличием в крови антител, обезвреживающих микробы и их яды (гуморальный иммунитет);
  • гуморальная регуляция - благодаря своей транспортной функции кровь обеспечивает химическое взаимодействие между всеми частями организма, т.е. гуморальную регуляцию. Кровь переносит гормоны и другие биологически активные вещества от клеток, где они образуются, к другим клеткам;
  • осуществление креаторных связей. Макромолекулы, переносимые плазмой и форменными элементами крови, осуществляют межклеточную передачу информации, обеспечивающую регуляцию внутриклеточных процессов синтеза белков, сохранение степени дифференцированности клеток, восстановление и поддержание структуры тканей.
Физиология крови 1

Кровь, а также органы, принимающие участие в образовании и разрушении ее клеток , вместе с механизмами регуляции объединяют в единую систему крови.

Физиологические функции крови.

Транспортная функция крови состоит в том, что она переносит газы, питательные вещества, продукты обмена веществ, гормоны, медиаторы, электролиты, ферменты и др

Дыхательная функция заключается в том, что гемоглобин эритроцитов переносит кислород от легких к тканям организма, а углекислый газ от клеток к легким.

Питательная функция - перенос основных питательных веществ от органов пищеварения к тканям организма.

Экскреторная функция (выделительная) осуществляется за счет транспорта конечных продуктов обмена веществ (мочевины, мочевой кислоты и др.) и лишних количеств солей и воды от тканей к местам их выделения (почки, потовые железы, легкие, кишечник).

Водный баланс тканей зависит от концентрации солей и количества белка в крови и тканях, а также от проницаемости сосудистой стенки.

Регуляция температуры тела осуществляется за счет физиологических механизмов, способствующих быстрому перераспределению крови в сосудистом русле. При поступлении крови в капилляры кожи теплоотдача увеличивается, переход же ее в сосуды внутренних органов способствует уменьшению потери тепла.

Защитная функция - кровь является важнейшим фактором иммунитета. Это обусловлено наличием в крови антител , ферментов, специальных белков крови, обладающих бактерицидными свойствами, относящихся к естественным факторам иммунитета.

Одним из важнейших свойств крови является ее способность свертываться , что при травмах предохраняет организм от кровопотери.

Регуляторная функция заключается в том, что поступающие в кровь продукты деятельности желез внутренней секреции, пищеварительные гормоны, соли, ионы водорода и др. через центральную нервную систему и отдельные органы (либо непосредственно, либо рефлекторно) изменяют их деятельность.

Кровь, а также органы, принимающие участие в образовании и разрушении ее клеток, вместе с механизмами регуляции объединяют в единую систему крови.

Физиологические функции крови.

Транспортная функция крови состоит в том, что она переносит газы, питательные вещества, продукты обмена веществ, гормоны, медиаторы, электролиты, ферменты и др

Дыхательная функция заключается в том, что гемоглобин эритроцитов переносит кислород от легких к тканям организма, а углекислый газ от клеток к легким.

Питательная функция — перенос основных питательных веществ от органов пищеварения к тканям организма.

Экскреторная функция (выделительная) осуществляется за счет транспорта конечных продуктов обмена веществ (мочевины, мочевой кислоты и др.) и лишних количеств солей и воды от тканей к местам их выделения (почки, потовые железы, легкие, кишечник).

Водный баланс тканей зависит от концентрации солей и количества белка в крови и тканях, а также от проницаемости сосудистой стенки.

Регуляция температуры тела осуществляется за счет физиологических механизмов, способствующих быстрому перераспределению крови в сосудистом русле. При поступлении крови в капилляры кожи теплоотдача увеличивается, переход же ее в сосуды внутренних органов способствует уменьшению потери тепла.

Защитная функция - кровь является важнейшим фактором иммунитета. Это обусловлено наличием в крови антител, ферментов, специальных белков крови, обладающих бактерицидными свойствами, относящихся к естественным факторам иммунитета.

Одним из важнейших свойств крови является ее способность свертываться , что при травмах предохраняет организм от кровопотери.

Регуляторная функция заключается в том, что поступающие в кровь продукты деятельности желез внутренней секреции, пищеварительные гормоны, соли, ионы водорода и др. через центральную нервную систему и отдельные органы (либо непосредственно, либо рефлекторно) изменяют их деятельность.

Количество крови в организме.

Общее количество крови в организме взрослого человека составляет в среднем 6—8%, или 1/13, массы тела, т. е. приблизительно 5—6 л . У детей количество крови относительно больше: у новорожденных оно составляет в среднем 15% от массы тела, а у детей в возрасте 1 года —11%. В физиологических условиях не вся кровь циркулирует в кровеносных сосудах, часть ее находится в так называемых кровяных депо (печень, селезенка, легкие, сосуды кожи). Общее количество крови в организме сохраняется на относительно постоянном уровне.

Вязкость и относительная плотность (удельный вес) крови.

Вязкость крови обусловлена наличием в ней белков и красных кровяных телец — эритроцитов . Если вязкость воды принять за 1, то вязкость плазмы будет равна 1,7—2,2 , а вязкость цельной крови около 5,1 .

Относительная плотность крови зависит в основном от количества эритроцитов, содержания в них гемоглобина и белкового состава плазмы крови. Относительная плотность крови взрослого человека равна 1,050—1,060 , плазмы —1,029—1,034 .

Состав крови.

Периферическая кровь состоит из жидкой части — плазмы и взвешенных в ней форменных элементов или кровяных клеток (эритроцитов, лейкоцитов, тромбоцитов)

Если дать крови отстояться или провести ее центри фугирование, предварительно смешав с противосвертывающим веществом, то образуются два резко отличающихся друг от друга слоя: верхний — прозрачный, бесцветный или слегка желтоватый — плазма крови; нижний — красного цвета, состоящий из эритроцитов и тромбоцитов. Лейкоциты за счет меньшей относительной плотности располагаются на поверхности нижнего слоя в виде тонкой пленки белого цвета.

Объемные соотношения плазмы и форменных элементов определяют с помощью гематокрита. В периферической крови плазма составляет приблизительно 52—58% объема крови, а форменные элементы 42— 48%.

Плазма крови, ее состав.

В состав плазмы крови входят вода (90—92%) и сухой остаток (8—10%). Сухой остаток состоит из органических и неорганических веществ.

К органическим веществам плазмы крови относятся: 1) белки плазмы — альбумины (около 4,5%), глобулины (2—3,5%), фибриноген (0,2—0,4%). Общее количество белка в плазме составляет 7—8%;

2) небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатин, креатинин, аммиак). Общее количество небелкового азота в плазме (так называемого остаточного азота ) составляет 11 —15 ммоль/л (30—40 мг%). При нарушении функции почек, выделяющих шлаки из организма, содержание остаточного азота в крови резко возрастает;

3) безазотистые органические вещества: глюкоза — 4,4—6,65 ммоль/л (80—120 мг%), нейтральные жиры, липиды;

4) ферменты и проферменты : некоторые из них участвуют в процессах свертывания крови и фибринолиза, в частности протромбин и профибринолизин. В плазме содержатся также ферменты, расщепляющие гликоген, жиры, белки и др.

Неорганические вещества плазмы крови составляют около 1 % от ее состава. К этим веществам относятся преимущественно катионы — Ка + , Са 2+ , К + , Мg 2+ и анионы Сl, НРO4, НСО3

Из тканей организма в процессе его жизнедеятельности в кровь поступает большое количество продуктов обмена, биологически активных веществ (серотонин, гиста-мин), гормонов; из кишечника всасываются питательные вещества, витамины и т. д. Однако состав плазмы существенно не изменяется . Постоянство состава плазмы обеспечивается регуляторными механизмами, оказывающими влияние на деятельность отдельных органов и систем организма, восстанавливающих состав и свойства его внутренней среды.

Роль белков плазмы.

Белки обусловливают онкотическое давление . В среднем оно равно 26 мм рт.ст.

Белки, обладая буферными свойствами, участвуют в поддержании кислотно-основного равновесия внутренней среды организма

Участвуют в свертывании крови

Гамма-глобулины участвуют в защитных (иммунных ) реакциях организма

Повышают вязкость крови, имеющую важное значение в поддержании АД

Белки (главным образом альбумины) способны образовывать комплексы с гормонами, витаминами, микроэлементами, продуктами обмена веществ и, таким образом, осуществлять их транспорт .

Белки предохраняют эритроциты от агглютинации (склеивание и выпадение в осадок)

Глобулин крови - эритропоэтин - участвует в регуляции эритропоэза

Белки крови являются резервом аминокислот , обеспечивающих синтез тканевых белков

Осмотическое и онкотическое давление крови.

Осмотическое давление обусловлено электролитами и некоторыми неэлектролитами с низкой молекулярной массой (глюкоза и др.). Чем больше концентрация таких веществ в растворе, тем выше осмотическое давление. Осмотическое давление плазмы зависит в основном от содержания в ней минеральных солей и составляет в среднем 768,2 кПа (7,6 атм.). Около 60% всего осмотического давления обусловлено солями натрия.

Онкотическое давление плазмы обусловлено белками . Величина онкотического давления колеблется в пределах от 3,325 кПа до 3,99 кПа (25—30 мм рт. ст.). За счет него жидкость (вода) удерживается в сосудистом русле. Из белков плазмы наибольшее участие в обеспечении величины онкотического давления принимают альбумины ; вследствие малых размеров и высокой гидрофильности они обладают выраженной способностью притягивать к себе воду.

Постоянство коллоидно-осмотического давления крови у высокоорганизованных животных является общим законом, без которого невозможно их нормальное существование.

Если эритроциты поместить в солевой раствор, имеющий одинаковое осмотическое давление с кровью, то они заметным изменениям не подвергаются. В растворе с высоким осмотическим давлением клетки сморщиваются, так как вода начинает выходить из них в окружающую среду. В растворе с низким осмотическим давлением эритроциты набухают и разрушаются. Это происходит потому, что вода из раствора с низким осмотическим давлением начинает поступать в эритроциты, оболочка клетки не выдерживает повышенного давления и лопается .

Солевой раствор, имеющий осмотическое давление, одинаковое с кровью, называют изоосмотическим, или изотоническим (0,85—0,9 % раствор NaCl). Раствор с более высоким осмотическим давлением, чем давление крови, получил название гипертонического , а имеющий более низкое давление — гипотонического .


Первая клетка не смогла бы выжить, не будь особого «климата» жизни, создаваемого морем. Точно так же каждая из сотен триллионов клеток, составляющих организм человека, погибла бы без крови и лимфы. На протяжении миллионов лет, с тех пор как появилась жизнь, природа выработала внутреннюю транспортную систему, неизмеримо более оригинальную, оперативную и более четко управляемую, нежели любое из средств передвижения, когда-либо созданных человеком.


По сути дела, кровь состоит из целого ряда транспортных систем. Плазма, например, служит средством передвижения для форменных элементов, включая эритроциты, лейкоциты и тромбоциты, которые по мере надобности передвигаются к различным частям тела. В свою очередь красные кровяные тельца являются средством переноса кислорода к клеткам и углекислоты от клеток.

Жидкая плазма переносит в растворенном виде еще множество других веществ, а также собственные компоненты, чрезвычайно важные для жизненных процессов организма. Помимо питательных веществ и отходов, плазма разносит тепло , накапливая или же по мере надобности высвобождая его, и таким образом поддерживая нормальный температурный режим организма. Эта среда переносит многие из основных защитных веществ, охраняющих организм от болезней, а также гормоны, ферменты и другие сложнейшие химические и биохимические вещества, играющие самую разнообразную роль.

Современная медицина располагает довольно точными сведениями о том, каким образом кровь выполняет перечисленные транспортные функции. Что же касается других механизмов, то они до сих пор остаются объектом теоретических догадок, а некоторые, несомненно, еще только предстоит открыть.

Общеизвестно, что любая отдельная клетка погибает без непрестанного и непосредственного снабжения важнейшими материалами и не менее срочного удаления ядовитых отходов. Это значит, что «транспорт» крови должен находиться в непосредственном контакте со всем этим множеством триллионов «клиентов», удовлетворяя потребности каждого из них. Грандиозность этой задачи поистине не поддается человеческому воображению!

Чтобы удовлетворить эту настоятельную потребность в постоянной подаче кислорода, кровь выработала чрезвычайно эффективную и специализированную систему доставки, в которой в качестве «товарных платформ» используются эритроциты (красные кровяные тельца). Работа системы основана на удивительном свойстве гемоглобина в большом количестве поглощать, а затем немедленно отдавать кислород. По сути дела, гемоглобин крови переносит раз в шестьдесят больше того количества кислорода, которое может раствориться в жидкой части крови. Не будь этого железосодержащего пигмента, для снабжения кислородом наших клеток потребовалось бы около 350 литров крови!

Но это уникальное свойство поглощать и переносить большие объемы кислорода от легких ко всем тканям — лишь одна сторона того поистине неоценимого вклада, который вносит гемоглобин в оперативную работу транспортной системы крови. Гемоглобин также перевозит в большом количестве углекислый газ от тканей к легким, и таким образом участвует как в начальной, так и в конечной стадии окисления.

При обмене кислорода на углекислый газ организм с удивительным умением использует характерные особенности жидкостей. Любая жидкость — а газы в этом отношении ведут себя как жидкости — имеет тенденцию перемещаться из области высокого давления в область низкого давления. Если газ находится по обе стороны пористой мембраны и с одной ее стороны давление выше, чем с другой, то он проникает через поры из области высокого давления в сторону, где давление ниже. И аналогично, газ растворяется в жидкости лишь в том случае, если давление этого газа в окружающей атмосфере превышает давление газа в жидкости. Если же давление газа в жидкости выше, газ устремляется из жидкости в атмосферу, как это происходит, например, когда откупоривают бутылку шампанского или газированной воды.

Тенденция жидкостей перемещаться в область более низкого давления заслуживает особого внимания, ибо она имеет отношение и к другим аспектам транспортной системы крови, а также играет определенную роль в целом ряде других процессов, происходящих в организме человека.

Интересно проследить путь кислорода начиная с того момента, когда мы делаем вдох. Вдыхаемый воздух, богатый кислородом и содержащий небольшое количество углекислого газа, поступает в легкие и достигает системы крошечных мешочков, получивших название альвеол. Стенки этих альвеол чрезвычайно тонки. Они состоят из небольшого числа волокон и тончайшей сетки капилляров.

В капиллярах, из которых состоят стенки альвеол, течет венозная кровь, поступающая в легкие из правой половины сердца. Эта кровь имеет темный цвет, ее гемоглобин, почти лишенный кислорода, насыщен углекислым газом, поступившим в качестве отходов из тканей организма.

Замечательный двойной обмен происходит в тот момент, когда воздух, богатый кислородом и почти свободный от углекислого газа, в альвеолах вступает в соприкосновение с воздухом, богатым углекислым газом и почти лишенным кислорода. Так как давление углекислого газа в крови выше, чем в альвеолах, этот газ через стенки капилляров поступает в альвеолы легких, которые при выдохе выводят его в атмосферу. Давление же кислорода в альвеолах выше, чем в крови, поэтому газ жизни мгновенно проникает сквозь стенки капилляров и соприкасается с кровью, гемоглобин которой быстро поглощает его.

Кровь, имеющая ярко-красный цвет из-за кислорода, насыщающего теперь гемоглобин красных телец, возвращается в левую половину сердца и оттуда нагнетается в большой круг кровообращения. Едва она поступает в капилляры, как красные кровяные тельца буквально «в затылок» протискиваются через их узкий просвет. Они движутся вдоль клеток и тканевых жидкостей, которые в процессе нормальной жизнедеятельности уже израсходовали свой запас кислорода и теперь содержат сравнительно высокую концентрацию углекислого газа. Вновь происходит обмен кислорода на углекислый газ, но теперь уже в обратном порядке.

Поскольку давление кислорода в этих клетках ниже, чем в крови, гемоглобин быстро отдает свой кислород, который через стенки капилляров проникает в тканевые жидкости и затем в клетки. Одновременно углекислый газ под высоким давлением перемещается из клеток в кровь. Обмен происходит таким образом, как если бы кислород и углекислый газ двигались в разных направлениях через вращающиеся двери.

Во время этого процесса транспортировки и обмена кровь никогда не отдает весь свой кислород или весь углекислый газ. Даже в венозной крови сохраняется небольшой объем кислорода, а в насыщенной кислородом артериальной крови всегда присутствует углекислый газ, правда, в ничтожном количестве.

Хотя углекислота и является побочным продуктом клеточного обмена веществ, сама по себе она также необходима для поддержания жизни. Небольшое количество этого газа растворено в плазме, часть его связана с гемоглобином, а определенная часть в соединении с натрием образует двууглекислый натрий.

Двууглекислый натрий, нейтрализующий кислоты, производится «химической промышленностью» самого организма и циркулирует в крови для поддержания жизненно необходимого кислотно-щелочного равновесия. Если во время болезни или под воздействием какого-нибудь раздражителя кислотность в организме человека повышается, то кровь автоматически увеличивает количество циркулирующего двууглекислого натрия для восстановления нужного равновесия.

Система транспортировки кислорода кровью почти никогда не работает вхолостую. Однако следует упомянуть об одном нарушении, которое может оказаться чрезвычайно опасным: гемоглобин легко соединяется с кислородом, но еще быстрее он поглощает угарный газ, не имеющий ровно никакой ценности для жизненных процессов в клетках.

Если в воздухе имеется равный объем кислорода и угарного газа, гемоглобин на одну часть столь необходимого телу кислорода усвоит 250 частей совершенно бесполезной окиси углерода. Поэтому даже при относительно небольшом содержании угарного газа в атмосфере транспортные средства гемоглобина быстро насыщаются этим бесполезным газом, тем самым лишая организм кислорода. Когда снабжение кислородом падает ниже уровня, необходимого клеткам для выживания, происходит смерть от так называемого угара.

Не считая этой внешней опасности, от которой не застрахован даже абсолютно здоровый человек, система переноса кислорода с помощью гемоглобина с точки зрения своей эффективности представляется вершиной совершенства. Разумеется, это не исключает возможности ее усовершенствования в будущем либо путем продолжающегося естественного отбора, либо благодаря сознательным и целенаправленным усилиям человека. В конце концов, природе понадобилось, вероятно, не меньше миллиарда лет, полных ошибок и неудач, прежде чем она создала гемоглобин. А химия как наука существует всего несколько веков!

Транспортировка кровью питательных веществ — химических продуктов пищеварения — не менее важна, чем перенос кислорода. Без нее остановились бы процессы обмена веществ, которые питают жизнь. Каждая клетка нашего тела — это своеобразный химический завод, нуждающийся в постоянном пополнении запасов сырья. Дыхание снабжает клетки кислородом. Питание доставляет им основные химические продукты — аминокислоты, сахара, жиры и жирные кислоты, минеральные соли и витамины.

Все эти вещества, равно как и кислород, с которым они соединяются в процессе внутриклеточного сгорания, являются важнейшими компонентами процесса обмена веществ.

Как известно, метаболизм или обмен веществ состоит из двух основных процессов: анаболизма и катаболизма, создания и разрушения веществ организма. В анаболическом процессе простые продукты пищеварения, поступая в клетки, подвергаются химической обработке и превращаются в необходимые организму вещества — кровь, новые клетки, кости, мышцы и другие субстанции, необходимые для жизни, здоровья и роста.

Кровь разносит также гормоны. Эти сильнодействующие химические реагенты поступают в систему кровообращения непосредственно из эндокринных желез, которые изготовляют их из сырья, получаемого из крови.

Каждый гормон (это название происходит от греческого глагола, обозначающего «возбуждать, побуждать»), по-видимому, играет особую роль в управлении одной из жизненных функций организма. Одни гормоны связаны с ростом и нормальным развитием, другие оказывают влияние на умственные и физические процессы, регулируют обмен веществ, половую деятельность и способность человека к воспроизведению.

Железы внутренней секреции снабжают кровь необходимыми дозами вырабатываемых ими гормонов, которые по системе кровообращения попадают к нуждающимся в них тканям. Если же в производстве гормонов отмечается перебой либо в крови наблюдается излишек или недостаток подобных сильнодействующих веществ, это вызывает различного рода аномалии и нередко приводит к смерти.

Жизнь человека зависит также от способности крови удалять из организма продукты распада. Если бы кровь не справлялась с этой функцией, человек погиб бы от самоотравления.

Как мы уже отмечали, углекислый газ — побочный продукт процесса окисления — выделяется из организма через легкие. Другие отходы подхватываются кровью в капиллярах и переправляются в почки , которые действуют подобно огромным фильтрующим станциям. В почках имеется примерно 130 километров трубок, по которым проходит кровь. Ежесуточно почки фильтруют около 170 литров жидкости, отделяя от крови мочевину и другие химические отходы. Последние концентрируются примерно в 2,5 литрах мочи, выделяемой за сутки , и удаляются из организма. Небольшое количество молочной кислоты, а также мочевины выделяется через потовые железы. Оставшаяся отфильтрованная жидкость, составляющая примерно 467 литров в сутки, возвращается в кровь. Этот процесс фильтрации жидкой части крови многократно повторяется. Кроме того, почки служат регулятором содержания минеральных солей в крови, отделяя и выбрасывая любые излишки.

Для здоровья и жизни человека решающее значение имеет также поддержание водного баланса организма. Даже при обычных условиях организм постоянно выделяет воду через мочу, слюну, пот, дыхание и другими путями. При привычной, нормальной температуре и влажности воздуха на 1 квадратный сантиметр кожного покрова каждые десять минут выделяется около 1 миллиграмма воды. В пустынях Аравийского полуострова или в Иране, например, человек ежедневно теряет примерно 10 литров воды в виде пота. Для возмещения этой постоянной потери воды в организм все время должна поступать жидкость, которая будет разноситься по крови и лимфе и тем самым способствовать установлению необходимого равновесия между жидкостью тканей и циркулирующей жидкостью.

Ткани, нуждающиеся в воде, пополняют свои запасы, получая воду из крови в результате процесса осмоса. В свою очередь кровь, как мы уже говорили, обычно получает воду для транспортировки из пищеварительного тракта и несет готовый к употреблению запас, утоляющий жажду тела. Если во время болезни или несчастного случая человек теряет большое количество крови, кровь пытается возместить потерю за счет воды тканей.

Функция крови по доставке и распределению воды тесно связана с системой теплоконтроля организма. Средняя температура тела равна 36,6°С. В разное время суток она может слегка варьировать у отдельных людей и даже у одного и того же человека. По какой-то неизвестной до сих пор причине температура тела рано утром может быть на один-полтора десятых градуса ниже вечерней температуры. Однако нормальная температура любого человека остается относительно постоянной, и ее резкие отклонения от нормы обычно служат сигналом опасности.

Процессы обмена веществ, беспрестанно происходящие в живых клетках, сопровождаются выделением тепла. Если оно накапливается в организме и не удаляется из него, то внутренняя температура тела может стать слишком высокой для нормальной жизнедеятельности. К счастью, одновременно с накоплением тепла тело также теряет некоторую его часть. Поскольку температура воздуха обычно ниже 36,6°С, т.е. температуры тела, то тепло, проникая сквозь кожу в окружающую атмосферу, покидает тело. Если же температура воздуха выше температуры тела, излишнее тепло удаляется из организма посредством потоотделения.

Обычно человек в среднем выделяет около трех тысяч калорий в сутки. Если он передает окружающей среде свыше трех тысяч калорий, то температура его тела понижается. Если же в атмосферу выделяется меньше трех тысяч калорий, температура тела повышается. Тепло, производимое в теле, должно уравновешивать количество тепла, отданного окружающей среде. Регулирование теплообмена целиком возложено на кровь.

Подобно тому как газы перемещаются из области высокого давления в область низкого давления, тепловая энергия направляется из теплой области в холодную. Таким образом, теплообмен организма с окружающей средой происходит посредством таких физических процессов, как излучение и конвекция.

Кровь поглощает и уносит избыток тепла примерно так же, как вода в радиаторе автомобиля поглощает и уносит прочь излишнее тепло двигателя. Тело совершает этот теплообмен посредством изменения объема крови, протекающей по кожным сосудам. В жаркий день эти сосуды расширяются и к кожному покрову притекает больший, чем обычно, объем крови. Эта кровь уносит тепло из внутренних органов человека, и по мере прохождения через сосуды кожи тепло излучается в более прохладную атмосферу.

В холодную погоду сосуды кожи сокращаются, тем самым уменьшая объем подающейся к поверхности тела крови, и отдача тепла внутренними органами уменьшается. Это происходит в тех частях тела, которые скрыты под одеждой и защищены от холода. Однако сосуды открытых участков кожного покрова, таких, как лицо и уши , расширяются, чтобы защитить их от холода дополнительной порцией тепла.

В регулировании температуры тела участвуют также два других механизма крови. В жаркие дни селезенка сокращается, выпуская в систему кровообращения дополнительную порцию крови. В результате этого к кожному покрову притекает большее количество крови. В холодное время года селезенка расширяется, увеличивая резерв крови и тем самым сокращая количество крови в системе кровообращения, поэтому к поверхности тела переносился уже меньшее количество тепла.

Излучение и конвекция как средства теплообмена действуют лишь в тех случаях, когда тело отдает тепло более холодной окружающей среде. В очень жаркие дни, когда температура воздуха превышает нормальную температуру тела, эти способы позволяют лишь передавать тепло от горячей среды к менее нагретому телу. В этих условиях от чрезмерного перегрева тела нас спасает потоотделение.

В процессе потоотделения и дыхания тело отдает тепло окружающей среде посредством испарения жидкостей. Как в том, так и в другом случае ключевую роль играет кровь, которая доставляет жидкости, предназначенные для испарения. Нагретая внутренними органами тела кровь отдает часть своей воды поверхностным тканям. Так происходит потоотделение, пот выделяется через поры кожи и испаряется с ее поверхности.

Аналогичная картина наблюдается в легких. В очень жаркие дни кровь, проходя по альвеолам вместе с углекислым газом, отдает им часть своей воды. Эта вода выделяется при выдохе и испаряется, что способствует удалению из организма излишнего количества тепла.

Этими и многими другими способами, которые еще не совсем нам понятны, обслуживает человека транспорт Реки жизни. Без его энергичных и в высшей степени организованных услуг многие триллионы клеток, составляющих тело человека, могли бы захиреть, зачахнуть и в конце концов погибнуть.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top