Вакцины их состав и применение. Вакцины, применение, состав, классификация, применение

Вакцины их состав и применение. Вакцины, применение, состав, классификация, применение

Именно благодаря вакцинации человечество начало бурно выживать и размножаться. Противники вакцин не умирают от чумы, кори, оспы, гепатита, коклюша, столбняка и других напастей только потому, что цивилизованные люди с помощью вакцин практически уничтожили эти заболевания на корню. Но это не значит, что риска заболеть и умереть больше нет. Прочтите, какие вакцины вам нужны.

История знает множество примеров, когда болезни наносили опустошительный урон. Чума в 14 веке уничтожила треть населения Европы, «испанка» 1918-1920 годов унесла жизни примерно 40 млн человек, а эпидемия оспы оставила менее 3 млн человек от 30 миллионов населения инков.

Очевидно, что появление вакцин позволило спасти в будущем миллионы жизни – это видно просто по темпам роста населения Земли. Первопроходцем в области вакцинопрофилактики считают Эдварда Дженнера. В 1796 году он заметил, что люди, работающие на фермах с коровами, инфицированными коровьей оспой, не болеют натуральной оспой. Для подтверждения он привил коровью оспу мальчику и доказал, что тот перестал был восприимчив к инфекции. В последствии это стало основой для ликвидации оспы во всем мире.

Какие существуют вакцины?

В состав вакцины входят убитые или сильно ослабленные микроорганизмы в небольшом количестве, либо их компоненты. Они не могут вызвать полноценное заболевание, но дают организму опознать и запомнить их особенности, чтобы впоследствии при встрече с полноценным возбудителем быстро его определить и уничтожить.

Вакцины делятся на несколько основных групп:

Живые вакцины. Для их изготовления используют ослабленные микроорганизмы, которые не могут вызвать заболевания, но помогают выработать правильный иммунный ответ. Используются для защиты от полиомиелита, гриппа, кори, краснухи, эпидемического паротита, ветряной оспы, туберкулёза, ротавирусной инфекции, желтой лихорадки и др.

Инактивированные вакцины . Производится из убитых микроорганизмов. В таком виде они не могут размножаться, но вызывают выработку иммунитета против заболевания. Пример – инактивированная полиомиелитная вакцина, цельноклеточная коклюшная вакцина.

Субъединичные вакцины . В состав входят лишь те компоненты микроорганизма, которые вызывают выработку иммунитета. Пример – вакцины против менингококковой, гемофильной, пневмококковой инфекций.

Анатоксины . Обезвреженные токсины микроорганизмов с добавлением специальных усилителей – адъювантов (соли алюминия, кальция). Пример – вакцины против дифтерии, столбняка.

Рекомбинантные вакцины . Создаются при помощи методов генной инженерии, в состав которых входят рекомбинантные белки, синтезированные в лабораторных штаммах бактерий, дрожжей. Пример – вакцина против гепатита В.

Вакцинопрофилактику рекомендуется производить согласно Национальному календарю прививок. В каждой стране он свой, так как эпидемиологическая ситуация может существенно отличаться, и в одних странах не всегда необходимы прививки, используемые в других.

Вот национальный календарь профилактических прививок в России:

Также можете ознакомится с календарем прививок США и календарем прививок европейских стран – они во многом очень схожи с отечественным календарем:

  • Календарь прививок в Евросоюзе (можно выбрать в меню любую страну и просмотреть рекомендации).

Туберкулёз

Вакцины – «БЦЖ», «БЦЖ-М». Не уменьшают риск заражения туберкулёзом, однако предотвращают у детей до 80% тяжелых форм инфекции. Входит в национальный календарь более 100 стран мира.

Гепатит В

Вакцины – «Эувакс В», «Вакцина против гепатита В рекомбинантная», «Регевак В», «Энджерикс В», вакцина «Бубо-Кок», «Бубо-М», «Шанвак-В», «Инфанрикс Гекса», «АКДС-ГЕП В».

При помощи этих вакцин удалось снизить количество детей, имеющих хроническую форму гепатита В с 8-15% до <1%. Является важным средством профилактики, защищает от развития первичного рака печени. Предотвращает 85-90% смертей, происходящих вследствие этого заболевания. Входит в календарь 183 стран.

Пневмококковая инфекция

Вакцины – «Пневмо-23», 13-валентная «Превенар 13», 10-валентная «Синфлорикс».
Снижает на 80% частоту развития пневмококковых менингитов. Входит в календарь 153 стран мира.

Дифтерия, коклюш, столбняк

Вакцины – комбинированные (содержат 2-3 вакцины в 1 препарате)- АДС, АДС-М, АД-М, АКДС, «Бубо-М», «Бубо-Кок», «Инфанрикс», «Пентаксим», «Тетраксим», «Инфанрикс Пента», «Инфанрикс Гекса»

Дифтерия – эффективность современных вакцин – 95-100%. К примеру, риск получения энцефалопатии у не привитых 1:1200, а у привитых – менее 1:300000.

Коклюш – эффективность вакцины более 90%.

Столбняк – эффективность 95-100%. Стойкий иммунитет сохраняется 5 лет, после плавно угасает, из-за этого требуется ревакцинация каждые 10 лет.
Входят в календарь 194 стран мира.

Полиомиелит

Вакцины: «Инфанрикс Гекса», «Пентаксим», вакцина полиомиелитная пероральная 1, 3 типов, «Имовакс Полио», «Полиорикс», «Тетраксим».

Полиомиелит неизлечим, его возможно только предупредить. После введения вакцинации число заболевших с 1988 года упало с 350000 случаев до 406 случаев в 2013 году.

Гемофильная инфекция

Вакцины: «Акт-ХИБ», «Хиберикс Пентаксим», гемофильная тип В конъюгированная, «Инфанрикс Гекса».

Дети до 5 лет не могут самостоятельно адекватно формировать иммунитет к данной инфекции, которая сильно устойчива к антибактериальным препаратам. Эффективность вакцинации – 95-100%. Входит в календарь 189 стран мира.

Корь, краснуха, эпидемический паротит

Вакцины: «Приорикс», ММР-II.

Корь – вакцинация за период 2000-2013 год предотвратила 15,6 миллионов смертельных исходов. Глобальная смертность снизилась на 75%.

Краснуха – дети переносят без особых проблем, но у беременных может вызывать пороки развития плода. Массовая вакцинация в России позволила снизить заболеваемость до 0.67 на 100000 чел. (2012 г.).

Паротит – может вызывать большое количество осложнений, таких как глухота, гидроцефалию, мужское бесплодие. Эффективность вакцинации – 95%. Случаев заболеваемости на 2014 г. В России – 0.18 на 100000 чел.

Грипп

Вакцины: «Ультравак», «Ультрикс», «Микрофлю», «Флюваксин», «Ваксигрип», «Флюарикс», «Бегривак», «Инфлювак», «Агриппал S1», «Гриппол плюс», «Гриппол», «Инфлексал V», «Совигрипп».

Вакцина работает в 50-70% случаев. Показана людям из группы риска (пожилым, имеющим сопутствующие дыхательные патологии, ослабленный иммунитет и др.).

Примечание : российские вакцины «Гриппол» и «Гриппол +» имеют недостаточное количество антигенов (5 мкг вместо положенных 15), оправдывая это наличием полиоксидония, который должен стимулировать иммунитет и усиливать действие вакцины, однако данных подтверждающих это нет.

Какие негативные последствия применения вакцин?

Негативные последствия можно разделить на побочные эффекты и поствакцинальные осложнения.

Побочные эффекты – реакции на введение препарата, не требующие лечения. Их риск – менее 30%, как и у большинства лекарственных средств.

Перечень “побочек”, если просуммировать по всем вакцинам:

  • Повышение температуры тела на несколько дней (купируется Ибупрофеном, Парацетамолом не рекомендуется в виду возможного снижения эффекта от вакцинации).
  • Боль в месте укола на 1-10 дней.
  • Головная боль.
  • Аллергические реакции.

Однако бывают и более опасные, хотя и крайне редкие проявления, которые должен лечить лечащий врач:

  • Вакциноассоциированный полиомиелит. Встречался 1 случай на 1-2 млн. вакцинаций. На данный момент благодаря новой инактивированной вакцине не встречается вовсе.
  • Генерализированная БЦЖ-инфекция – такая же вероятность. Проявляется у новорожденных с иммунодефицитом.
  • Холодный абсцесс – от БЦЖ, около 150 случаев в год. Происходит из-за неправильного введения вакцины.
  • Лимфаденит – БЦЖ, около 150 случаев в год. Воспаление регионарных лимфатических узлов.
  • Остит – Поражение кости БЦЖ, преимущественно ребра. Менее 70 случаев в год.
  • Инфильтраты – уплотнения в месте инъекции, от 20 до 50 случаев в год.
  • Энцефалиты – от живых вакцин типа кори, краснухи, паротита, встречаются исключительно редко.

Как и любой рабочий препарат, вакцины могут принести негативный эффект на организм. Однако, эти эффекты по сравнению с пользой невообразимо малы.

Не занимайтесь самолечением и берегите свое здоровье.

Классификация вакцин

По назначению вакцины делятся на профилактические и лечебные.

По характеру микроорганизмов, из которых они созданы, вакии­ны бывают:

  • бактериальные;
  • вирусные;
  • риккетсиозные.

Существуют моно- и поливакцины - приготовленные соответст­венно из одного или нескольких возбудителей.

По способу приготовления различают вакцины:

  • живые;
  • убитые;
  • комбинированные.

Для повышения иммуногенности к вакцинам иногда добавляют различного рода адъюванты (алюмо-калиевые квасцы, гидроксид или фосфат алюминия, масляную эмульсию), создающие депо антигенов или стимулирующие фагоцитоз и таким обра­зом повышающие чужеродность антигена для реципиента.

Живые вакцины

содержат живые аттенуированные штаммы возбудителей с резко сниженной вирулентностью или штаммы непатогенных для человека микроорганизмов, близкородственных возбудителю в антигенном отношении (дивергентные штаммы). К ним относят и рекомбинантные (генно-инженерные) вакци­ны, содержащие векторные штаммы непатогенных бакте­рий/вирусов (в них методами генной инженерии введены ге­ны, ответственные за синтез протективных антигенов тех или иных возбудителей).

Примерами генно-инженерных вакцин могут служить вакцина против гепатита В — Энджерикс В и вакцина против коревой краснухи — Ре-комбивакс НВ.

Поскольку живые вакцины содержат штаммы микроорганиз­мов-возбудителей с резко сниженной вирулентностью, то, по существу, они воспроизводят в организме человека легко проте­кающую инфекцию, но не инфекционную болезнь, в ходе которой формируются и активируются те же механизмы защиты, что и при развитии постинфекционного иммунитета. В связи с этим живые вакцины, как правило, создают достаточно на­пряженный и длительный иммунитет.

С другой стороны, по этой же причине применение живых вакцин на фоне иммунодефицитных состояний (особенно у детей) может вызвать тяжелые инфекционные осложнения.

Например, заболевание, определяемое клиницистами как БЦЖит после введения вакцины БЦЖ.

Живые вакиины применяют для профилактики:

  • туберкулеза;
  • особо опасных инфекций (чумы, сибирской язвы, туляремии, бруцеллеза);
  • гриппа, кори, бешенства (антирабическая);
  • паротита, оспы, полиомиелита {вакцина Сейбина-Смородинцева-Чумакова);
  • желтой лихорадки, коревой краснухи;
  • Ку-лихорадки.

Убитые вакцины

содержат убитые культуры возбудителей (цельноклеточные, цельновирионные). Их готовят из микроор­ганизмов, инактивированных прогреванием (гретые), ультрафио­летовыми лучами, химическими веществами (формалином - формоловые, фенолом - карболовые, спиртом - спиртовые и др.) в условиях, исключающих денатурацию антигенов. Иммунногенность убитых вакцин ниже, чем у живых. Поэтому вызываемый ими иммунитет кратковременный и сравнительно менее напряженный. Убитые вакиины применяют для профилактики:

  • коклюша, лептоспироза,
  • брюшного тифа, паратифа А и В,
  • холеры, клещевого энцефалита,
  • полиомиелита {вакцина Солка), гепатита А.

К убитым вакцинам относят и химические вакцины, содержащие определенные химические компоненты возбудителей, обла­дающие иммуногенностью (субклеточные, субвирионные). Поскольку они содержат только отдельные компоненты бактери­альных клеток или вирионов, непосредственно обладающих иммуногенностью, то химические вакцины менее реактогенны и могут использоваться даже у детей дошкольного возраста. Известны еще и антиидиотипические вакцины, которые также относят к убитым вакцинам. Это антитела к тому или иному идиотипу антител человека (анти-антитела). Их активный центр аналогичен детерминантной группе антигена, вызвавше­го образование соответствующего идиотипа.

Комбинированные вакцины

К комбинированным вакцинам относят искусственные вакцины.

Они представляют собой препараты, состоящие из микробного антигенного компонента (обычно выделенного и очищенного или искусственно синтезированного антигена возбудителя) и синтетических полиионов (полиакриловая кислота и др.) - мощных стимуляторов иммунного ответа. Содержанием этих веществ они и отличаются от химических убитых вакцин. Первая такая отечественная вакцина - гриппозная полимер-субъединичная («Гриппол»), разработанная в Институте иммуно­логии, уже внедрена в практику российского здравоохранения. Для специфической профилактики инфекционных заболева­ний, возбудители которых продуцируют экзотоксин, применя­ют анатоксины.

Анатоксин - это экзотоксин, лишенный токсических свойств, но сохранивший антигенные свойства. В отличие от вакцин, при использовании которых у человека формируется антимик­робный иммунитет, при введении анатоксинов формируется антитоксический иммунитет, так как они индуцируют синтез антитоксических антител - антитоксинов. В настоящее время применяются:

  • дифтерийный;
  • столбнячный;
  • ботулинический;
  • стафилококковый анатоксины;
  • холероген-анатоксин.

Примерами ассоциированных вак­цин являются:

— вакцина АКДС (адсорбированная коклюшно-дифтерийно-столб-нячная вакцина), в которой коклюшный компонент представлен убитой коклюшной вакциной, а дифтерийный и столбняч­ный - соответствующими анатоксинами;

— вакцина ТАВТе, содержащая О-антигены брюшнотифозных, паратифозных А- и В-бактерий и столбнячный анатоксин; брюшнотифозная химическая вакцина с секстаанатоксином (смесь анатоксинов клостридий ботулизма типов А, В, Е, клостридий столбняка, клостридий перфрингенс типа А и эдематиенс - 2 последних микроорганизма - наиболее частые воз­будители газовой гангрены) и др.

В то же время АДС (дифтерийно-столбнячный анатоксин), часто используемый вместо АКДС при вакцинации детей, яв­ляется просто комбинированным препаратом, а не ассоцииро­ванной вакциной, так как содержит только анатоксины.

требования к вакцинам.

Безопасность- наиболее важное свойство вакцины, тщательно исследуется и контролируется в

процессе производства и применения вакцин. Вакцина является безопасной, если при введении людям

не вызывает развитие серьезных осложнений и заболеваний;

Протективность - способность индуцировать специфическую защиту организма против

определенного инфекционного заболевания;

Длительность сохранения протективности;

Стимуляция образования нейтрализующих антител;

Стимуляция эффекторных Т-лимфоцитов;

Длительность сохранения иммунологической памяти;

Низкая стоимость;

Биологическая стабильность при транспортировке и хранении;

Низкая реактогенность;

Простота введения.

Виды вакцин:

Живые вакцины изготовляют на основе ослабленных штаммов микроорганизма с генетически закрепленной авирулентностью. Вакцинный штамм, после введения, размножается в организме привитого и вызывает вакцинальный инфекционный процесс. У большинства привитых вакцинальная инфекция протекает без выраженных клинических симптомов и приводит к формированию, как правило, стойкого иммунитета. Примером живых вакцин могут служить вакцины для профилактики полиомиелита (живая вакцина Сэбина), туберкулеза (БЦЖ), эпидемического паротита, чумы, сибирской язвы, туляремии. Живые вакцины выпускаются в лиофилизированном (порошкообразном)

виде (кроме полиомиелитной). Убитые вакцины представляют собой бактерии или вирусы, инактивированные химическим (формалин, спирт, фенол) или физическим (тепло, ультрафиолетовое облучение) воздействием. Примерами инактивированных вакцин являются: коклюшная (как компонент АКДС), лептоспирозная, гриппозные цельновирионные, вакцина против клещевого энцефалита, против инактивированная полиовакцина (вакцина Солка).

Химические вакцины получают путем механического или химического разрушения микроорганизмов и выделения протективных, т. е. вызывающих формирование защитных иммунных реакций, антигенов. Например вакцина против брюшного тифа, вакцина против менингококковой инфекции.

Анатоксины. Эти препараты представляют собой бактериальные токсины, обезвреженные

воздействием формалина при повышенной температуре (400) в течение 30 дней с последующей очисткой и концентрацией. Анатоксины сорбируют на различных минеральных адсорбентах, например на гидроокиси алюминия (адъюванты). Адсорбция значительно повышает иммуногенную активность анатоксинов. Это связано как с созданием "депо" препарата в месте введения, так и с адъювантным

действием сорбента, вызывающего местное воспаление, усиление плазмоцитарной реакции в регионарных лимфатических узлах Анатоксины применяют для профилактики столбняка, дифтерии, стафилокакковых инфекций.


Синтетические вакцины представляют собой искусственно созданные антигенные детерминанты микроорганизмов.

В состав ассоциированных вакцин входят препараты из предыдущих групп и против нескольких инфекций. Пример: АКДС - состоит из дифтерийного и столбнячного анатоксина, адсорбированных на гидроокиси алюминия и убитой коклюшной вакцины.

Вакцины, полученные методами генной инженерии. Суть метода: гены вирулентного микроорганизма, отвечающий за синтез протективных антигенов, встраивают в геном какого - либо безвредного микроорганизма, который при культивировании продуцирует и накапливает соответствующий антиген. Примером может служить рекомбинантная вакцина против вирусного гепатита В, вакцина против ротавирусной инфекции.

В перспективе предполагается использовать векторы, в которые встроены не только гены,

контролирующие синтез антигенов возбудителя, но и гены, кодирующие различные медиаторы (белки) иммунного ответа (интерфероны, интерлейкины и т.д

В настоящее время интенсивно разрабатываются вакцины из плазмидных (внеядерных) ДНК, кодирующих антигены возбудителей инфекционных заболеваний. Идея таких вакцин состоит в том, чтобы встроить гены микроорганизма, отвественные за синтез микробного белка, в геном человека. При этом клетки человека ничинают продукцию этого чужеродного для них белка, а иммунная система станет вырабатывать антитела к нему. Эти антитела и будут нейтрализовать возбудителя в случае попадания его в организм.

Определение, цели применения и классификация.
Вакцины - препараты из микроорганизмов или продуктов их жизнедеятельности, используемые для создания активного специфического приобретенного иммунитета против определенных видов микроорганизмов или выделяемых ими токсинов.

Рис. 1. Вакцина "Акт-ХИБ" предназначена для профилактики гемофильной В инфекции.

Разрабатываемые вакцины условно разделяют на две категории: традиционные (первого и второго поколения) и новые , конструируемые на основе методов биотехнологии.

К вакцинам первого поколения относятся классические вакцины Дженнера и Пастера, представляющие собой убитые или ослабленные живые возбудители, которые больше известны под названием корпускулярных вакцин .

Под вакцинами второго поколения следует понимать препараты, основу которых составляют отдельные компоненты возбудителей, то есть индивидуальные химические соединения, такие как дифтерийный и столбнячный анатоксины или высокоочищенные полисахаридные антигены капсульных микроорганизмов, например менингококков или пневмококков. Эти препараты больше известны под названием химических вакцин (молекулярные ). По числу антигенов, входящих в вакцину, различают моно - и поливакцины (ассоциированные), по видовому составу - бактериальные, риккетсиозные, вирусные .

Общая характеристика вакцин .
Живые вакцины представляют собой препараты, содержащие наследственно измененные формы микроорганизмов (вакцинные штаммы), утратившие свои патогенные свойства. Но сохранившие способность приживляться и размножаться в организме, вызывая формирование специфического иммунитета.
Живые вакцины получены при использовании двух основных принципов, которые предложены основателями учения о вакцинации Дженнером и Пастером.
Принцип Дженнера - использование генетически близких (родственных) штаммов возбудителей инфекционных заболеваний животных. На основании этого принципа были получены - осповакцина, вакцина БЦЖ, бруцеллезная вакцина.
Принцип Пастера - получение вакцин из искусственно ослабленных (аттенуированных) штаммов возбудителей. Основная задача метода заключается в получении штаммов с наследственно измененными признаками, т.е. низкой вирулентностью и сохранением иммуногенных свойств. Применяются следующие методы получения живых вакцин:
Инактивированные (убитые) вакцины . Убитые вакцины готовят из инактивированных вирулентных штаммов бактерий и вирусов, обладающих полным набором необходимых антигенов. Для инактивации возбудителей применяют нагревание, обработку формалином, ацетоном, спиртом, которые обеспечивают надежную инактивацию и минимальное повреждение структуры антигенов.
Химические вакцины . Химические вакцины состоят из антигенов, полученных из микроорганизмов различными способами, преимущественно химическими методами.
Основной способ получения химических вакцин заключается в выделении протективных антигенов, обеспечивающих развитие надежного иммунитета, и очистки этих антигенов от балластных веществ. В настоящее время молекулярные вакцины получают методом биосинтеза или путем химического синтеза.
Анатоксины . Анатоксины готовят из экзотоксинов различных видов микробов. Токсины подвергают обезвреживанию формалином, при этом они не теряют иммуногенные свойства и способность вызывать образование антител (антитоксинов).
Анатоксины выпускают как в виде монопрепаратов (моновакцины ), так и в составе ассоциированных препаратов, предназначенных для одновременной вакцинации против нескольких заболеваний (ди- тривакцины).
Вакцины нового поколения .
Традиционные вакцины не позволили решить вопросы профилактики инфекционных заболеваний, связанных с возбудителями, которые плохо культивируются или не культивируются в системах in vivo и in vitro. Достижения иммунологии позволяют получать отдельные эпитопы (антигенные детерминанты), которые в изолированном виде иммуногенностью не обладают. Поэтому создание вакцин нового поколения требует конъюгации антигенных детерминант с молекулой-носителем, в качестве которой могут выступать как природные белки, так и синтетические молекулы (субъединичные, синтетические вакцины)
С достижениями генной инженерии связано получение рекомбинантных векторны х вакцин - живых вакцин, состоящих из непатогенных микробов, в геном которых встроены гены других (патогенных) микроорганизмов. Таким способом уже давно получена так называемая дрожжевая вакцина против гепатита В, разработаны и проходят испытания вакцины против малярии, ВИЧ-инфекции, а также показана возможность создания по этому принципу многих других вакцин.


Показания для прививок.
Различают прививки плановые и выполняемые по эпидемическим показаниям.
Каждая страна пользуется своим национальным календарем профилактических прививок, который предусматривает проведение плановой массовой вакцинации населения. Обязательность таких прививок, как правило, устанавливается законодательством страны.

Условия хранения и транспортирования иммунобиологических препаратов.
Соблюдение правил хранения и транспортирования иммунобиологических препаратов является непременным условием. Нарушение температурного режима хранения ряда препаратов не только сопровождается снижением их эффективности, но может привести и к повышению реактогенности, а это у лиц с высоким уровнем антител ведет к развитию аллергических реакций немедленного типа, к коллаптоидным реакциям.
Транспортирование и хранение должно проводиться при соблюдении специальной системы «холодовой цепи» - бесперебойно функционирующей системы, обеспечивающей оптимальный температурный режим хранения и транспортирования вакцин и других иммунобиологических препаратов на всех этапах их следования от предприятия-изготовителя до вакцинируемого. Оптимальной для хранения и транспортирования большинства вакцин и других иммунобиологических препаратов является температура в пределах 2-8°С .

Уничтожение неиспользованных медицинских иммунобиологических препаратов.
Ампулы и другие емкости, содержащие неиспользованные остатки инактивированных бактериальных и вирусных вакцин, а также живой коревой, паротитной и краснушной вакцин, анатоксинов, иммуноглобулинов человека, гетерологичных сывороток, а также инструментарий, который был использован для их введения, не подлежат какой-либо специальной обработке.
Ампулы и другие емкости, содержащие неиспользованные остатки других живых бактериальных и вирусных вакцин, а также инструментарий, использованный для их введения, подлежат кипячению в течение 60 мин (сибиреязвенная вакцина 2 ч), или обработке 3-5% раствором хлорамина в течение 1 ч, или 6% раствором перекиси водорода (срок хранения не более 7 сут) в течение 1 ч, или автоклавируются.
Все неиспользованные серии препаратов с истекшим сроком годности, а также не подлежащие применению по другим причинам следует направлять на уничтожение в районный (городской) центр госсанэпиднадзора.

Проверка физических свойств иммунобиологических препаратов перед проведением прививок.
Проверить этикетку или маркировку препарата на коробке, ампуле (флаконе), прочесть данные о препарате, сроке годности, проверить целость ампул, соответствие требованиям внешнего вида. При отсутствии этикетки, истечения срока годности, нарушения герметичности ампул, изменения внешнего вида (цвета, наличия хлопьев, посторонних включений и т.п.) пременять препараты нельзя.

Рис. 2. Иммунобиологические препараты перед проведением прививок необходимо проверить на соответствие физических свойств.

Проведение прививок.
Прививки должны проводиться в специально выделенном для этой цели помещении (прививочные кабинеты детских поликлиник, медицинские кабинеты ДДУ и школ и т.п.). При невозможности выделить отдельное помещение для проведения плановых прививок должно быть определено строго фиксированное время, в течение которого в нем не должны проводиться другие медицинские процедуры. Категорически запрещается проведение прививок в перевязочных. Прививки должны проводиться в асептических условиях.
Перед проведением прививок необходимо проверить состояние здоровья прививаемого: опрос, осмотр, термометрия (не допускают при ангине, инфекциях дыхательных путей, гнойничковых поражениях кожи и слизистых оболочек независимо от локализации).

Рис. 3. Прививки проводят в специальных помещениях в асептических условиях.

Учет прививок.
Для детей - история развития и карта профилактических прививок. Для взрослых - журнал учета прививок. Каждому человеку с момента первой вакцинации выдается «Сертификат о профилактических прививках», который является важным документом и хранится его владельцем пожизненно.
Информация о выполнении прививок, а также сильных реакциях и осложнениях отправляется в центр госсанэпиднадзора и в отдел поствакцинальных осложнений ГИСК (Государственный институт стандартизации и контроля медицинских биологических препаратов).

Реакции на прививочные препараты.
Вводимые в организм вакцины, как правило, вызывают общие и местные реакции, сопровождающие вакцинальный процесс и формирование поствакцинального иммунитета. Выраженность реакции зависит от свойств препарата и индивидуальных особенностей организма.

Таблица 1.
Характеристика местных реакций

Сегодняшняя статья открывает рубрику «Вакцинация» и речь в ней пойдет о том, какие бывают виды вакцин и чем они отличаются, как их получают и какими способами вводят в организм.

А начать было бы логично с определения того, что такое вакцина. Итак, вакцина – это биологический препарат, предназначенный для создания специфической невосприимчивости организма к конкретному возбудителю инфекционного заболевания путем выработки активного иммунитета.

Под вакцинацией (иммунизацией) , в свою очередь подразумевается процесс, в ходе которого организм приобретает активный иммунитет к инфекционному заболеванию путем введения вакцины.

Виды вакцин

Вакцина может содержать живые или убитые микроорганизмы, части микроорганизмов, ответственные за выработку иммунитета (антигены) или их обезвреженные токсины.

Если вакцина содержит только отдельные компоненты микроорганизма (антигены), то она называется компонентной (субъединичной, бесклеточной, ацеллюлярной) .

По количеству возбудителей, против которых они задуманы, вакцины делятся на:

  • моновалентные (простые) — против одного возбудителя
  • поливалентные – против нескольких штаммов одного возбудителя (например, полиомиелитная вакцина является трехвалентной, а вакцина Пневмо-23 содержит 23 серотипа пневмококков)
  • ассоциированные (комбинированные) – против нескольких возбудителей (АКДС, корь – паротит — краснуха).

Рассмотрим виды вакцин более подробно.

Живые ослабленные вакцины

Живые ослабленные (аттенуированные) вакцины получают из модифицированных искусственным путем патогенных микроорганизмов. Такие ослабленные микроорганизмы сохраняют способность размножаться в организме человека и стимулировать выработку иммунитета, но не вызывают заболевание (то есть являются авирулентными).

Ослабленные вирусы и бактерии обычно получают путем многократного культивирования на куриных эмбрионах или клеточных культурах. Это длительный процесс, на который может потребоваться около 10 лет.

Разновидностью живых вакцин являются дивергентные вакцины , при изготовлении которых используют микроорганизмы, находящиеся в близком родстве с возбудителями инфекционных заболеваний человека, но не способные вызвать у него заболевание. Пример такой вакцины — БЦЖ, которую получают из микобактерий бычьего туберкулеза.

Все живые вакцины содержат цельные бактерии и вирусы, поэтому относятся к корпускулярным.

Основным достоинством живых вакцин является способность вызывать стойкий и длительный (часто пожизненный) иммунитет уже после однократного введения (кроме тех вакцин, которые вводятся через рот). Это связано с тем, что формирование иммунитета к живым вакцинам наиболее приближено к таковому при естественном течении заболевания.

При использовании живых вакцин существует вероятность, что размножаясь в организме, вакцинный штамм может вернуться к своей первоначальной патогенной форме и вызвать заболевание со всеми клиническими проявлениями и осложнениями.

Такие случаи известны для живой полиомиелитной вакцины (ОПВ), поэтому в некоторых странах (США) она не применяется.

Живые вакцины нельзя вводить людям с иммунодефицитными заболеваниями (лейкемия, ВИЧ, лечение препаратами, вызывающими подавление иммунной системы).

Другими недостатками живых вакцин являются их неустойчивость даже при незначительных нарушениях условий хранения (тепло и свет действуют на них губительно), а так же инактивация, которая происходит при наличии в организме антител к данному заболеванию (например, когда у ребенка в крови еще циркулируют антитела, полученные через плаценту от матери).

Примеры живых вакцин: БЦЖ, вакцины против кори, краснухи, ветрянки, паротита, полиомиелита, гриппа.

Инактивированные вакцины

Инактивированные (убитые, неживые) вакцины , как следует из названия, не содержат живых микроорганизмов, поэтому не могут вызвать заболевания даже теоретически, в том числе и у людей с иммунодефицитом.

Эффективность инактивированных вакцин, в отличие от живых, не зависит от наличия в крови циркулирующих антител к данному возбудителю.

Инактивированные вакцины всегда требуют нескольких вакцинаций. Защитный иммунный ответ развивается обычно только после второй или третьей дозы. Количество антител постепенно снижается, поэтому спустя некоторое время для поддержания титра антител требуется повторная вакцинация (ревакцинация).

Для того, чтобы иммунитет сформировался лучше, в инактивированные вакцины часто добавляют специальные вещества — адсорбенты (адъюванты) . Адъюванты стимулируют развитие иммунного ответа, вызывая местную воспалительную реакцию и создавая депо препарата в месте его введения.

В качестве адъювантов обычно выступают нерастворимые соли алюминия (гидроксид или фосфат алюминия). В некоторых противогриппозных вакцинах российского производства с этой целью используют полиоксидоний.

Такие вакцины называются адсорбированными (адъювантными) .

Инактивированные вакцины, в зависимости от способа получения и состояния содержащихся в них микроорганизмов, могут быть:

  • Корпускулярные – содержат цельные микроорганизмы, убитые физическими (тепло, ультрафиолетовое облучение) и/или химическими (формалин, ацетон, спирт, фенол) методами.
    Такими вакцинами являются : коклюшный компонент АКДС, вакцины против гепатита А, полиомиелита, гриппа, брюшного тифа, холеры, чумы.
  • Субъединичные (компонентные, бесклеточные) вакцины содержат отдельные части микроорганизма — антигены, которые отвечают за выработку иммунитета к данному возбудителю. Антигены могут представлять собой белки или полисахариды, которые выделены из микробной клетки с помощью физико-химических методов. Поэтому такие вакцины еще называют химическими .
    Субъединичные вакцины менее реактогенные, чем корпускулярные, потому что из них убрано все лишнее.
    Примеры химических вакцин : полисахаридные пневмококковая, менингококковая, гемофильная, брюшнотифозная; коклюшная и гриппозная вакцины.
  • Генно-инженерные (рекомбинантные) вакцины являются разновидностью субъединичных вакцин, их получают путем встраивания генетического материала микроба – возбудителя болезни в геном других микроорганизмов (например, в дрожжевые клетки), которые затем культивируют и из полученной культуры выделяют нужный антиген.
    Пример — вакцины против гепатита В и вируса папилломы человека.
  • В стадии экспериментальных исследований находятся еще два вида вакцин – это ДНК-вакцины и рекомбинантные векторные вакцины . Предполагается, что оба типа вакцин будут обеспечивать защиту на уровне живых вакцин, являясь при этом наиболее безопасными.
    В настоящее время проводятся исследования ДНК-вакцин против гриппа и герпеса и векторных вакцин против бешенства, кори и ВИЧ-инфекции.

Анатоксиновые вакцины

В механизме развития некоторых заболеваний основную роль играет не сам микроб-возбудитель, а токсины, которые он вырабатывает. Одним из примеров такого заболевания является столбняк. Возбудитель столбняка продуцирует нейротоксин – тетаноспазмин, который и вызывает симптомы.

Для создания иммунитета к таким заболеваниям используются вакцины, которые содержат обезвреженные токсины микроорганизмов – анатоксины (токсоиды) .

Анатоксины получают с использованием вышеописанных физико-химических методов (формалин, тепло), затем их очищают, концентрируют и адсорбируют на адъюванте для усиления иммуногенных свойств.

Анатоксины можно условно отнести к инактивированным вакцинам.

Примеры анатоксиновых вакцин : столбнячный и дифтерийный анатоксины.

Конъюгированные вакцины

Это инактивированные вакцины, которые представляют собой комбинацию частей бактерий (очищенные полисахариды клеточной стенки) с белками-носителями, в качестве которых выступают бактериальные токсины (дифтерийный анатоксин, столбнячный анатоксин).

В такой комбинации значительно усиливается иммуногенность полисахаридной фракции вакцины, которая сама по себе не может вызвать полноценный иммунный ответ (в частности, у детей до 2-х лет).

В настоящее время созданы и применяются конъюгированные вакцины против гемофильной инфекции и пневмококка.

Способы введения вакцин

Вакцины можно вводить почти всеми известными способами – через рот (перорально), через нос (интраназально, аэрозольно), накожно и внутрикожно, подкожно и внутримышечно. Способ введения определяется свойствами конкретного препарата.

Накожно и внутрикожно вводятся в основном живые вакцины, распространение которых по всему организму крайне не желательно из-за возможных поствакцинальных реакций. Таким способом вводятся БЦЖ, вакцины против туляремии, бруцеллеза и натуральной оспы.

Перорально можно вводить только такие вакцины, возбудители которых в качестве входных ворот в организм используют желудочно-кишечный тракт. Классический пример — живая полиомиелитная вакцина (ОПВ), так же вводятся живые ротавирусная и брюшнотифозная вакцины. В течение часа после вакцинации ОВП российского производства нельзя пить и есть. На другие оральные вакцины это ограничение не распространяется.

Интраназально вводится живая вакцина против гриппа. Цель такого способа введения – создание иммунологической защиты в слизистых оболочках верхних дыхательных путей, которые являются входными воротами гриппозной инфекции. В то же время системный иммунитет при данном способе введения может оказаться недостаточным.

Подкожный способ подходит для введения как живых так и инактивированных вакцин, однако имеет ряд недостатков (в частности, относительно большое число местных осложнений). Его целесообразно использовать у людей с нарушением свертывания крови, так как в этом случае риск кровотечения минимален.

Внутримышечное введение вакцин является оптимальным, так как с одной стороны, благодаря хорошему кровоснабжению мышц, иммунитет вырабатывается быстро, с другой снижается вероятность возникновения местных побочных реакций.

У детей до двух лет предпочтительным местом для введения вакцины служит средняя треть передне-боковой поверхности бедра, а у детей после двух лет и взрослых – дельтовидная мышца (верхняя наружная треть плеча). Этот выбор объясняется значительной мышечной массой в данных местах и менее выраженным, чем в ягодичной области, подкожно-жировым слоем.

На этом все, надеюсь, что мне удалось изложить довольно не простой материал о том, какие бывают виды вакцин , в доступной для понимания форме.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top