صيغة لإيجاد الارتفاع في الهرم الثلاثي العادي. الهرم وعناصره

صيغة لإيجاد الارتفاع في الهرم الثلاثي العادي.  الهرم وعناصره

تعريف. حافة جانبية- هذا مثلث تقع فيه إحدى زواياه في أعلى الهرم، والضلع المقابل لها يتطابق مع جانب القاعدة (المضلع).

تعريف. الأضلاع الجانبية- هذه هي الجوانب المشتركة للوجوه الجانبية. الهرم له عدد من الحواف مثل زوايا المضلع.

تعريف. ارتفاع الهرم- وهذا عمودي ينزل من أعلى الهرم إلى قاعدة الهرم.

تعريف. أبوثيم- وهذا عمودي على الوجه الجانبي للهرم، وينزل من أعلى الهرم إلى جانب القاعدة.

تعريف. قسم قطري- هذا مقطع من الهرم يمر بمستوى يمر بأعلى الهرم وقطر القاعدة.

تعريف. الهرم الصحيحهو هرم قاعدته مضلعة منتظمة، وينحدر ارتفاعه إلى مركز القاعدة.


حجم ومساحة سطح الهرم

معادلة. حجم الهرممن خلال مساحة القاعدة والارتفاع:


خصائص الهرم

إذا كانت جميع الحواف الجانبية متساوية، فيمكن رسم دائرة حول قاعدة الهرم، ويتزامن مركز القاعدة مع مركز الدائرة. وأيضًا، يمر عمودي من الأعلى عبر مركز القاعدة (الدائرة).

إذا كانت جميع الحواف الجانبية متساوية، فإنها تميل إلى مستوى القاعدة بنفس الزوايا.

تكون الحواف الجانبية متساوية عندما تشكل زوايا متساوية مع مستوى القاعدة أو إذا أمكن رسم دائرة حول قاعدة الهرم.

إذا كانت الوجوه الجانبية مائلة إلى مستوى القاعدة بنفس الزاوية، فيمكن إدراج دائرة في قاعدة الهرم، ويتم إسقاط الجزء العلوي من الهرم في مركزه.

إذا كانت الأوجه الجانبية مائلة على مستوى القاعدة بنفس الزاوية، فإن قياسات الأوجه الجانبية متساوية.


خصائص الهرم المنتظم

1. أن تكون قمة الهرم متساوية البعد عن جميع أركان القاعدة.

2. جميع الحواف الجانبية متساوية.

3. جميع الأضلاع الجانبية مائلة بزوايا متساوية للقاعدة.

4. قياسات جميع الوجوه الجانبية متساوية.

5. مساحات جميع الوجوه الجانبية متساوية.

6. جميع الوجوه لها نفس الزوايا ثنائية السطوح (المسطحة).

7. يمكن وصف الكرة حول الهرم. سيكون مركز الكرة المقيدة هو نقطة تقاطع الخطوط العمودية التي تمر عبر منتصف الحواف.

8. يمكنك وضع كرة في الهرم. وسيكون مركز الكرة المنقوشة هو نقطة تقاطع المنصفات الخارجة من الزاوية بين الحافة والقاعدة.

9. إذا تزامن مركز الكرة المحصورة مع مركز الكرة المحصورة، فإن مجموع زوايا المستوى عند الرأس يساوي π أو العكس، زاوية واحدة تساوي π/n، حيث n هو الرقم الزوايا عند قاعدة الهرم .


العلاقة بين الهرم والكرة

يمكن وصف الكرة حول الهرم عندما يوجد في قاعدة الهرم متعدد الوجوه يمكن وصف الدائرة حوله (شرط ضروري وكاف). سيكون مركز الكرة هو نقطة تقاطع المستويات التي تمر بشكل عمودي عبر نقاط منتصف الحواف الجانبية للهرم.

من الممكن دائمًا وصف كرة حول أي هرم ثلاثي أو منتظم.

يمكن إدراج كرة في الهرم إذا تقاطعت المستويات المنصفية للزوايا ثنائية السطوح الداخلية للهرم عند نقطة واحدة (شرط ضروري وكاف). هذه النقطة ستكون مركز الكرة.


العلاقة بين الهرم والمخروط

ويقال إن المخروط منقوش في الهرم إذا تطابقت رؤوسه، وكانت قاعدة المخروط منقوشة في قاعدة الهرم.

يمكن كتابة المخروط في الهرم إذا كانت قياسات الهرم متساوية مع بعضها البعض.

ويقال إن المخروط محصور حول هرم إذا تطابقت رءوسه وكانت قاعدة المخروط محصورة حول قاعدة الهرم.

يمكن وصف المخروط حول الهرم إذا كانت جميع الحواف الجانبية للهرم متساوية مع بعضها البعض.


العلاقة بين الهرم والأسطوانة

يسمى الهرم منقوشا في اسطوانة إذا كان الجزء العلوي من الهرم يقع على إحدى قواعد الاسطوانة، وقاعدة الهرم منقوشة في قاعدة أخرى من الاسطوانة.

يمكن وصف الأسطوانة حول الهرم إذا أمكن وصف الدائرة حول قاعدة الهرم.


تعريف. الهرم المقطوع (المنشور الهرمي)هو متعدد السطوح يقع بين قاعدة الهرم ومستوى المقطع الموازي للقاعدة. وبالتالي فإن الهرم له قاعدة أكبر وقاعدة أصغر تشبه القاعدة الأكبر. الوجوه الجانبية شبه منحرفة.

تعريف. الهرم الثلاثي (رباعي الاسطح)هو هرم فيه ثلاثة وجوه والقاعدة مثلثات عشوائية.

رباعي الأسطح له أربعة وجوه وأربعة رؤوس وستة حواف، حيث لا تحتوي أي حافتين على رؤوس مشتركة ولكن لا تتلامسان.

تتكون كل قمة من ثلاثة وجوه وحواف تتشكل زاوية ثلاثية.

يسمى الجزء الذي يربط قمة رباعي الاسطح بمركز الوجه المقابل متوسط ​​رباعي الاسطح(جنرال موتورز).

بيميديانيسمى الجزء الذي يصل بين نقاط المنتصف للحواف المتقابلة التي لا تمس (KL).

تتقاطع جميع ثنائيات ومتوسطات رباعي السطوح عند نقطة واحدة (S). في هذه الحالة، يتم تقسيم البيميديات إلى نصفين، ويتم تقسيم الوسيطات بنسبة 3:1 بدءًا من الأعلى.

تعريف. الهرم المائلهو هرم تشكل إحدى حوافه زاوية منفرجة (β) مع القاعدة.

تعريف. هرم مستطيلهو هرم يكون أحد أضلاعه متعامداً مع قاعدته.

تعريف. الهرم ذو الزاوية الحادة- هرم يكون فيه الارتفاع أكثر من نصف طول ضلع القاعدة.

تعريف. هرم منفرج- هرم يكون قياسه أقل من نصف طول ضلع القاعدة.

تعريف. رباعي الاسطح منتظم- رباعي السطوح تكون فيه الوجوه الأربعة مثلثات متساوية الأضلاع. وهو أحد المضلعات الخمسة المنتظمة. في رباعي السطوح المنتظم، تكون جميع الزوايا ثنائية السطوح (بين الوجوه) والزوايا ثلاثية السطوح (عند القمة) متساوية.

تعريف. رباعي الاسطح مستطيليسمى رباعي السطوح حيث توجد زاوية قائمة بين ثلاث حواف عند القمة (الحواف متعامدة). شكل ثلاثة وجوه زاوية مثلثة مستطيلةوالأوجه مثلثات قائمة، والقاعدة مثلث اعتباطي. وقياس أي وجه يساوي نصف ضلع القاعدة التي يقع عليها الارتفاع.

تعريف. رباعي السطوح متساوي السطوحيسمى رباعي السطوح أضلاعه متساوية مع بعضها البعض، وقاعدته مثلث منتظم. مثل هذا رباعي السطوح له وجوه مثلثات متساوية الساقين.

تعريف. رباعي السطوح متعامد المركزيسمى رباعي السطوح حيث تتقاطع جميع الارتفاعات (المتعامدة) التي تنخفض من الأعلى إلى الوجه المقابل عند نقطة واحدة.

تعريف. الهرم النجمييسمى المجسم متعدد السطوح الذي قاعدته نجم .

تعريف. الهرم المزدوج- متعدد السطوح يتكون من هرمين مختلفين (يمكن أيضًا قطع الأهرامات) وله قاعدة مشتركة وتقع القمم على جانبي المستوى الأساسي.

مفهوم الهرم

التعريف 1

يسمى الشكل الهندسي الذي يتكون من مضلع ونقطة غير موجودة في المستوى الذي يحتوي على هذا المضلع، والمتصل بجميع رؤوس المضلع، بالهرم (الشكل 1).

ويسمى المضلع الذي يتكون منه الهرم بقاعدة الهرم؛ والمثلثات الناتجة، عند اتصالها بنقطة، هي الأوجه الجانبية للهرم، وأضلاع المثلثات هي أضلاع الهرم، والنقطة المشتركة. لجميع المثلثات هي قمة الهرم.

أنواع الأهرامات

اعتمادا على عدد الزوايا في قاعدة الهرم، يمكن أن يطلق عليه الثلاثي، الرباعي، وما إلى ذلك (الشكل 2).

الشكل 2.

نوع آخر من الهرم هو الهرم العادي.

دعونا نقدم ونثبت خاصية الهرم المنتظم.

النظرية 1

جميع الوجوه الجانبية للهرم المنتظم هي مثلثات متساوية الساقين ومتساوية فيما بينها.

دليل.

خذ بعين الاعتبار هرمًا منتظمًا $n-$gonal مع قمة $S$ للارتفاع $h=SO$. دعونا نرسم دائرة حول القاعدة (الشكل 4).

الشكل 4.

خذ بعين الاعتبار المثلث $SOA$. وفقا لنظرية فيثاغورس، نحصل على

من الواضح أنه سيتم تعريف أي حافة جانبية بهذه الطريقة. وبالتالي فإن جميع الحواف الجانبية متساوية مع بعضها البعض، أي أن جميع الوجوه الجانبية هي مثلثات متساوية الساقين. دعونا نثبت أنهم متساوون مع بعضهم البعض. وبما أن القاعدة مضلع منتظم، فإن قواعد جميع الوجوه الجانبية متساوية مع بعضها البعض. وبالتالي، فإن جميع الوجوه الجانبية متساوية وفقًا للمعيار الثالث لمساواة المثلثات.

لقد تم إثبات النظرية.

دعونا الآن نقدم التعريف التالي المتعلق بمفهوم الهرم المنتظم.

التعريف 3

قياس الهرم المنتظم هو ارتفاع وجهه الجانبي.

من الواضح، وفقًا للنظرية الأولى، أن جميع القياسات متساوية مع بعضها البعض.

النظرية 2

يتم تحديد مساحة السطح الجانبية للهرم العادي على أنها حاصل ضرب نصف محيط القاعدة والارتفاع.

دليل.

دعونا نشير إلى جانب قاعدة الهرم $n-$gonal بـ $a$، والارتفاع بـ $d$. وبالتالي فإن مساحة الوجه الجانبي تساوي

وبما أنه وفقًا للنظرية 1، فإن جميع الجوانب متساوية

لقد تم إثبات النظرية.

نوع آخر من الهرم هو الهرم المقطوع.

التعريف 4

إذا تم رسم مستوى موازٍ لقاعدته من خلال هرم عادي، فإن الشكل المتكون بين هذا المستوى ومستوى القاعدة يسمى الهرم المقطوع (الشكل 5).

الشكل 5. الهرم المقطوع

الوجوه الجانبية للهرم المقطوع هي شبه منحرف.

النظرية 3

يتم تحديد المساحة السطحية الجانبية للهرم المقطوع المنتظم على أنها حاصل ضرب مجموع أنصاف محيطات القواعد والقياس.

دليل.

دعونا نشير إلى جوانب قاعدتي الهرم $n-$gonal بـ $a\ و\b$، على التوالي، والارتفاع بـ $d$. وبالتالي فإن مساحة الوجه الجانبي تساوي

وبما أن جميع الأطراف متساوية، إذن

لقد تم إثبات النظرية.

مهمة عينة

مثال 1

أوجد مساحة السطح الجانبي للهرم الثلاثي المقطوع إذا تم الحصول عليه من هرم منتظم قاعدته 4 وعظمته 5 عن طريق قطع مستوى يمر عبر خط الوسط للأوجه الجانبية.

حل.

باستخدام نظرية خط المنتصف نجد أن القاعدة العليا للهرم المقطوع تساوي $4\cdot \frac(1)(2)=2$، والقياس يساوي $5\cdot \frac(1)(2) =2.5$.

ثم، من خلال النظرية 3، نحصل على

هنا يمكنك العثور على معلومات أساسية حول الأهرامات والصيغ والمفاهيم ذات الصلة. يتم دراستهم جميعًا مع مدرس رياضيات استعدادًا لامتحان الدولة الموحدة.

لنتأمل هنا المستوى، المضلع ، الكذب فيه ونقطة S، عدم الكذب فيه. لنقم بتوصيل S بجميع رؤوس المضلع. يسمى متعدد السطوح الناتج بالهرم. تسمى الأجزاء الأضلاع الجانبية. ويسمى المضلع القاعدة، والنقطة S هي قمة الهرم. اعتمادًا على الرقم n، يسمى الهرم مثلثيًا (n=3)، ورباعي الزوايا (n=4)، وخماسي (n=5)، وهكذا. الاسم البديل للهرم الثلاثي هو رباعي الاسطح. ارتفاع الهرم هو العمودي النازل من قمته إلى مستوى القاعدة.

يسمى الهرم منتظم إذا مضلع منتظم، وقاعدة ارتفاع الهرم (قاعدة المتعامد) هي مركزه.

تعليق المعلم:
لا تخلط بين مفهومي "الهرم العادي" و"الرباعي المنتظم". في الهرم العادي، ليس بالضرورة أن تكون الحواف الجانبية متساوية مع حواف القاعدة، لكن في رباعي الأسطح المنتظم، تكون جميع الحواف الستة متساوية. هذا هو تعريفه. من السهل إثبات أن المساواة تعني أن المركز P للمضلع متطابق مع ارتفاع قاعدته، لذا فإن رباعي السطوح المنتظم هو هرم منتظم.

ما هو apothem؟
ذروة الهرم هي ارتفاع وجهه الجانبي. إذا كان الهرم منتظما فإن جميع تماثيله متساوية. والعكس ليس صحيحا.

مدرس رياضيات عن مصطلحاته: 80% من العمل مع الأهرامات يتم بناؤه من خلال نوعين من المثلثات:
1) تحتوي على apothem SK والارتفاع SP
2) تحتوي على الحافة الجانبية SA وإسقاطها PA

لتبسيط الإشارات إلى هذه المثلثات، يكون مدرس الرياضيات أكثر ملاءمة للاتصال بأولهم apothemal، والثانية ضلعي. وللأسف لن تجد هذا المصطلح في أي من الكتب المدرسية، وعلى المعلم إدخاله منفردا.

صيغة حجم الهرم:
1) ، أين مساحة قاعدة الهرم، و ما هو ارتفاع الهرم
2) أين نصف قطر الكرة المنقوشة، و هي مساحة السطح الكلي للهرم.
3) حيث MN هي المسافة بين أي حافتين متقاطعتين، وهي مساحة متوازي الأضلاع المتكون من منتصف الحواف الأربعة المتبقية.

خاصية قاعدة ارتفاع الهرم :

النقطة P (انظر الشكل) تتوافق مع مركز الدائرة المنقوشة عند قاعدة الهرم إذا تحقق أحد الشروط التالية:
1) جميع القياسات متساوية
2) جميع الوجوه الجانبية مائلة بالتساوي على القاعدة
3) جميع القياسات متساوية في الميل إلى ارتفاع الهرم
4) ارتفاع الهرم متساوي في الميل على جميع أوجهه الجانبية

تعليق مدرس الرياضيات: يرجى ملاحظة أن جميع النقاط متحدة بخاصية مشتركة واحدة: بطريقة أو بأخرى، تشارك الوجوه الجانبية في كل مكان (الرموز هي عناصرها). لذلك، يمكن للمدرس أن يقدم صياغة أقل دقة، ولكنها أكثر ملاءمة للتعلم: النقطة P تتزامن مع مركز الدائرة المنقوشة، قاعدة الهرم، إذا كان هناك أي معلومات متساوية حول وجوهها الجانبية. ولإثبات ذلك، يكفي إثبات أن جميع مثلثات القياس متساوية.

تتوافق النقطة P مع مركز الدائرة المحددة بالقرب من قاعدة الهرم إذا تحقق أحد الشروط الثلاثة:
1) جميع الحواف الجانبية متساوية
2) جميع الأضلاع الجانبية مائلة بالتساوي على القاعدة
3) جميع الأضلاع الجانبية مائلة بشكل متساوٍ إلى الارتفاع

سيساعد هذا الفيديو التعليمي المستخدمين في الحصول على فكرة عن موضوع الهرم. الهرم الصحيح . في هذا الدرس سوف نتعرف على مفهوم الهرم ونعطيه تعريفاً. دعونا نفكر في ماهية الهرم العادي وما هي خصائصه. ثم نثبت نظرية السطح الجانبي للهرم المنتظم.

في هذا الدرس سوف نتعرف على مفهوم الهرم ونعطيه تعريفاً.

النظر في المضلع أ1 أ2...نوالتي تقع في المستوى α والنقطة ص، والتي لا تقع في المستوى α (الشكل 1). دعونا نربط النقاط صمع القمم أ1، أ2، أ3, … ن. نحن نحصل نمثلثات: أ 1 أ 2 ر, أ2 أ3 روما إلى ذلك وهلم جرا.

تعريف. متعدد السطوح را 1 أ 2 ...أ ن، صنع من ن-مربع أ1 أ2...نو نمثلثات را 1 أ 2, را 2 أ 3را ن ن-1 يسمى ن-هرم الفحم. أرز. 1.

أرز. 1

النظر في الهرم الرباعي بابكد(الصورة 2).

ر- قمة الهرم .

ا ب ت ث- قاعدة الهرم .

را- ضلع جانبي.

أ.ب- ضلع القاعدة.

من وجهة ردعونا نسقط العمودي RNإلى الطائرة الأساسية ا ب ت ث. العمودي المرسوم هو ارتفاع الهرم.

أرز. 2

يتكون السطح الكامل للهرم من السطح الجانبي، أي مساحة جميع الوجوه الجانبية، ومساحة القاعدة:

S كامل = الجانب S + S الرئيسي

يسمى الهرم صحيحاً إذا:

  • قاعدته مضلع منتظم.
  • الجزء الذي يربط قمة الهرم بمركز القاعدة هو ارتفاعه.

الشرح باستخدام مثال الهرم الرباعي المنتظم

فكر في هرم رباعي الزوايا منتظم بابكد(تين. 3).

ر- قمة الهرم . قاعدة الهرم ا ب ت ث- شكل رباعي منتظم، أي مربع. نقطة عن، نقطة تقاطع الأقطار هي مركز المربع. وسائل، ريال عمانيهو ارتفاع الهرم.

أرز. 3

توضيح: في الصحيحين نفي المثلث، يتطابق مركز الدائرة المنقوشة مع مركز الدائرة المحيطة. ويسمى هذا المركز مركز المضلع. في بعض الأحيان يقولون أن الرأس يتم إسقاطه في المركز.

يسمى ارتفاع الوجه الجانبي للهرم المنتظم المرسوم من رأسه apothemويتم تعيينه ح أ.

1. جميع الحواف الجانبية للهرم المنتظم متساوية؛

2. الأوجه الجانبية مثلثات متساوية الساقين.

سنقدم دليلاً على هذه الخصائص باستخدام مثال الهرم الرباعي المنتظم.

منح: بابكد- هرم رباعي منتظم،

ا ب ت ث- مربع،

ريال عماني- ارتفاع الهرم .

يثبت:

1. RA = PB = RS = PD

2.∆ABP = ∆BCP = ∆CDP = ∆DAP انظر الشكل. 4.

أرز. 4

دليل.

ريال عماني- ارتفاع الهرم . وهذا هو، على التوالي ريال عمانيعمودي على الطائرة اي بي سي، وبالتالي مباشرة هيئة الأوراق المالية، فو، SOو يفعلالكذب فيه. هكذا مثلثات روا، روف، روس، رود- مستطيلي.

النظر في مربع ا ب ت ث. من خصائص المربع يتبع ذلك AO = VO = CO = يفعل.

ثم المثلثات الصحيحة روا، روف، روس، رودرجل ريال عماني- العام والساقين هيئة الأوراق المالية، فو، SOو يفعلمتساويان، مما يعني أن هذين المثلثين متساويان في الجانبين. من مساواة المثلثات يتبع مساواة الأجزاء، RA = PB = RS = PD.لقد تم إثبات النقطة 1.

شرائح أ.بو شمسمتساويان لأنهما ضلعان لنفس المربع، RA = PB = RS. هكذا مثلثات أفرو فيسر -متساوي الساقين ومتساويان من ثلاثة جوانب.

وبطريقة مماثلة نجد أن المثلثات أب، VCP، CDP، DAPمتساوي الساقين ومتساويان، كما هو مطلوب إثباته في الفقرة 2.

مساحة السطح الجانبي للهرم العادي تساوي نصف حاصل ضرب محيط القاعدة والارتفاع:

لإثبات ذلك، دعونا نختار هرمًا ثلاثيًا منتظمًا.

منح: RAVS- الهرم الثلاثي المنتظم .

أ ب = ق = أس.

ريال عماني- ارتفاع.

يثبت: . انظر الشكل. 5.

أرز. 5

دليل.

RAVS- الهرم الثلاثي المنتظم . إنه أ.ب= أس = قبل الميلاد. يترك عن- مركز المثلث اي بي سي، ثم ريال عمانيهو ارتفاع الهرم. وفي قاعدة الهرم يوجد مثلث متساوي الأضلاع اي بي سي. لاحظ أن .

مثلثات راف، آر في إس، آر إس إيه- مثلثات متساوية الساقين (بالملكية). الهرم الثلاثي له ثلاثة وجوه: راف، آر في إس، آر إس إيه. وهذا يعني أن مساحة السطح الجانبي للهرم هي:

الجانب S = 3S RAW

لقد تم إثبات النظرية.

نصف قطر الدائرة المرسومة عند قاعدة هرم رباعي منتظم 3 م، وارتفاع الهرم 4 م. أوجد مساحة السطح الجانبي للهرم.

منح: هرم رباعي منتظم ا ب ت ث,

ا ب ت ث- مربع،

ص= 3 م،

ريال عماني- ارتفاع الهرم،

ريال عماني= 4 م.

يجد: الجانب S. انظر الشكل. 6.

أرز. 6

حل.

وفقا للنظرية المثبتة ، .

دعونا أولا العثور على جانب القاعدة أ.ب. نحن نعلم أن نصف قطر الدائرة المرسومة عند قاعدة هرم رباعي الزوايا منتظم هو ٣ م.

ثم، م.

أوجد محيط المربع ا ب ت ثمع جانب 6 م:

النظر في مثلث بي سي دي. يترك م- منتصف الجانب العاصمة. لأن عن- وسط دينار بحريني، الذي - التي (م).

مثلث DPC- متساوي الساقين. م- وسط العاصمة. إنه، آر إم- الوسيط، وبالتالي الارتفاع في المثلث DPC. ثم آر إم- ذروة الهرم .

ريال عماني- ارتفاع الهرم . ثم، على التوالي ريال عمانيعمودي على الطائرة اي بي سي، وبالتالي مباشرة أوم، الكذب فيه. دعونا نجد apothem آر إممن المثلث الأيمن ذاكرة للقراءة فقط.

الآن يمكننا إيجاد السطح الجانبي للهرم:

إجابة: 60 م2.

نصف قطر الدائرة المحيطة بقاعدة الهرم الثلاثي المنتظم يساوي م، ومساحة سطحها الجانبية 18 م2. العثور على طول apothem.

منح: ABCP- الهرم الثلاثي المنتظم،

أب = ق = سا،

ر= م،

الجانب S = 18 م2.

يجد: . انظر الشكل. 7.

أرز. 7

حل.

في المثلث الأيمن اي بي سييتم إعطاء نصف قطر الدائرة المقيدة. دعونا نجد الجانب أ.بهذا المثلث باستخدام نظرية الجيب.

بمعرفة ضلع المثلث المنتظم (م)، نجد محيطه.

بواسطة نظرية مساحة السطح الجانبية للهرم العادي، حيث ح أ- ذروة الهرم . ثم:

إجابة: 4 م.

لذا، نظرنا إلى ماهية الهرم، وما هو الهرم العادي، وأثبتنا نظرية السطح الجانبي للهرم العادي. في الدرس القادم سوف نتعرف على الهرم المقطوع.

فهرس

  1. الهندسة. الصفوف 10-11: كتاب مدرسي لطلاب مؤسسات التعليم العام (المستويات الأساسية والمتخصصة) / I. M. Smirnova، V. A. Smirnov. - الطبعة الخامسة، مراجعة. وإضافية - م: منيموسين، 2008. - 288 ص: مريض.
  2. الهندسة. الصفوف 10-11: كتاب مدرسي لمؤسسات التعليم العام / Sharygin I.F - M.: Bustard، 1999. - 208 ص: مريض.
  3. الهندسة. الصف العاشر: كتاب مدرسي لمؤسسات التعليم العام مع دراسة متعمقة ومتخصصة للرياضيات /E. V. Potoskuev، L. I. Zvalich. - الطبعة السادسة، الصورة النمطية. - م: حبارى، 008. - 233 ص: مريض.
  1. بوابة الإنترنت "Yaklass" ()
  2. بوابة الإنترنت "مهرجان الأفكار التربوية "الأول من سبتمبر" ()
  3. بوابة الإنترنت "Slideshare.net" ()

العمل في المنزل

  1. هل يمكن للمضلع المنتظم أن يكون قاعدة لهرم غير منتظم؟
  2. أثبت أن الحواف المنفصلة للهرم العادي متعامدة.
  3. أوجد قيمة الزاوية ثنائية السطوح التي تقع على جانب قاعدة هرم رباعي الزوايا منتظم إذا كان ارتفاع الهرم يساوي جانب قاعدته.
  4. RAVS- الهرم الثلاثي المنتظم . أنشئ الزاوية الخطية للزاوية ثنائية السطوح عند قاعدة الهرم.

هرم. الهرم المقطوع

هرمهو متعدد الوجوه، أحد وجوهه مضلع ( قاعدة )، وجميع الوجوه الأخرى هي مثلثات ذات قمة مشتركة ( وجوه جانبية ) (الشكل 15). الهرم يسمى صحيح إذا كانت قاعدته مضلعًا منتظمًا وكان الجزء العلوي من الهرم بارزًا في وسط القاعدة (الشكل 16). يسمى الهرم الثلاثي الذي تكون جميع أضلاعه متساوية رباعي الاسطح .



الضلع الجانبيالهرم هو جانب الوجه الجانبي الذي لا ينتمي إلى القاعدة ارتفاع الهرم هو المسافة من قمته إلى مستوى القاعدة. جميع الحواف الجانبية للهرم المنتظم متساوية مع بعضها البعض، وجميع الوجوه الجانبية هي مثلثات متساوية الساقين. يسمى ارتفاع الوجه الجانبي للهرم المنتظم المرسوم من رأسه apothem . قسم قطري ويسمى جزء من الهرم بمرور مستوى على حافتين جانبيتين لا تنتميان إلى وجه واحد.

مساحة السطح الجانبيةالهرم هو مجموع مساحات كل الوجوه الجانبية. المساحة الإجمالية يسمى مجموع مساحات جميع الوجوه الجانبية والقاعدة.

نظريات

1. إذا كانت جميع الحواف الجانبية في الهرم مائلة بالتساوي على مستوى القاعدة، فإن قمة الهرم تبرز في وسط الدائرة المحددة بالقرب من القاعدة.

2. إذا كانت جميع الحواف الجانبية للهرم متساوية في الطول، فإن قمة الهرم تبرز في وسط دائرة محيطة بالقرب من القاعدة.

3. إذا كانت جميع وجوه الهرم مائلة بشكل متساوٍ على مستوى القاعدة، فإن قمة الهرم تبرز في وسط الدائرة المنقوشة في القاعدة.

لحساب حجم الهرم الاختياري، الصيغة الصحيحة هي:

أين الخامس- مقدار؛

قاعدة S- منطقة قاعدة؛

ح– ارتفاع الهرم .

بالنسبة للهرم المنتظم، الصيغ التالية صحيحة:

أين ص- محيط القاعدة؛

ح أ- apothem.

ح- ارتفاع؛

س كامل

الجانب S

قاعدة S- منطقة قاعدة؛

الخامس– حجم الهرم المنتظم .

الهرم المقطوعيسمى جزء الهرم المحصور بين القاعدة ومستوى القطع الموازي لقاعدة الهرم (الشكل 17). الهرم المقطوع المنتظم يسمى جزء الهرم المنتظم المحصور بين القاعدة ومستوى القطع الموازي لقاعدة الهرم.

أسبابالهرم المقطوع - مضلعات متشابهة. وجوه جانبية - شبه منحرف. ارتفاع الهرم المقطوع هو المسافة بين قاعدته. قطري الهرم المقطوع هو الجزء الذي يربط رؤوسه التي لا تقع على نفس الوجه. قسم قطري هو جزء من هرم مبتور بمستوى يمر بحافتين جانبيتين لا تنتميان إلى وجه واحد.


بالنسبة للهرم المقطوع، تكون الصيغ التالية صالحة:

(4)

أين س 1 , س 2- مناطق القواعد العلوية والسفلية؛

س كامل- المساحة الإجمالية؛

الجانب S- مساحة السطح الجانبية؛

ح- ارتفاع؛

الخامس– حجم الهرم المقطوع.

بالنسبة للهرم المقطوع المنتظم، تكون الصيغة صحيحة:

أين ص 1 , ص 2 – محيط القواعد.

ح أ– ذروة الهرم المقطوع المنتظم.

مثال 1.في الهرم الثلاثي المنتظم، تكون الزاوية ثنائية السطوح عند القاعدة 60 درجة. أوجد ظل زاوية ميل الحافة الجانبية لمستوى القاعدة.

حل.لنقم بعمل رسم (الشكل 18).


الهرم منتظم، مما يعني أنه يوجد في قاعدته مثلث متساوي الأضلاع وجميع أضلاعه مثلثات متساوية الساقين. زاوية ثنائي السطوح عند القاعدة هي زاوية ميل الوجه الجانبي للهرم إلى مستوى القاعدة. الزاوية الخطية هي الزاوية أبين عموديين : الخ يتم إسقاط الجزء العلوي من الهرم في مركز المثلث (مركز الدائرة المحيطة والدائرة المنقوشة للمثلث اي بي سي). زاوية ميل الحافة الجانبية (على سبيل المثال إس بي.) هي الزاوية بين الحافة نفسها وإسقاطها على مستوى القاعدة. للضلع إس بي.هذه الزاوية ستكون الزاوية إس بي دي. للعثور على الظل تحتاج إلى معرفة الساقين لذاو أو.ب.. دع طول الجزء دينار بحرينييساوي 3 أ. نقطة عنالقطعة المستقيمة دينار بحرينيوينقسم إلى أجزاء: ومن نجد لذا: منها نجد:

إجابة:

مثال 2.أوجد حجم هرم رباعي الزوايا منتظم إذا كانت أقطار قاعدتيه متساوية سم وسم، وارتفاعه ٤ سم.

حل.لإيجاد حجم الهرم المقطوع نستخدم الصيغة (4). للعثور على مساحة القواعد، عليك إيجاد جوانب مربعات القاعدة، مع معرفة أقطارها. جوانب القاعدتين تساوي 2 سم و 8 سم على التوالي، وهذا يعني مساحة القاعدتين وبتعويض جميع البيانات في الصيغة، نحسب حجم الهرم المقطوع:

إجابة: 112 سم3.

مثال 3.أوجد مساحة الوجه الجانبي لهرم مثلث منتظم مقطوع، طول أضلاع قاعدتيه ١٠ سم، ٤ سم، وارتفاع الهرم ٢ سم.

حل.لنقم بعمل رسم (الشكل 19).


الوجه الجانبي لهذا الهرم هو شبه منحرف متساوي الساقين. لحساب مساحة شبه منحرف، عليك أن تعرف القاعدة والارتفاع. يتم إعطاء القواعد حسب الشرط، ويبقى الارتفاع فقط غير معروف. سوف نجدها من أين أ 1 هعمودي من نقطة أ 1 على مستوى القاعدة السفلية، أ 1 د- عمودي من أ 1 لكل تكييف. أ 1 ه= 2 سم، لأن هذا هو ارتفاع الهرم. لايجاد ديلنقم بعمل رسم إضافي يوضح المنظر العلوي (الشكل 20). نقطة عن– إسقاط مراكز القواعد العلوية والسفلية. منذ (انظر الشكل 20) ومن ناحية أخرى نعم- نصف القطر المدرج في الدائرة و أوم- نصف القطر المدرج في دائرة:

عضو الكنيست = دي.

وفقا لنظرية فيثاغورس من

منطقة الوجه الجانبية:


إجابة:

مثال 4.في قاعدة الهرم يوجد شبه منحرف متساوي الساقين، قاعدته أو ب (أ> ب). يشكل كل وجه جانبي زاوية مساوية لمستوى قاعدة الهرم ي. أوجد المساحة الكلية للهرم.

حل.لنقم بعمل رسم (الشكل 21). المساحة الكلية للهرم سابكديساوي مجموع المساحات ومساحة شبه المنحرف ا ب ت ث.

دعونا نستخدم العبارة القائلة بأنه إذا كانت جميع أوجه الهرم متساوية في الميل على مستوى القاعدة، فإن الرأس يسقط في وسط الدائرة المنقوشة في القاعدة. نقطة عن- الإسقاط الرأسي سفي قاعدة الهرم. مثلث الاحمقهو الإسقاط المتعامد للمثلث لجنة التنمية المستدامةإلى مستوى القاعدة. باستخدام نظرية منطقة الإسقاط المتعامد لشكل مستو، نحصل على:


وكذلك يعني وهكذا تم اختصار المشكلة إلى إيجاد مساحة شبه المنحرف ا ب ت ث. لنرسم شبه منحرف ا ب ت ثبشكل منفصل (الشكل 22). نقطة عن- مركز الدائرة المرسومة على شكل شبه منحرف.


بما أنه يمكن إدراج دائرة في شبه منحرف، إذن أو من نظرية فيثاغورس لدينا




معظم الحديث عنه
ما هي أنواع الإفرازات التي تحدث أثناء الحمل المبكر؟ ما هي أنواع الإفرازات التي تحدث أثناء الحمل المبكر؟
تفسير الأحلام وتفسير الأحلام تفسير الأحلام وتفسير الأحلام
لماذا ترى قطة في المنام؟ لماذا ترى قطة في المنام؟


قمة