احسب مساحة الشكل الذي يحده القطع المكافئ y. كيفية حساب مساحة الشكل المستوي باستخدام التكامل المزدوج

احسب مساحة الشكل الذي يحده القطع المكافئ y.  كيفية حساب مساحة الشكل المستوي باستخدام التكامل المزدوج

ستتعلم في هذه المقالة كيفية العثور على مساحة الشكل المحدد بخطوط باستخدام الحسابات التكاملية. لأول مرة نواجه صياغة مثل هذه المشكلة في المدرسة الثانوية، عندما انتهينا للتو من دراسة التكاملات المحددة وحان الوقت لبدء التفسير الهندسي للمعرفة المكتسبة في الممارسة العملية.

إذن، ما هو المطلوب لحل مشكلة إيجاد مساحة الشكل بنجاح باستخدام التكاملات:

  • القدرة على عمل رسومات مختصة؛
  • القدرة على حل تكامل محدد باستخدام صيغة نيوتن-لايبنتز المعروفة؛
  • القدرة على "رؤية" خيار الحل الأكثر ربحية - أي. هل تفهم كيف سيكون تنفيذ التكامل أكثر ملاءمة في حالة أو أخرى؟ على طول المحور السيني (OX) أو المحور الصادي (OY)؟
  • حسنًا، أين سنكون بدون الحسابات الصحيحة؟) وهذا يتضمن فهم كيفية حل هذا النوع الآخر من التكاملات والحسابات الرقمية الصحيحة.

خوارزمية حل مشكلة حساب مساحة الشكل المحدد بالخطوط:

1. نبني الرسم. من المستحسن القيام بذلك على قطعة من الورق متقلب، على نطاق واسع. نوقع اسم هذه الوظيفة بقلم رصاص فوق كل رسم بياني. يتم التوقيع على الرسوم البيانية فقط لتسهيل إجراء المزيد من الحسابات. بعد الحصول على رسم بياني للشكل المطلوب، سيكون من الواضح في معظم الحالات على الفور حدود التكامل التي سيتم استخدامها. وهكذا نحل المشكلة بيانيا. ومع ذلك، يحدث أن تكون قيم النهايات كسرية أو غير منطقية. لذلك، يمكنك إجراء حسابات إضافية، انتقل إلى الخطوة الثانية.

2. إذا لم يتم تحديد حدود التكامل بشكل صريح، فإننا نجد نقاط تقاطع الرسوم البيانية مع بعضها البعض ونرى ما إذا كان حلنا الرسومي يتطابق مع الحل التحليلي.

3. بعد ذلك، تحتاج إلى تحليل الرسم. اعتمادًا على كيفية ترتيب الرسوم البيانية للدالة، هناك طرق مختلفة للعثور على مساحة الشكل. دعونا نلقي نظرة على أمثلة مختلفة لإيجاد مساحة الشكل باستخدام التكاملات.

3.1. النسخة الأكثر كلاسيكية وأبسط من المشكلة هي عندما تحتاج إلى العثور على مساحة شبه منحرف منحني. ما هو شبه منحرف منحني؟ هذا شكل مسطح محدد بالمحور x (y = 0)، والخطوط المستقيمة x = a، x = b وأي منحنى مستمر في الفترة من a إلى b. علاوة على ذلك، فإن هذا الرقم غير سلبي ولا يقع تحت المحور السيني. في هذه الحالة، فإن مساحة شبه المنحرف المنحني تساوي عدديًا تكاملًا معينًا، يتم حسابه باستخدام صيغة نيوتن-لايبنتز:

مثال 1ص = س2 - 3س + 3، س = 1، س = 3، ص = 0.

ما هي الخطوط التي يحدها الشكل؟ لدينا قطع مكافئ y = x2 - 3x + 3، والذي يقع فوق المحور OX، وهو غير سالب، لأن جميع نقاط هذا القطع المكافئ لها قيم موجبة. بعد ذلك، يتم إعطاء الخطوط المستقيمة x = 1 وx = 3، والتي تعمل بالتوازي مع محور المرجع أمبير وهي الخطوط الحدودية للشكل على اليسار واليمين. حسنًا، y = 0، وهو أيضًا المحور x، والذي يحد الشكل من الأسفل. الشكل الناتج مظلل، كما يمكن رؤيته من الشكل الموجود على اليسار. في هذه الحالة، يمكنك البدء فورًا في حل المشكلة. أمامنا مثال بسيط على شبه منحرف منحني، والذي سنحله بعد ذلك باستخدام صيغة نيوتن-لايبنيز.

3.2. في الفقرة 3.1 السابقة، قمنا بدراسة الحالة عندما يقع شبه منحرف منحني فوق المحور السيني. الآن فكر في الحالة التي تكون فيها شروط المشكلة هي نفسها، فيما عدا أن الدالة تقع تحت المحور السيني. تتم إضافة علامة ناقص إلى صيغة نيوتن-لايبنتز القياسية. سننظر في كيفية حل هذه المشكلة أدناه.

مثال 2. احسب مساحة الشكل المحدد بالخطوط y = x2 + 6x + 2، x = -4، x = -1، y = 0.

في هذا المثال لدينا قطع مكافئ y = x2 + 6x + 2، والذي ينشأ من تحت محور OX، الخطوط المستقيمة x = -4، x = -1، y = 0. هنا y = 0 يحد الرقم المطلوب من الأعلى. الخطوط المستقيمة x = -4 وx = -1 هي الحدود التي سيتم حساب التكامل المحدد ضمنها. يتطابق مبدأ حل مشكلة إيجاد مساحة الشكل بشكل كامل تقريبًا مع المثال رقم 1. والفرق الوحيد هو أن الوظيفة المعطاة ليست موجبة، وهي أيضًا مستمرة على الفاصل الزمني [-4؛ -1] . ماذا تقصد غير إيجابية؟ كما يتبين من الشكل، فإن الشكل الذي يقع ضمن علامة x المحددة له إحداثيات "سلبية" حصريًا، وهو ما نحتاج إلى رؤيته وتذكره عند حل المشكلة. نبحث عن مساحة الشكل باستخدام صيغة نيوتن-لايبنتز، مع وضع علامة الطرح في البداية فقط.

المقال لم يكتمل.

المهمة رقم 3. قم بعمل رسم وحساب مساحة الشكل المحدد بالخطوط

تطبيق التكامل في حل المسائل التطبيقية

حساب المساحة

التكامل المحدد للدالة المستمرة غير السالبة f(x) يساوي عدديًا مساحة شبه منحرف منحني يحده المنحنى y = f(x) ومحور O x والخطوط المستقيمة x = a و x = ب. ووفقاً لهذا يتم كتابة معادلة المساحة على النحو التالي:

دعونا نلقي نظرة على بعض الأمثلة لحساب مساحات الأشكال المستوية.

المهمة رقم 1. احسب المساحة المحددة بالخطوط y = x 2 +1، y = 0، x = 0، x = 2.

حل.دعونا نبني الشكل الذي سيتعين علينا حساب مساحته.

y = x 2 + 1 هو قطع مكافئ يتم توجيه فروعه لأعلى، ويتم إزاحة القطع المكافئ لأعلى بمقدار وحدة واحدة بالنسبة إلى المحور O y (الشكل 1).

الشكل 1. رسم بياني للدالة y = x 2 + 1

المهمة رقم 2. احسب المساحة المحددة بالخطوط y = x 2 – 1، y = 0 في النطاق من 0 إلى 1.


حل.الرسم البياني لهذه الدالة عبارة عن قطع مكافئ من الفروع التي يتم توجيهها لأعلى، ويتم إزاحة القطع المكافئ بالنسبة إلى المحور O y لأسفل بمقدار وحدة واحدة (الشكل 2).

الشكل 2. رسم بياني للدالة y = x 2 – 1


المهمة رقم 3. قم بعمل رسم وحساب مساحة الشكل المحدد بالخطوط

ص = 8 + 2س – س 2 و ص = 2س – 4.

حل.أول هذين الخطين عبارة عن قطع مكافئ تتجه فروعه إلى الأسفل، حيث أن معامل x 2 سلبي، والخط الثاني عبارة عن خط مستقيم يتقاطع مع محوري الإحداثيات.

لإنشاء القطع المكافئ، نجد إحداثيات رأسه: y’=2 – 2x; 2 – 2س = 0، س = 1 – حدود الرأس؛ y(1) = 8 + 2∙1 – 1 2 = 9 هو الإحداثي، N(1;9) هو رأسه.

الآن لنجد نقاط تقاطع القطع المكافئ والخط المستقيم من خلال حل نظام المعادلات:

مساواة الأطراف اليمنى في المعادلة التي يكون طرفاها الأيسر متساويين.

نحصل على 8 + 2x – x 2 = 2x – 4 أو x 2 – 12 = 0، ومن هنا .

لذا، فإن النقاط هي نقاط تقاطع القطع المكافئ والخط المستقيم (الشكل 1).


الشكل 3 الرسوم البيانية للوظائف y = 8 + 2x – x 2 و y = 2x – 4

لنرسم خطًا مستقيمًا y = 2x – 4. ويمر بالنقاط (0;-4)، (2;0) على محاور الإحداثيات.

لإنشاء قطع مكافئ، يمكنك أيضًا استخدام نقاط تقاطعه مع المحور 0x، أي جذور المعادلة 8 + 2x – x 2 = 0 أو x 2 – 2x – 8 = 0. باستخدام نظرية فييتا، يكون الأمر سهلاً لإيجاد جذوره: x 1 = 2، x 2 = 4.

ويبين الشكل 3 شكلاً (القطعة المكافئة M 1 N M 2) يحدها هذه الخطوط.

الجزء الثاني من المشكلة هو إيجاد مساحة هذا الشكل. يمكن العثور على مساحتها باستخدام تكامل محدد وفقًا للصيغة .

وبالعلاقة مع هذا الشرط نحصل على التكامل:

2 حساب حجم الجسم الدوراني

يتم حساب حجم الجسم الناتج من دوران المنحنى y = f(x) حول المحور O x بالصيغة:

عند الدوران حول المحور O، تبدو الصيغة كما يلي:

المهمة رقم 4. حدد حجم الجسم الناتج من دوران شبه منحرف منحني يحده خطوط مستقيمة x = 0 x = 3 ومنحني y = حول المحور O x.

حل.دعونا نرسم صورة (الشكل 4).

الشكل 4. رسم بياني للدالة y =

الحجم المطلوب هو


المهمة رقم 5. احسب حجم الجسم الناتج من دوران شبه منحرف منحني يحده المنحنى y = x 2 والخطين المستقيمين y = 0 و y = 4 حول المحور O y.

حل.لدينا:

راجع الأسئلة

في الواقع، من أجل العثور على مساحة الشكل، لا تحتاج إلى الكثير من المعرفة بالتكامل غير المحدد والمحدد. تتضمن مهمة "حساب المساحة باستخدام تكامل محدد" دائمًا إنشاء رسم، لذا فإن معرفتك ومهاراتك في إنشاء الرسومات ستكون سؤالًا أكثر إلحاحًا. في هذا الصدد، من المفيد تحديث ذاكرتك بالرسوم البيانية للوظائف الأولية الأساسية، وعلى الأقل، تكون قادرًا على إنشاء خط مستقيم وقطع زائد.

شبه المنحرف المنحني هو شكل مسطح يحده محور وخطوط مستقيمة ورسم بياني لدالة مستمرة على قطعة لا تتغير الإشارة في هذه الفترة. دع هذا الرقم يكون موجودا ليس أقلالمحور السيني:

ثم مساحة شبه المنحرف المنحني تساوي عدديا التكامل المحدد. أي تكامل محدد (موجود) له معنى هندسي جيد جدًا.

من وجهة نظر هندسية، التكامل المحدد هو المساحة.

أي أن تكاملًا معينًا (إن وجد) يتوافق هندسيًا مع مساحة شكل معين. على سبيل المثال، النظر في التكامل المحدد. يحدد التكامل منحنى على المستوى الموجود فوق المحور (أولئك الذين يرغبون في ذلك يمكنهم رسم رسم)، والتكامل المحدد نفسه يساوي عدديًا مساحة شبه المنحرف المنحني المقابل.

مثال 1

هذا هو بيان مهمة نموذجية. النقطة الأولى والأكثر أهمية في القرار هي الرسم. علاوة على ذلك، يجب أن يتم بناء الرسم بشكل صحيح.

عند إنشاء رسم، أوصي بالترتيب التالي: أولاً، من الأفضل إنشاء جميع الخطوط المستقيمة (إن وجدت) وعندها فقط - القطع المكافئة والقطع الزائدة والرسوم البيانية للوظائف الأخرى. يعد إنشاء الرسوم البيانية للوظائف نقطة بنقطة أكثر ربحية.

في هذه المشكلة، قد يبدو الحل هكذا.
لنرسم الرسم (لاحظ أن المعادلة تحدد المحور):


في المقطع، يقع الرسم البياني للدالة فوق المحور، وبالتالي:

إجابة:

بعد اكتمال المهمة، من المفيد دائمًا إلقاء نظرة على الرسم ومعرفة ما إذا كانت الإجابة حقيقية. في هذه الحالة، "بالعين" نحسب عدد الخلايا في الرسم - حسنًا، سيكون هناك حوالي 9، يبدو أن هذا صحيح. من الواضح تمامًا أنه إذا حصلنا على الإجابة، على سبيل المثال: 20 وحدة مربعة، فمن الواضح أنه تم ارتكاب خطأ في مكان ما - من الواضح أن 20 خلية لا تتناسب مع الشكل المعني، على الأكثر عشرات. إذا كانت الإجابة سلبية، فقد تم حل المهمة بشكل غير صحيح.

مثال 3

احسب مساحة الشكل المحدد بالخطوط ومحاور الإحداثيات.

الحل: لنقم بالرسم:


إذا كان شبه المنحرف المنحني يقع تحت المحور (أو على الأقل ليس أعلىالمحور المحدد)، فيمكن إيجاد مساحتها باستخدام الصيغة:


في هذه الحالة:

انتباه! ولا ينبغي الخلط بين نوعي المهام:

1) إذا طُلب منك حل تكامل محدد دون أي معنى هندسي، فقد يكون سالبًا.

2) إذا طلب منك إيجاد مساحة شكل ما باستخدام تكامل محدد، فإن المساحة تكون موجبة دائمًا! ولهذا السبب يظهر الطرح في الصيغة التي تمت مناقشتها للتو.

في الممارسة العملية، غالبا ما يقع الرقم في كل من المستوى العلوي والسفلي، وبالتالي، من أبسط المهام المدرسية ننتقل إلى أمثلة أكثر وضوحا.

مثال 4

أوجد مساحة الشكل المستوي المحدود بالخطوط .

الحل: أولا تحتاج إلى رسم. بشكل عام، عند إنشاء رسم في مسائل المساحة، فإننا نهتم أكثر بنقاط تقاطع الخطوط. دعونا نجد نقاط تقاطع القطع المكافئ والخط المستقيم. ويمكن أن يتم ذلك بطريقتين. الطريقة الأولى هي التحليلية. نحن نحل المعادلة:

وهذا يعني أن الحد الأدنى للتكامل هو الحد الأعلى للتكامل.

ومن الأفضل، إن أمكن، عدم استخدام هذه الطريقة.

إن بناء الخطوط نقطة تلو الأخرى أكثر ربحية وأسرع بكثير، وتصبح حدود التكامل واضحة "في حد ذاتها". ومع ذلك، لا يزال يتعين في بعض الأحيان استخدام الطريقة التحليلية لإيجاد الحدود، على سبيل المثال، إذا كان الرسم البياني كبيرًا بدرجة كافية، أو إذا لم يكشف البناء التفصيلي عن حدود التكامل (يمكن أن تكون كسرية أو غير منطقية). وسننظر أيضًا في مثل هذا المثال.

دعنا نعود إلى مهمتنا: من الأكثر عقلانية أن نبني أولاً خطًا مستقيمًا وبعد ذلك فقط قطعًا مكافئًا. لنقم بالرسم:

والآن صيغة العمل: إذا كانت بعض الوظائف المستمرة في مقطع ما أكبر من أو تساوي بعض الوظائف المستمرة، فيمكن العثور على مساحة الشكل المحددة بالرسوم البيانية لهذه الوظائف والخطوط المستقيمة باستخدام الصيغة:

هنا لم تعد بحاجة إلى التفكير في مكان وجود الشكل - أعلى المحور أو أسفل المحور، وبشكل تقريبي، من المهم أي رسم بياني أعلى (بالنسبة إلى رسم بياني آخر) وأي رسم بياني أقل.

في المثال قيد النظر، من الواضح أن القطع المكافئ يقع فوق الخط المستقيم، وبالتالي من الضروري الطرح منه

قد يبدو الحل المكتمل كما يلي:

الشكل المطلوب محدود بقطع مكافئ في الأعلى وخط مستقيم في الأسفل.
على المقطع حسب الصيغة المقابلة:

إجابة:

مثال 4

احسب مساحة الشكل المحدد بالخطوط , , .

الحل: أولاً، لنرسم:

الشكل الذي نحتاج إلى إيجاد مساحته مظلل باللون الأزرق (انظر بعناية إلى الحالة - كيف أن الشكل محدود!). لكن من الناحية العملية، وبسبب عدم الانتباه، غالباً ما يحدث "خلل" يجعلك بحاجة إلى العثور على مساحة الشكل المظلل باللون الأخضر!

هذا المثال مفيد أيضًا لأنه يحسب مساحة الشكل باستخدام تكاملين محددين.

حقًا :

1) يوجد في الجزء الموجود فوق المحور رسم بياني لخط مستقيم؛

2) يوجد في المقطع الموجود فوق المحور رسم بياني للقطع الزائد.

من الواضح تمامًا أنه يمكن (ويجب) إضافة المناطق، وبالتالي:

دعونا ننتقل إلى النظر في تطبيقات حساب التفاضل والتكامل. في هذا الدرس، سنلقي نظرة على المشكلة النموذجية والأكثر شيوعًا لحساب مساحة الشكل المستوي باستخدام تكامل محدد. وأخيرًا، دع كل من يبحث عن المعنى في الرياضيات العليا يجده. أنت لا تعرف أبدا. في الحياة الواقعية، سيتعين عليك تقريب قطعة أرض داشا باستخدام الدوال الأولية والعثور على مساحتها باستخدام تكامل محدد.

لإتقان المادة بنجاح، يجب عليك:

1) فهم التكامل غير المحدد على الأقل بمستوى متوسط. وبالتالي، يجب على الدمى أن يتعرفوا أولاً على درس هو.

2) أن تكون قادرًا على تطبيق صيغة نيوتن-لايبنتز وحساب التكامل المحدد. يمكنك إقامة علاقات ودية دافئة مع تكاملات محددة في صفحة التكامل المحدد. أمثلة على الحلول. تتضمن مهمة "حساب المساحة باستخدام تكامل محدد" دائمًا إنشاء رسم، لذا فإن معرفتك ومهاراتك في الرسم ستكون أيضًا مشكلة مهمة. كحد أدنى، يجب أن تكون قادرًا على إنشاء خط مستقيم وقطع مكافئ وقطع زائد.

لنبدأ بشبه منحرف منحني. شبه المنحرف المنحني هو شكل مسطح يحده الرسم البياني لبعض الوظائف ذ = F(س)، المحور ثوروالخطوط س = أ; س = ب.

مساحة شبه منحرف منحني الأضلاع تساوي عدديا تكاملا محددا

أي تكامل محدد (موجود) له معنى هندسي جيد جدًا. في الدرس التكامل المحدد من أمثلة الحلول التي ذكرنا أن التكامل المحدد هو عدد. والآن حان الوقت لذكر حقيقة مفيدة أخرى. من وجهة نظر الهندسة، التكامل المحدد هو المساحة. أي أن تكاملًا معينًا (إن وجد) يتوافق هندسيًا مع مساحة شكل معين. النظر في التكامل المحدد

متكامل

يحدد منحنى على المستوى (يمكن رسمه إذا رغبت في ذلك)، والتكامل المحدد نفسه يساوي عدديًا مساحة شبه المنحرف المنحني المقابل.



مثال 1

, , , .

هذا هو بيان مهمة نموذجية. النقطة الأكثر أهمية في القرار هي بناء الرسم. علاوة على ذلك، يجب أن يتم بناء الرسم بشكل صحيح.

عند إنشاء رسم، أوصي بالترتيب التالي: أولاً، من الأفضل إنشاء جميع الخطوط المستقيمة (إن وجدت) وعندها فقط – القطع المكافئة، القطع الزائدة، والرسوم البيانية للوظائف الأخرى. يمكن العثور على تقنية البناء النقطي في المواد المرجعية للرسوم البيانية وخصائص الوظائف الأولية. هناك يمكنك أيضًا العثور على مادة مفيدة جدًا لدرسنا - كيفية بناء القطع المكافئ بسرعة.

في هذه المشكلة، قد يبدو الحل هكذا.

لنقم بالرسم (لاحظ أن المعادلة ذ= 0 يحدد المحور ثور):

لن نقوم بتظليل شبه المنحرف المنحني هنا فمن الواضح ما هي المنطقة التي نتحدث عنها. ويستمر الحل هكذا:

على المقطع [-2؛ 1] الرسم البياني الوظيفي ذ = س 2+2 يقع فوق المحور ثور، لهذا السبب:

إجابة: .

من يواجه صعوبات في حساب التكامل المحدد وتطبيق صيغة نيوتن-لايبنتز

,

راجع محاضرة التكامل المحدد . أمثلة على الحلول. بعد اكتمال المهمة، من المفيد دائمًا إلقاء نظرة على الرسم ومعرفة ما إذا كانت الإجابة حقيقية. في هذه الحالة، نحسب عدد الخلايا في الرسم "بالعين" - حسنًا، سيكون هناك حوالي 9، وهو ما يبدو صحيحًا. من الواضح تمامًا أنه إذا حصلنا على الإجابة، على سبيل المثال: 20 وحدة مربعة، فمن الواضح أنه تم ارتكاب خطأ في مكان ما - من الواضح أن 20 خلية لا تتناسب مع الشكل المعني، على الأكثر عشرات. إذا كانت الإجابة سلبية، فقد تم حل المهمة بشكل غير صحيح.

مثال 2

حساب مساحة الشكل الذي يحده الخطوط xy = 4, س = 2, س= 4 والمحور ثور.

هذا مثال عليك حله بنفسك. الحل الكامل والإجابة في نهاية الدرس.

ماذا تفعل إذا كان شبه منحرف منحني يقع تحت المحور ثور?

مثال 3

حساب مساحة الشكل الذي يحده الخطوط ذ = السابق, س= 1 ومحاور الإحداثيات.

الحل: لنقم بالرسم:

إذا كان شبه منحرف منحني يقع بالكامل تحت المحور ثور، فيمكن إيجاد مساحتها باستخدام الصيغة:

في هذه الحالة:

.

انتباه! ولا ينبغي الخلط بين نوعي المهام:

1) إذا طُلب منك حل تكامل محدد دون أي معنى هندسي، فقد يكون سالبًا.

2) إذا طلب منك إيجاد مساحة شكل ما باستخدام تكامل محدد، فإن المساحة تكون موجبة دائمًا! ولهذا السبب يظهر الطرح في الصيغة التي تمت مناقشتها للتو.

في الممارسة العملية، غالبا ما يقع الرقم في كل من المستوى العلوي والسفلي، وبالتالي، من أبسط المهام المدرسية ننتقل إلى أمثلة أكثر وضوحا.

مثال 4

أوجد مساحة الشكل المستوي المحدود بالخطوط ذ = 2سس 2 , ذ = -س.

الحل: أولا تحتاج إلى رسم. عند إنشاء رسم في مسائل المساحة، نحن مهتمون أكثر بنقاط تقاطع الخطوط. دعونا نجد نقاط تقاطع القطع المكافئ ذ = 2سس 2 ومستقيم ذ = -س. ويمكن أن يتم ذلك بطريقتين. الطريقة الأولى هي التحليلية. نحن نحل المعادلة:

وهذا يعني أن الحد الأدنى للتكامل أ= 0، الحد الأعلى للتكامل ب= 3. غالبًا ما يكون بناء الخطوط نقطة بنقطة أكثر ربحية وأسرع، وتصبح حدود التكامل واضحة "بنفسها". ومع ذلك، لا يزال يتعين في بعض الأحيان استخدام الطريقة التحليلية لإيجاد الحدود، على سبيل المثال، إذا كان الرسم البياني كبيرًا بدرجة كافية، أو إذا لم يكشف البناء التفصيلي عن حدود التكامل (يمكن أن تكون كسرية أو غير منطقية). دعنا نعود إلى مهمتنا: من الأكثر عقلانية أن نبني أولاً خطًا مستقيمًا وبعد ذلك فقط قطعًا مكافئًا. لنقم بالرسم:

دعونا نكرر أنه عند البناء النقطي، غالبًا ما يتم تحديد حدود التكامل "تلقائيًا".

والآن صيغة العمل:

إذا كان على الجزء [ أ; ب] بعض الوظائف المستمرة F(س) أكبر من أو يساوي بعض الوظائف المستمرة ز(س) ، فيمكن العثور على مساحة الشكل المقابل باستخدام الصيغة:

هنا لم تعد بحاجة إلى التفكير في المكان الذي يقع فيه الشكل - فوق المحور أو أسفل المحور، ولكن المهم هو الرسم البياني الأعلى (بالنسبة إلى رسم بياني آخر) والذي هو أدناه.

في المثال قيد النظر، من الواضح أنه في المقطع يقع القطع المكافئ فوق الخط المستقيم، وبالتالي من 2 سسيجب طرح 2 - س.

قد يبدو الحل المكتمل كما يلي:

الرقم المطلوب محدود بقطع مكافئ ذ = 2سس 2 في الأعلى ومستقيم ذ = -سأقل.

على الجزء 2 سس 2 ≥ -س. وفقا للصيغة المقابلة:

إجابة: .

وفي الواقع فإن الصيغة المدرسية لمساحة شبه المنحرف المنحني في النصف السفلي من المستوى (أنظر المثال رقم 3) هي حالة خاصة من الصيغة

.

لأن المحور ثورتعطى بواسطة المعادلة ذ= 0، والرسم البياني للوظيفة ز(س) يقع أسفل المحور ثور، الذي - التي

.

والآن بعض الأمثلة للحل الخاص بك

مثال 5

مثال 6

أوجد مساحة الشكل الذي يحده الخطوط

عند حل المسائل التي تتضمن حساب المساحة باستخدام تكامل محدد، تحدث أحيانًا حادثة مضحكة. تم الرسم بشكل صحيح، وكانت الحسابات صحيحة، ولكن بسبب الإهمال... تم العثور على مساحة الشكل الخطأ.

مثال 7

أولاً لنقم بالرسم:

الشكل الذي نحتاج إلى إيجاد مساحته مظلل باللون الأزرق (انظر بعناية إلى الحالة - كيف أن الشكل محدود!). ولكن من الناحية العملية، وبسبب عدم الانتباه، غالبًا ما يقرر الأشخاص أنهم بحاجة إلى العثور على مساحة الشكل المظلل باللون الأخضر!

هذا المثال مفيد أيضًا لأنه يحسب مساحة الشكل باستخدام تكاملين محددين. حقًا:

1) على الجزء [-1؛ 1] فوق المحور ثوريقع الرسم البياني مباشرة ذ = س+1;

2) على قطعة فوق المحور ثوريقع الرسم البياني للقطع الزائد ذ = (2/س).

من الواضح تمامًا أنه يمكن (ويجب) إضافة المناطق، وبالتالي:

إجابة:

مثال 8

حساب مساحة الشكل الذي يحده الخطوط

دعونا نعرض المعادلات في صيغة "المدرسة".

وقم بعمل رسم نقطة بنقطة:

يتضح من الرسم أن الحد الأعلى لدينا هو "جيد": ب = 1.

ولكن ما هو الحد الأدنى؟! من الواضح أن هذا ليس عددا صحيحا، ولكن ما هو؟

ربما، أ=(-1/3)؟ ولكن أين هو الضمان الذي يتم به الرسم بدقة مثالية، قد يكون ذلك جيدا أ=(-1/4). ماذا لو بنينا الرسم البياني بشكل غير صحيح؟

في مثل هذه الحالات، عليك قضاء وقت إضافي وتوضيح حدود التكامل تحليليا.

دعونا نجد نقاط تقاطع الرسوم البيانية

للقيام بذلك، نحل المعادلة:

.

لذلك، أ=(-1/3).

الحل الآخر تافه. الشيء الرئيسي هو عدم الخلط بين البدائل والعلامات. الحسابات هنا ليست أبسط. على الجزء

, ,

وفقا للصيغة المناسبة:

إجابة:

في ختام الدرس، دعونا نلقي نظرة على مهمتين أكثر صعوبة.

مثال 9

حساب مساحة الشكل الذي يحده الخطوط

الحل: لنرسم هذا الشكل في الرسم.

لإنشاء رسم نقطة بنقطة، تحتاج إلى معرفة مظهر الجيوب الأنفية. بشكل عام، من المفيد معرفة الرسوم البيانية لجميع الوظائف الأولية، وكذلك بعض قيم الجيب. يمكن العثور عليها في جدول قيم الدوال المثلثية. في بعض الحالات (على سبيل المثال، في هذه الحالة)، من الممكن إنشاء رسم تخطيطي، حيث يجب عرض الرسوم البيانية وحدود التكامل بشكل صحيح بشكل أساسي.

لا توجد مشاكل مع حدود التكامل هنا، فهي تتبع الشرط مباشرة:

- يتغير "x" من صفر إلى "pi". دعونا نتخذ قرارًا آخر:

على قطعة، الرسم البياني للدالة ذ= الخطيئة 3 ستقع فوق المحور ثور، لهذا السبب:

(1) يمكنك أن ترى كيف يتم تكامل الجيب وجيب التمام في القوى الفردية في درس تكاملات الدوال المثلثية. نحن نقرص جيبًا واحدًا.

(2) نستخدم الهوية المثلثية الرئيسية في النموذج

(3) دعونا نغير المتغير ر=cos س، إذن: يقع فوق المحور، وبالتالي:

.

.

ملحوظة: لاحظ كيف يتم أخذ تكامل المماس المكعب هنا؛

.

كيفية إدراج الصيغ الرياضية على موقع على شبكة الإنترنت؟

إذا كنت بحاجة إلى إضافة واحدة أو اثنتين من الصيغ الرياضية إلى صفحة ويب، فإن أسهل طريقة للقيام بذلك هي كما هو موضح في المقالة: يتم إدراج الصيغ الرياضية بسهولة على الموقع في شكل صور يتم إنشاؤها تلقائيًا بواسطة Wolfram Alpha . بالإضافة إلى البساطة، ستساعد هذه الطريقة العالمية في تحسين ظهور الموقع في محركات البحث. لقد كان يعمل لفترة طويلة (وأعتقد أنه سيعمل إلى الأبد)، لكنه عفا عليه الزمن بالفعل من الناحية الأخلاقية.

إذا كنت تستخدم الصيغ الرياضية بانتظام على موقعك، فإنني أوصيك باستخدام MathJax - وهي مكتبة JavaScript خاصة تعرض الرموز الرياضية في متصفحات الويب باستخدام علامات MathML أو LaTeX أو ASCIMathML.

هناك طريقتان لبدء استخدام MathJax: (1) باستخدام رمز بسيط، يمكنك توصيل البرنامج النصي MathJax بسرعة بموقعك على الويب، والذي سيتم تحميله تلقائيًا من خادم بعيد في الوقت المناسب (قائمة الخوادم)؛ (2) قم بتنزيل البرنامج النصي MathJax من خادم بعيد إلى الخادم الخاص بك وقم بتوصيله بجميع صفحات موقعك. الطريقة الثانية - الأكثر تعقيدًا وتستغرق وقتًا طويلاً - ستعمل على تسريع تحميل صفحات موقعك، وإذا أصبح خادم MathJax الأصلي غير متاح مؤقتًا لسبب ما، فلن يؤثر ذلك على موقعك بأي شكل من الأشكال. ورغم هذه المزايا إلا أنني اخترت الطريقة الأولى لأنها أبسط وأسرع ولا تتطلب مهارات فنية. اتبع مثالي، وفي 5 دقائق فقط ستتمكن من استخدام جميع ميزات MathJax على موقعك.

يمكنك توصيل البرنامج النصي لمكتبة MathJax من خادم بعيد باستخدام خيارين للتعليمات البرمجية مأخوذة من موقع MathJax الرئيسي أو من صفحة الوثائق:

يجب نسخ أحد خيارات التعليمات البرمجية هذه ولصقها في التعليمات البرمجية لصفحة الويب الخاصة بك، ويفضل أن يكون ذلك بين العلامات و/أو بعد العلامة مباشرة. وفقًا للخيار الأول، يتم تحميل MathJax بشكل أسرع ويبطئ الصفحة بشكل أقل. لكن الخيار الثاني يقوم تلقائيًا بمراقبة وتحميل أحدث إصدارات MathJax. إذا قمت بإدراج الرمز الأول، فسوف تحتاج إلى تحديثه بشكل دوري. إذا قمت بإدخال الكود الثاني، فسيتم تحميل الصفحات بشكل أبطأ، لكنك لن تحتاج إلى مراقبة تحديثات MathJax باستمرار.

أسهل طريقة للاتصال بـ MathJax هي في Blogger أو WordPress: في لوحة تحكم الموقع، أضف أداة مصممة لإدراج كود JavaScript لجهة خارجية، وانسخ الإصدار الأول أو الثاني من كود التنزيل الموضح أعلاه، ثم ضع الأداة في مكان أقرب إلى بداية القالب (بالمناسبة، هذا ليس ضروريًا على الإطلاق، حيث يتم تحميل البرنامج النصي MathJax بشكل غير متزامن). هذا كل شئ. تعرف الآن على بناء الجملة الترميزي لـ MathML، وLaTeX، وASCIIMathML، وستكون جاهزًا لإدراج الصيغ الرياضية في صفحات الويب الخاصة بموقعك.

يتم إنشاء أي فراكتل وفقًا لقاعدة معينة، والتي يتم تطبيقها باستمرار لعدد غير محدود من المرات. كل مرة من هذا القبيل تسمى التكرار.

الخوارزمية التكرارية لبناء إسفنجة Menger بسيطة للغاية: يتم تقسيم المكعب الأصلي ذو الجانب 1 بواسطة مستويات موازية لوجهه إلى 27 مكعبًا متساويًا. تتم إزالة مكعب مركزي واحد و 6 مكعبات مجاورة له على طول الوجوه منه. والنتيجة هي مجموعة تتكون من المكعبات العشرين الأصغر المتبقية. وبفعل الشيء نفسه مع كل مكعب من هذه المكعبات، نحصل على مجموعة مكونة من 400 مكعب أصغر. مواصلة هذه العملية إلى ما لا نهاية، نحصل على اسفنجة Menger.




معظم الحديث عنه
ما هي أنواع الإفرازات التي تحدث أثناء الحمل المبكر؟ ما هي أنواع الإفرازات التي تحدث أثناء الحمل المبكر؟
تفسير الأحلام وتفسير الأحلام تفسير الأحلام وتفسير الأحلام
لماذا ترى قطة في المنام؟ لماذا ترى قطة في المنام؟


قمة