Кто из ученых открыл два круга кровообращения. Кровообращение

Кто из ученых открыл два круга кровообращения. Кровообращение

У античных ученых и ученых эпохи Возрождения были весьма своеобразные представления о движении, значении сердца, крови и кровеносных сосудов. Например, у Галена говорится: «Части пищи, всосанные из пищеварительного канала, подносятся воротной веной к печени и под влиянием этого большого органа превращаются в кровь. Кровь, таким образом, обогащенная пищей, наделяет эти самые органы питательными свойствами, которые суммированы в выражении «натуральные духи», но кровь, наделенная этими свойствами, является еще недоработанной, негодной для высших целей крови в организме. Приносимые из печени через v. cava к правой половине сердца некоторые части ее проходят из правого желудочка через бесчисленные невидимые поры к левому желудочку. Когда сердце расширяется, то оно насасывает из легких через венообразную артерию, «легочную вену», воздух в левый желудочек, и в этой левой полости кровь, которая прошла через перегородку, смешивается с воздухом, таким образом всосанным туда. При помощи той теплоты, которая является прирожденной сердцу, помещенному здесь как источник теплоты тела богом в начале жизни и остающейся здесь до смерти, оно насыщается дальнейшими качествами, нагружается «жизненными духами» и тогда уже является приспособленным к своим внешним обязанностям. Воздух, таким образом насосанный в левое сердце через легочную вену, в го же самое время смягчает врожденную теплоту сердца и препятствует ей сделаться чрезмерной».

Везалий пишет о кровообращении: «Так же, как правый желудочек насасывает кровь из v. cava, левый желудочек накачивает в самого себя воздух из легких каждый раз, как сердце расслабляется через венообразную артерию, и использует его для охлаждения врожденной теплоты, для питания своего вещества и для приготовления жизненных духов, вырабатывая и очищая этот воздух так, что он вместе с кровью, которая просачивается в громадном количестве через septum из правого желудочка в левый, может быть предназначен для большой артерии (аорты) и таким образом для всего тела».

Мигуэль Сервет (1509-1553). На заднем плане изображено его сожжение.

Изучение исторических материалов свидетельствует, что малый круг кровообращения был открыт несколькими учеными независимо друг от друга. Первым открыл малый круг кровообращения в XII веке арабский врач Ибн-аль-Нафиз из Дамаска, вторым был Мигуэль Сервет (1509-1553) - юрист, астроном, метролог, географ, врач и теолог. Он слушал в Падуе лекции Сильвия и Гюнтера и, возможно, встречался с Везалием. Он был искусным врачом и анатомом, так как его убеждением было познание бога через строение человека. В. Н. Терновский так оценил необычное направление теологического учения Сервета: «Познавая дух бога, он должен был познать дух человека, знать строение и работу тела, в котором дух обитает. Это заставило его вести анатомические изыскания и геологические работы» Сервет опубликовал книги «О заблуждениях троичности» (1531) и «Восстановление христианства» (1533). Последняя книга была сожжена инквизицией, как и ее автор. Сохранилось только несколько экземпляров этой книги. В ней среди теологических рассуждений описан малый круг кровообращения: «... для того, однако, чтобы мы могли понять, что кровь делается живой (артериальной), мы должны сначала изучить возникновение в веществе самого жизненного духа, который составлен и питается из вдохнутого воздуха и очень тонкой крови. Этот жизненный воздух возникает в левом желудочке сердца, легкие особенно помогают в отношении его усовершенствования; это есть тонкий дух, выработанный силой тепла, желтого (светлого) цвета, воспламеняющей силы, гак что он является таким, как если бы он был излучающим паром из более чистой крови, содержащей вещество воды, воздуха с выработанной парной кровью, и которая переходит из правого желудочка в левый. Этот переход, однако, не происходит, как обычно думают, через медиальную стенку (septum) сердца, но замечательным образом нежная кровь прогоняется длинным путем через легкие».


Вильям Гарвей (1578-1657)

По-настоящему понял значение сердца и сосудов Вильям Гарвей (1578-1657), английский врач, физиолог и анатом-экспериментатор, который в своей научной деятельности руководствовался фактами, полученными в опытах. После 17-летнего экспериментирования Гарвей в 1628 г. издал небольшую книгу «Анатомическое исследование о движении сердца и крови у животных», где указал на движение крови по большому и малому кругу. Работа была глубоко революционной в науке того времени. Гарвею не удалось показать мелкие сосуды, соединяющие сосуды большого и малого круга кровообращения, тем не менее были созданы предпосылки для их открытия. С момента открытия Гарвея начинается подлинная научная физиология. Хотя ученые того времени и разделились на приверженцев Гачена и Гарвея, но в конечном итоге учение Гарвея стало общепризнанным. После изобретения микроскопа Марчелло Мальпиги (1628-1694) описал кровеносные капилляры в легких и тем самым доказал, что артерии и вены большого и малого круга кровообращения соединяются капиллярами.

Мысли Гарвея о кровообращении оказали влияние на Декарта, который выдвинул гипотезу, что процессы в центральной нервной системе совершаются автоматически и не составляют душу человека.

Декарт считал, что от мозга (как от сердца сосуды) радиально расходятся нервные «трубки», несущие автоматически отражения к мышцам.

Кровообращение — это движение крови по сосудистой системе, обеспечивающее газообмен между организмом и внешней средой, обмен веществ между органами и тканями и гуморальную регуляцию различных функций организма.

Система кровообращения включает сердце и — аорту, артерии, артериолы, капилляры, венулы, вены и . Кровь движется по сосудам благодаря сокращению сердечной мышцы.

Кровообращение совершается по замкнутой системе, состоящей из малого и большого кругов:

  • Большой круг кровообращения обеспечивает все органы и ткани кровью с содержащимися в ней питательными веществами.
  • Малый, или легочный, круг кровообращения предназначен для обогащения крови кислородом.

Круги кровообращения впервые были описаны английским ученым Уильямом Гарвеем в 1628 г. в труде «Анатомические исследования о движении сердца и сосудов».

Малый круг кровообращения начинается из правого желудочка, при сокращении которого венозная кровь попадает в легочный ствол и, протекая через легкие, отдает диоксид углерода и насыщается кислородом. Обогащенная кислородом кровь из легких по легочным венам поступает в левое предсердие, где заканчивается малый круг.

Большой круг кровообращения начинается из левого желудочка, при сокращении которого кровь, обогащенная кислородом, нагнетается в аорту, артерии, артериолы и капилляры всех органов и тканей, а оттуда по венулам и венам притекает в правое предсердие, где и заканчивается большой круг.

Самым крупным сосудом большого круга кровообращения является аорта, которая выходит из левого желудочка сердца. Аорта образует дугу, от которой ответвляются артерии, несущие кровь к голове (сонные артерии) и к верхним конечностям (позвоночные артерии). Аорта проходит вниз вдоль позвоночника, где от нее отходят ветви, несущие кровь к органам брюшной полости, к мышцам туловища и нижним конечностям.

Артериальная кровь, богатая кислородом, проходит по всему телу, доставляя клеткам органов и тканей необходимые для их деятельности питательные вещества и кислород, и в капиллярной системе превращается в кровь венозную. Венозная кровь, насыщенная углекислым газом и продуктами клеточного обмена, возвращается в сердце и из него поступает в легкие для газообмена. Наиболее крупными венами большого круга кровообращения являются верхняя и нижняя полые вены, впадающие в правое предсердие.

Рис. Схема малого и большого кругов кровообращения

Следует обратить внимание, как в большой круг кровообращения включены системы кровообращения печени и почек. Вся кровь из капилляров и вен желудка, кишечника, поджелудочной железы и селезенки поступает в воротную вену и проходит через печень. В печени воротная вена разветвляется на мелкие вены и капилляры, которые затем вновь соединяются в общий ствол печеночной вены, впадающей в нижнюю полую вену. Вся кровь органов брюшной полости до поступления в большой круг кровообращения протекает через две капиллярные сети: капилляры этих органов и капилляры печени. Воротная система печени играет большую роль. Она обеспечивает обезвреживание ядовитых веществ, которые образуются в толстом кишечнике при расщеплении невсосавшихся в тонком кишечнике аминокислот и всасываются слизистой толстой кишки в кровь. Печень, подобно всем остальным органам, получает и артериальную кровь через печеночную артерию, отходящую от брюшной артерии.

В почках также имеются две капиллярные сети: капиллярная сеть есть в каждом мальпигиевом клубочке, затем эти капилляры соединяются в артериальный сосуд, который вновь распадается на капилляры, оплетающие извитые канальцы.

Рис. Схема кровообращения

Особенностью кровообращения в печени и почках является замедление тока крови, обусловливающейся функцией этих органов.

Таблица 1. Отличие тока крови в большом и малом кругах кровообращения

Ток крови в организме

Большой круг кровообращения

Малый круг кровообращения

В каком отделе сердца начинается круг?

В левом желудочке

В правом желудочке

В каком отделе сердца заканчивается круг?

В правом предсердии

В левом предсердии

Где происходит газообмен?

В капиллярах, находящихся в органах грудной и брюшной полостей, головном мозге, верхних и нижних конечностях

В капиллярах, находящихся в альвеолах легких

Какая кровь движется по артериям?

Артериальная

Венозная

Какая кровь движется по венам?

Венозная

Артериальная

Время движения крови по кругу

Функция круга

Снабжение органов и тканей кислородом и перенос углекислого газа

Насыщение крови кислородом и удаление из организма углекислого газа

Время кругооборота крови - время однократного прохождения частицы крови по большому и малому кругам сосудистой системы. Подробнее следующем разделе статьи.

Закономерности движения крови по сосудам

Основные принципы гемодинамики

Гемодинамика — это раздел физиологии, изучающий закономерности и механизмы движения крови по сосудам организма человека. При ее изучении используется терминология и учитываются законы гидродинамики — науки о движении жидкостей.

Скорость, с которой движется кровь но сосудам, зависит от двух факторов:

  • от разности давления крови в начале и конце сосуда;
  • от сопротивления, которое встречает жидкость на своем пути.

Разность давлений способствует движению жидкости: чем она больше, тем интенсивнее это движение. Сопротивление в сосудистой системе, уменьшающее скорость движения крови, зависит от ряда факторов:

  • длины сосуда и его радиуса (чем больше длина и меньше радиус, тем больше сопротивление);
  • вязкости крови (она в 5 раз больше вязкости воды);
  • трения частиц крови о стенки сосудов и между собой.

Показатели гемодинамики

Скорость кровотока в сосудах осуществляется по законам гемодинамики, общим с законами гидродинамики. Скорость кровотока характеризуется тремя показателями: объемной скоростью кровотока, линейной скоростью кровотока и временем кругооборота крови.

Объемная скорость кровотока - количество крови, протекающее через поперечное сечение всех сосудов данного калибра за единицу времени.

Линейная скорость кровотока - скорость движения отдельной частицы крови вдоль сосуда за единицу времени. В центре сосуда линейная скорость максимальна, а около стенки сосуда минимальна вследствие повышенного трения.

Время кругооборота крови - время, в течение которого кровь проходит по большому и малому кругам кровообращения.В норме составляет 17-25 с. На прохождение через малый круг затрачивается около 1/5, а на прохождение через большой — 4/5 этого времени

Движущей силой кровотока но системе сосудов каждого из кругов кровообращения является разность давления крови (ΔР ) в начальном участке артериального русла (аорта для большого круга) и конечном участке венозного русла (полые вены и правое предсердие). Разность давления крови (ΔР ) в начале сосуда (Р1 ) и в конце его (Р2 ) является движущей силой тока крови через любой сосуд кровеносной системы. Сила градиента давления крови расходуется на преодоление сопротивления кровотоку (R ) в системе сосудов и в каждом отдельном сосуде. Чем выше градиент давления крови в кругу кровообращения или в отдельном сосуде, тем больше в них объемный кровоток.

Важнейшим показателем движения крови по сосудам является объемная скорость кровотока , или объемный кровоток (Q ), под которым понимают объем крови, протекающей через суммарное поперечное сечение сосудистого русла или сечение отдельного сосуда в единицу времени. Объемную скорость кровотока выражают в литрах на минуту (л/мин) или миллилитрах на минуту (мл/мин). Для оценки объемного кровотока через аорту или суммарное поперечное сечение любого другого уровня сосудов большого круга кровообращения используют понятие объемный системный кровоток. Поскольку за единицу времени (минуту) через аорту и другие сосуды большого круга кровообращения протекает весь объем крови, выброшенной левым желудочком за это время, синонимом понятия системный объемный кровоток является понятие (МОК). МОК взрослого человека в покое составляет 4-5 л/мин.

Различают также объемный кровоток в органе. В этом случае имеют в виду суммарный кровоток, протекающий за единицу времени через все приносящие артериальные или выносящие венозные сосуды органа.

Таким образом, объемный кровоток Q = (P1 — Р2) / R.

В этой формуле выражена суть основного закона гемодинамики, утверждающего, что количество крови, протекающей через суммарное поперечное сечение сосудистой системы или отдельного сосуда в единицу времени, прямо пропорционально разности давления крови в начале и в конце сосудистой системы (или сосуда) и обратно пропорционально сопротивлению току крови.

Суммарный (системный) минутный кровоток в большом круге рассчитывается с учетом величин среднего гидродинамического давления крови в начале аорты P1 , и в устье полых вен Р2. Поскольку в этом участке вен давление крови близко к 0 , то в выражение для расчетаQ или МОК подставляется значение Р , равное среднему гидродинамическому артериальному давлению крови в начале аорты:Q (МОК)= P / R .

Одно из следствий основного закона гемодинамики — движущая сила тока крови в сосудистой системе — обусловлено давлением крови, создаваемым работой сердца. Подтверждением решающего значения величины давления крови для кровотока является пульсирующий характер тока крови на протяжении сердечного цикла. Во время систолы сердца, когда давление крови достигает максимального уровня, кровоток увеличивается, а во время диастолы, когда давление крови минимально, кровоток ослабляется.

По мере продвижения крови по сосудам от аорты к венам давление крови уменьшается и скорость его уменьшения пропорциональна сопротивлению кровотоку в сосудах. Особенно быстро снижается давление в артериолах и капиллярах, так как они обладают большим сопротивлением кровотоку, имея малый радиус, большую суммарную длину и многочисленные ветвления, создающие дополнительное препятствие кровотоку.

Сопротивление кровотоку, создаваемое во всем сосудистом русле большого круга кровообращения, называют общим периферическим сопротивлением (ОПС). Следовательно, в формуле для расчета объемного кровотока символR можно заменить его аналогом — ОПС:

Q = P/ОПС.

Из этого выражения выводится ряд важных следствий, необходимых для понимания процессов кровообращения в организме, оценки результатов измерения кровяного давления и его отклонений. Факторы, влияющие на сопротивление сосуда, для тока жидкости, описываются законом Пуазейля, в соответствии с которым

гдеR — сопротивление;L — длина сосуда; η — вязкость крови; Π — число 3,14; r — радиус сосуда.

Из приведенного выражения вытекает, что поскольку числа 8 и Π являются постоянными,L у взрослого человека изменяется мало, то величина периферического сопротивления кровотоку определяется изменяющимися значениями радиуса сосудов r и вязкости крови η ).

Уже упоминалось о том, что радиус сосудов мышечного типа может быстро изменяться и оказывать существенное влияние на величину сопротивления кровотоку (отсюда их название — резистивные сосуды) и величину кровотока через органы и ткани. Поскольку сопротивление зависит от величины радиуса в 4-й степени, то даже небольшие колебания радиуса сосудов сильно сказываются на величинах сопротивления току крови и кровотока. Так, например, если радиус сосуда уменьшится с 2 до 1 мм, то сопротивление его увеличится в 16 раз и при неизменном градиенте давления кровоток в этом сосуде также уменьшится в 16 раз. Обратные изменения сопротивления будут наблюдаться при увеличении радиуса сосуда в 2 раза. При неизменном среднем гемодинамическом давлении кровоток в одном органе может увеличиваться, в другом — уменьшаться в зависимости от сокращения или расслабления гладкой мускулатуры приносящих артериальных сосудов и вен этого органа.

Вязкость крови зависит от содержания в крови числа эритроцитов (гематокрита), белка, липопротеинов в плазме крови, а также от агрегатного состояния крови. В нормальных условиях вязкость крови не изменяется столь быстро, как просвет сосудов. После кровопотери, при эритропении, гипопротеинемии вязкость крови понижается. При значительном эритроцитозе, лейкозах, повышенной агрегации эритроцитов и гиперкоагуляции вязкость крови способна существенно возрастать, что влечет за собой повышение сопротивления кровотоку, увеличение нагрузки на миокард и может сопровождаться нарушением кровотока в сосудах микроциркуляторного русла.

В устоявшемся режиме кровообращения объем крови, изгнанный левым желудочком и протекающий через поперечное сечение аорты, равен объему крови, протекающей через суммарное поперечное сечение сосудов любого другого участка большого круга кровообращения. Этот объем крови возвращается в правое предсердие и поступает в правый желудочек. Из него кровь изгоняется в малый круг кровообращения и затем через легочные вены возвращается в левое сердце. Поскольку МОК левого и правого желудочков одинаковы, а большой и малый круги кровообращения соединены последовательно, то объемная скорость кровотока в сосудистой системе остается одинаковой.

Однако во время изменения условий кровотока, например при переходе из горизонтального в вертикальное положение, когда сила тяжести вызывает временное накопление крови в венах нижней части туловища и ног, на короткое время МОК левого и правого желудочков могут стать различными. Вскоре внутрисердечные и экстракардиальные механизмы регуляции работы сердца выравнивают объемы кровотока через малый и большой круги кровообращения.

При резком уменьшении венозного возврата крови к сердцу, вызывающем уменьшение ударного объема, может понизиться артериальное давление крови. При выраженном его снижении может уменьшиться приток крови к головному мозгу. Этим объясняется ощущение головокружения, которое может наступить при резком переходе человека из горизонтального в вертикальное положение.

Объем и линейная скорость токи крови в сосудах

Общий объем крови в сосудистой системе является важным гомеостатическим показателем. Средняя величина его составляет для женщин 6-7%, для мужчин 7-8% от массы тела и находится в пределах 4-6 л; 80-85% крови из этого объема — в сосудах большого круга кровообращения, около 10% — в сосудах малого круга кровообращения и около 7% — в полостях сердца.

Больше всего крови содержится в венах (около 75%) — это указывает на их роль в депонировании крови как в большом, так и в малом кругу кровообращения.

Движение крови в сосудах характеризуется не только объемной, но и линейной скоростью кровотока. Под ней понимают расстояние, на которое перемещается частичка крови за единицу времени.

Между объемной и линейной скоростью кровотока существует взаимосвязь, описываемая следующим выражением:

V = Q/Пr 2

где V - линейная скорость кровотока, мм/с, см/с;Q - объемная скорость кровотока; П — число, равное 3,14; r — радиус сосуда. Величина Пr 2 отражает площадь поперечного сечения сосуда.

Рис. 1. Изменения давления крови, линейной скорости кровотока и площади поперечного сечения в различных участках сосудистой системы

Рис. 2. Гидродинамические характеристики сосудистого русла

Из выражения зависимости величины линейной скорости от объемной в сосудах кровеносной системы видно, что линейная скорость кровотока (рис. 1.) пропорциональна объемному кровотоку через сосуд(ы) и обратно пропорциональна площади поперечного сечения этого сосуда(ов). Например, в аорте, имеющей наименьшую площадь поперечного сечения в большом круге кровообращения (3-4 см 2), линейная скорость движения крови наибольшая и составляет в покое около 20- 30 см/с . При физической нагрузке она может возрасти в 4-5 раз.

По направлению к капиллярам суммарный поперечный просвет сосудов увеличивается и, следовательно, линейная скорость кровотока в артериях и артериолах уменьшается. В капиллярных сосудах, суммарная площадь поперечного сечения которых больше, чем в любом другом отделе сосудов большого круга (в 500-600 раз больше поперечного сечения аорты), линейная скорость кровотока становится минимальной (менее 1 мм/с). Медленный ток крови в капиллярах создает наилучшие условия для протекания обменных процессов между кровью и тканями. В венах линейная скорость кровотока увеличивается в связи с уменьшением площади их суммарного поперечного сечения по мере приближения к сердцу. В устье полых вен она составляет 10-20 см/с, а при нагрузках возрастает до 50 см/с.

Линейная скорость движения плазмы и зависит не только от типа сосуда, но и от их расположения в потоке крови. Различают ламинарный тип течения крови, при котором ноток крови можно условно разделить на слои. При этом линейная скорость движения слоев крови (преимущественно плазмы), близких или прилежащих к стенке сосуда, — наименьшая, а слоев в центре потока — наибольшая. Между эндотелием сосудов и пристеночными слоями крови возникают силы трения, создающие на эндотелии сосудов сдвиговые напряжения. Эти напряжения играют роль в выработке эндотелием сосудоактивных факторов, регулирующих просвет сосудов и скорость кровотока.

Эритроциты в сосудах (за исключением капилляров) располагаются преимущественно в центральной части потока крови и движутся в нем с относительно высокой скоростью. Лейкоциты, наоборот, располагаются преимущественно в пристеночных слоях потока крови и совершают катящиеся движения с небольшой скоростью. Это позволяет им связываться с рецепторами адгезии в местах механического или воспалительного повреждения эндотелия, прилипать к стенке сосуда и мигрировать в ткани для выполнения защитных функций.

При существенном увеличении линейной скорости движения крови в суженной части сосудов, в местах отхождения от сосуда его ветвей ламинарный характер движения крови может сменяться на турбулентный. При этом в потоке крови может нарушиться послойность перемещения ее частиц, между стенкой сосуда и кровью могут возникать большие силы трения и сдвиговых напряжений, чем при ламинарном движении. Развиваются вихревые потоки крови, возрастает вероятность повреждения эндотелия и отложения холестерина и других веществ в интиму стенки сосуда. Это способно привести к механическому нарушению структуры сосудистой стенки и инициированию развития пристеночных тромбов.

Время полного кругооборота крови, т.е. возврата частицы крови в левый желудочек после ее выброса и прохождения через большой и малый круги кровообращения, составляет в покос 20-25 с, или примерно через 27 систол желудочков сердца. Приблизительно четверть этого времени затрачивается на перемещение крови по сосудам малого круга и три четверти — по сосудам большого круга кровообращения.

Кровообращение I Кровообраще́ние (circulatio sanguinis)

Частота сердечных сокращений (ЧСС) в одну минуту (ударов в 1 мин ) колеблется от 60 до 80 ударов в 1 мин ; у тренированных людей - в пределах 40-60 ударов в 1 мин. Максимальная частота при тяжелой физической нагрузке может достигать 180-240 ударов в 1 мин . При различных видах патологии сердечно-сосудистой системы ЧСС меняется в сторону учащения или урежения (см. Пульс).

Время кругооборота крови - это время, в течение которого единица объема крови проходит оба круга К. В норме оно составляет 20-25 с . Уменьшается при физической нагрузке и увеличивается при нарушениях кровообращения, например при декомпенсированных пороках сердца оно достигает 50-60 с .

Регуляция кровообращения обеспечивается взаимодействием местных гуморальных механизмов при активном участии нервной системы и направлена на оптимизацию соотношения кровотока в органах и тканях с уровнем функциональной активности организма.

В процессе обмена веществ в органах и тканях постоянно образуются , влияющие на кровеносных сосудов. Интенсивность образования метаболитов (СО 2 или Н + ; лактата, пирувата, АДФ, и др.), определяемая функциональной активностью органов и тканей, является одновременно и регулятором их кровоснабжения. Этот саморегуляции называется метаболическим.

Местные саморегуляторные механизмы генетически обусловлены и заложены в структурах сердца и кровеносных сосудов. Их можно рассматривать и как местные миогенные ауторегуляторные реакции, суть которых состоит в сокращении мышц в ответ на их растяжение объемом или давлением.

Гуморальная регуляция К. осуществляется с участием гормонов, ренин-ангиотензиновой системы, кининов, простагландинов, вазоактивных пептидов, регуляторных пептидов, отдельных метаболитов, электролитов и других биологически активных веществ. и степень их влияния определяются дозой действующего вещества, реактивными свойствами организма, его отдельных органов и тканей, состоянием нервной системы и другими факторами. Так, разнонаправленное действие катехоламинов крови на тонус сосудов и сердечной связано с наличием в них α- и β-адренорецепторов. При возбуждении α-адренорецепторов происходит сужение, а при возбуждении β-адренорецепторов - расширение кровеносных сосудов. Количество α- и β-рецепторов в разных сосудах неодинаково. При преобладании в сосудах α-рецепторов крови вызывает их сужение, а при преобладании β-рецепторов - расширение. При низких концентрациях адреналина в плазме первыми возбуждаются как более возбудимые β-рецепторы. При одновременном возбуждении α- и β-рецепторов преобладает эффект.

В основе нервной регуляции К. лежит взаимодействие безусловных и условных сердечно-сосудистых рефлексов. Их подразделяют на собственные и сопряженные . Афферентное звено собственных рефлексов К. представлено ангиоцепторами (баро- и хеморецепторами), расположенными в различных участках сосудистого русла и в сердце. Местами они собраны в скопления, образующие . Главными из них являются зоны дуги аорты, каротидного синуса, позвоночной артерии. Афферентное звено сопряженных рефлексов К. располагается за пределами сосудистого русла, его центральная часть включает различные структуры коры головного мозга, гипоталамуса, продолговатого и спинного мозга. В продолговатом мозге располагаются жизненно важные ядра сердечно-сосудистого центра: нейроны латеральной части продолговатого мозга через симпатические нейроны спинного мозга оказывают тоническое активирующее влияние на сердце и кровеносные сосуды; нейроны медиальной части продолговатого мозга тормозят симпатические нейроны спинного мозга; моторное блуждающего нерва угнетает деятельность сердца; нейроны вентральной поверхности продолговатого мозга стимулируют деятельность симпатической нервной системы. Через Гипоталамус осуществляется связь нервного и гуморального звеньев регуляции К. регуляции К. представлено симпатическими пре- и постганглионарными нейронами, пре- и постганглионарными нейронами парасимпатической нервной системы (см. Вегетативная нервная система). Вегетативная охватывает все кровеносные сосуды кроме капилляров.

Симпатические адренергические вызывают сужение периферических сосудов. В окончаниях постганглионарных симпатических нейронов выделяется (см. Медиаторы). Степень сокращения гладких мышц сосудов зависит от количества выделившегося медиатора, а оно связано с частотой эфферентной импульсации. В покое по вазоконстрикторным нейронам поступают импульсы с частотой 1-3 импульса в 1 с. Максимальное сужение сосудов наступает при частоте 10 импульсов в 1 с . Изменение частоты импульсации приводит или к увеличению сосудистого тонуса (при учащении импульсов), или к его уменьшению (при урежении импульсов), т.е. происходит относительное сужение или расширение сосудов.

В нормальных условиях все механизмы регуляции К. взаимодействуют друг с другом по принципам, описываемым теорией функциональных систем (см. Функциональные системы), влияя на сердечный выброс, общее периферическое сосудистое сопротивление, емкость сосудов и объем циркулирующей крови.

Взаимосвязь различных параметров К., закономерности их взаимодействия рассматриваются гемодинамикой - специальным разделом физиологии К., занимающимся изучением общих и частных случаев нарушений К. применительно к клинической практике.

Общие механизмы нарушений кровообращения. Нарушения К. могут быть вызваны изменениями функции сердца, сосудов, а также реологических свойств текущей по ним крови. Поскольку отдельные части кровеносной системы тесно связаны между собой, нарушение функции каждой из них всегда оказывает влияние на функцию других. Нарушения К. могут быть общими, охватывая всю кровеносную систему, и местными (в отдельных участках сосудистого русла). Поскольку непрерывное К. необходимо для обеспечения нормального функционирования любых частей организма, его нарушение влечет за собой расстройства функции соответствующих органов.

Сердце работает как насос, перекачивающий кровь из венозной системы в артериальную. Для того чтобы кровоток во всей сосудистой системе организма был непрерывным, необходим некоторый постоянный уровень кровяного давления в аорте и крупных артериальных ветвях, называемый общим артериальным давлением ().

Величина общего АД зависит от минутного объема крови, выбрасываемой сердцем, и общего периферического сопротивления. При увеличении минутного объема крови или общего периферического сопротивления АД повышается, и наоборот. Длительное повышение общего артериального давления (см. Гипертензия артериальная) обычно бывает обусловлено увеличением периферического сопротивления. Патологическое понижение общего артериального давления (см. Гипотензия артериальная) чаще всего связано с уменьшением минутного объема крови при недостаточности сердечной деятельности или с уменьшением возврата крови из вен к сердцу (обычно при уменьшении объема циркулирующей крови). Характер кровотока в каждом органе в любых частях тела выражается зависимостью

где Q - объемная скорость кровотока, ΔР - давления на протяжении данного сосудистого русла и R - сопротивление току крови в нем. Для кровеносной системы каждого органа градиент давления соответствует артериовенозной разности давлений, т. е разности давлений между артериями (Р арт.) и венами (Р вен.). Следовательно,

Понижение Р арт. так же, как и повышение Р вен. , влечет за собой уменьшение Q в сосудистой системе данного органа (при условии неизменного сопротивления на ее протяжении). С другой стороны, сопротивление кровотоку определяется шириной просвета сосудов в данном органе и реологическими свойствами крови. Как только это сопротивление уменьшается (например, при местном расширении артерий и артериол), местный кровоток усиливается, что вызывает артериальную гиперемию (Гиперемия). Наоборот, увеличение сопротивления в периферических артериях (при местной вазоконстрикции, при их тромбозе и т.д.) приводит к уменьшению объемной скорости кровотока в органе и возникновению ишемии (Ишемия). Увеличение сопротивления может происходить и в капиллярах той или иной сосудистой области, например вследствие усиленной внутрисосудистой агрегации эритроцитов. Наконец, сопротивление может возрастать и в венозной системе того или иного органа (например, при тромбозе или сдавлении вен). В этих случаях в системе микроциркуляции возникает , сопровождающийся уменьшением объемной скорости кровотока в органе.

Причинами нарушения основной, т.е. насосной, функции сердца могут быть уменьшение возврата крови из вен к сердцу, что обычно бывает обусловлено уменьшением объема циркулирующей крови; декомпенсированные , в частности недостаточность клапанов сердца, когда неполное смыкание их створок приводит к возврату части крови в ретроградно расположенную полость сердца или же имеется сердечных отверстий, значительно увеличивающий сопротивление кровотоку в них; слабость сердечной мышцы, сокращения которой не обеспечивают достаточно высокого внутрижелудочкового давления для того, чтобы перемещать весь объем крови в пределах большого и малого круга К.; неспособность полостей сердца к достаточному расширению во время диастолы в результате накопления значительного количества крови (при тампонаде сердца) или экссудата (при перикардитах) в полости перикарда или же облитерации последней вследствие хронического перикардита.

Изменения величины сопротивления в артериях отдельных органов обычно не отражаются на уровне общего АД, но ведут к изменениям в их кровоснабжении. Такого рода нарушения функции периферических артерий могут быть связаны с функциональным расширением или сужением сосудов (см. Ангиоспазм), со структурными изменениями стенок (см. Атеросклероз), с полной или частичной закупоркой сосудистого просвета (см. Тромбоз , Эмболия).

Ослабление кровотока в отдельных артериях вследствие увеличения сопротивления в них не обязательно ведет к уменьшению снабжения органа кровью, т.к. при этом может иметь место приток крови по коллатералям.

Если же коллатеральный приток крови недостаточен, то в соответствующих участках ткани (или органа) возникает .

Роль нарушений функции венозной системы в общих расстройствах К. обусловлена их емкостной функцией. Вены осуществляют крови всех органов. Сопротивление кровотоку в венах очень низкое и может только возрастать, например при их сдавлении или закупорке тромбом. При этом затрудняется отток крови из микроциркуляторной системы соответствующего органа, что может сопровождаться развитием венозного застоя.

Микроциркуляторные нарушения имеют весьма существенное значение, т.к. в организме не происходит ни одного физиологического или патологического процесса без участия системы микроциркуляции (Микроциркуляция). Микроциркуляторное русло включает в себя капилляры, ветвления соответствующих мелких артерий и вен. Основной функцией этих сосудов является обеспечение адекватного кровоснабжения определенных участков ткани, которое при нормальных условиях соответствует ее метаболическим потребностям. Изменения притока крови со стороны артерий в капилляры могут вызывать такие нарушения микроциркуляции, как артериальная или ишемия. Артериальная гиперемия возникает при расширении артериальных сосудов микроциркуляторного русла. давлений и скорость кровотока в капиллярах при этом увеличиваются. эритроцитов в крови (), протекающей по микроциркуляторному руслу, и количество функционирующих капилляров растут. Внутрикапиллярное давление повышается, это способствует переходу воды из крови в , что при определенных условиях может привести к отеку ткани.

При констрикции приводящих артерий или возникновении препятствий для кровотока в их просвете в микроциркуляторном русле развивается ишемия, при которой основные параметры микроциркуляции изменяются в противоположном направлении: линейная скорость кровотока и гематокрит в капиллярах понижаются, приводя к недостаточности снабжения тканей кислородом, - возникает Гипоксия . Внутрикапиллярное давление падает, и количество функционирующих капилляров сокращается. При этом уменьшается доставка энергетических и пластических материалов в ткани, а продукты обмена веществ накапливаются в них. Если коллатеральный приток крови не устраняет дефицита кровоснабжения, то нарушается ткани и развиваются различные патологические изменения вплоть до некроза.

При затруднении оттока крови в венозную систему отмечаются типичные для венозного застоя нарушения микроциркуляции. Градиент кровяного давления в капиллярах понижается, что приводит к значительному замедлению в них кровотока. При этом снабжение тканей кислородом и другими энергетическими веществами уменьшается, а продукты обмена веществ не удаляются и задерживаются в них. В результате изменяются механические свойства ткани: ее растяжимость растет, а упругость падает. При таких условиях резко усиливается фильтрация жидкости из капилляров в и развивается отек.

Микроциркуляция может нарушаться также независимо от первичных изменений притока крови из артерий или ее оттока в вены. Это происходит, когда меняются реологические свойства крови вследствие усиления внутрисосудистой агрегации эритроцитов, причем кровоток в капиллярах замедляется в разной степени, вплоть до его полной остановки - развития стаза.

Нарушения функции сердечно-сосудистой системы в могут быть вызваны воздействием разнообразных патогенных факторов на сердце, артерии, капилляры и вены, а также на циркулирующую в них кровь непосредственно или опосредованно - через нейрогуморальные механизмы. Поэтому различные нарушения функции вегетативной нервной системы, желез внутренней секреции, а также синтеза и превращений в организме разных физиологически активных веществ вызывают нарушения в системе К. При этом нейрогуморальные факторы, участвующие в регуляции нормальной работы сердца, в определенных условиях также вызывают нарушения его деятельности. Величина общего АД в большой степени зависит от влияний нервных и гуморальных факторов, действующих и на сердечную деятельность, и на тонус стенок периферических артерий.

Нейрогуморальные факторы, специфически действующие на артерии тех или иных органов, могут становиться причиной нарушений кровоснабжения тех или иных органов. Необходимым условием для этого является местное образование или специфическое действие таких физиологически активных веществ, как и серотонин, способствующие развитию спазма крупных артерий, снабжающих кровью какой-либо , например .

Компенсация при нарушениях кровообращения. При возникновении каких-либо нарушений К. обычно быстро наступает его функциональная . Компенсация осуществляется прежде всего теми же механизмами регулирования, что и в норме. На ранних стадиях нарушений К. их компенсация происходит без каких-либо существенных сдвигов в структуре сердечно-сосудистой системы. Структурные изменения тех или иных частей системы кровообращения (например, миокарда, развитие артериальных или венозных коллатеральных путей) возникают обычно позже и направлены на улучшение работы механизмов компенсации.

Компенсация возможна за счет усиления сокращений миокарда, расширения полостей сердца, а также гипертрофии сердечной мышцы. Так, при затруднении изгнания крови из желудочка, например при стенозе устья аорты или легочного ствола, реализуется резервная мощность сократительного аппарата миокарда, что способствует усилению силы сокращения. При недостаточности клапанов сердца в каждую следующую фазу сердечного цикла часть крови возвращается в обратном направлении. При этом развивается полостей сердца, носящая компенсаторный характер. Однако чрезмерная дилатация создает неблагоприятные условия для работы сердца.

Повышение общего АД, вызванное увеличением общего периферического сопротивления, компенсируется, в частности, за счет усиления работы сердца и создания такой разности давлений между левым желудочком и аортой, которая способна обеспечить выброс в аорту всего систолического объема крови.

В ряде органов, особенно в головном мозге, при повышении уровня общего АД начинают функционировать компенсаторные механизмы, благодаря которым кровяное давление в сосудах мозга поддерживается на нормальном уровне.

При увеличении сопротивления в отдельных артериях (вследствие ангиоспазма, тромбоза, эмболии и т.д.) нарушение кровоснабжения соответствующих органов или их частей может быть компенсировано за счет коллатерального притока крови. В головном мозге коллатеральные пути представлены в виде артериальных анастомозов в области виллизиева круга и в системе пиальных артерий на поверхности больших полушарий. Артериальные коллатерали хорошо развиты и в сердечной мышце. Помимо артериальных анастомозов важную роль для коллатерального притока крови играет их функциональная дилатация, значительно уменьшающая сопротивление кровотоку и способствующая притоку крови в ишемизированную область. Если в расширившихся коллатеральных артериях кровоток оказывается усиленным в течение длительного времени, то наступает постепенная их перестройка, калибр артерий возрастает, так что в дальнейшем они могут полностью обеспечивать органа в той же степени, что и основные артериальные стволы.

При увеличении сопротивления в отдельных венозных сосудах (при тромбозе, сдавлении вен и т.д.) коллатеральный отток крови осуществляется за счет широкой сети анастомозов, имеющейся в венозной системе. Однако при недостаточности кровотока по коллатеральным путям, особенно при их тромбозе, наступает оттока крови с венозным застоем в соответствующих органах.

Недостаточность кровообращения. Этиология, и клинические проявления недостаточности К. отличаются разнообразием. Общим для них является наличие дисбаланса между потребностью в кислороде, питательных веществах и их доставкой с кровью. Конкретные причины такого дисбаланса, механизм его возникновения и признаки проявления (общие и местные) могут быть различны. Существует и более узкое понимание недостаточности К., полностью соответствующее значению терминов « » и «хроническая сердечная недостаточность». Настаивая на понимании недостаточности К. как эквивалента сердечной недостаточности, обычно ссылаются на то, что при этом патологическом состоянии всегда оказываются затронутыми функции сосудистой системы, в частности отмечается сосудистая на различных уровнях, например, при такой форме сердечной недостаточности, как (см. Инфаркт миокарда), наблюдаются разнообразные сосудистые реакции: повышение тонуса резистивных сосудов в первой фазе шока и резкое падение во второй. При хронической сердечной недостаточности (Сердечная недостаточность) также выявляются различные изменения периферического сосудистого сопротивления и венозного тонуса, связанные с гипоксией артериальных стенок, длительными застойными явлениями в венозной системе и т.д., что свидетельствует не только о недостаточности кровообращения, но и о сердечно-сосудистой недостаточности. Наряду с этими терминами иногда используются термины « » и « ». Однако большинство советских кардиологов рекомендуют применять термин «сердечная недостаточность». При этом отмечают, что первичным этиологическим звеном в подобных случаях является снижение насосной функции сердца, а те или иные изменения со стороны сосудистого тонуса имеют в этих случаях вторичный характер. Говорить о сердечно-сосудистой недостаточности можно лишь тогда, когда сердца и тонус сосудов нарушаются одновременно, например под действием того или иного токсического фактора. Критически следует относиться и к понятию «декомпенсация сердечной деятельности». На различных стадиях сердечной недостаточности идет не о декомпенсации, а, напротив, о включении тех или иных компенсаторных механизмов, которые в здоровом организме при данном уровне обменных процессов не функционируют. Так, на первой стадии сердечной недостаточности наблюдается учащение сердечных сокращений в покое, в результате чего увеличивается сердечный выброс, что позволяет обеспечить жизненные потребности организма, несмотря на снижение насосной функции сердца. По существу лишь терминальную стадию сердечной недостаточности можно рассматривать как декомпенсацию, когда мобилизация всех компенсаторных механизмов не в состоянии обеспечить жизнедеятельность организма.

Генерализованная недостаточность К. включает также различные формы острой и хронической сосудистой недостаточности, такие как Обморок , Коллапс, Шок, длительное снижение артериального давления.

Недостаточность К. нередко носит регионарный характер и проявляется в виде нарушений кровотока, вызываемых сосудистой непроходимостью в результате экстравазальных компрессионных процессов, развития внутрисосудистых препятствий кровотоку (например, в результате атеросклероза сосудов, васкулитов, эмболии, тромбоза, сосуда) и, наконец, изменений сосудистого тонуса (чаще всего спазма артерий и артериол и снижения тонуса вен). Клиническое значение регионарной недостаточности К. зависит от локализации поражения сосудистой системы и от степени развившихся при этом нарушений кровоснабжения. Особое значение имеет Коронарная недостаточность , расстройства артериального кровоснабжения мозга (см. Мозговое кровообращение), сосудов конечностей (см. Облитерирующие поражения сосудов конечностей) и др. Вообще же нарушение кровотока по любой артерии всегда представляет опасность для функции васкуляризируемого органа, если только оно не компенсируется достаточно развитыми коллатералями. В патогенезе регионарных проявлений недостаточности К. большую роль играют расстройства в системе микроциркуляции: спазмы и дистония артериол, стазы в капиллярной системе, нарушение тонуса венул вследствие гипоксии и выделения в кровяное русло биологически активных метаболитов.

Из форм недостаточности К., развивающихся в венозной системе, чаще всего встречаются нарушения оттока крови (венозного возврата) в результате Тромбофлебит а, а также снижения венозного тонуса (например, венозной гипотензии в венах нижних конечностей у лиц пожилого возраста).

Методы исследования кровообращения . Существует большое число различных методов, позволяющих оценивать те или иные характеристики и распределения крови в организме, а также функцию звеньев, осуществляющих эти процессы. При этом решаются две главные задачи: установление общих закономерностей функционирования сердечно-сосудистой системы и выявление индивидуальных функциональных особенностей К., что необходимо для практических целей, в частности для диагностики нарушений кровообращения.

Методы исследования К. делят на инвазивные (кровавые) и неинвазивные (бескровные). Структуру различных отделов сердечно-сосудистой системы оценивают с помощью различных рентгенологических методов (см. Ангиография , Коронарография и др.), ультразвуковой диагностики (Ультразвуковая диагностика), радионуклидной диагностики (Радионуклидная диагностика), термографии (Термография) и др. Для функционального исследования К. используют прямые измерения кровяного давления (Кровяное давление) и объемной скорости кровотока, или расхода крови. С этой же целью применяют методы косвенного (атравматичного) определения различных параметров гемодинамики. Среди них наибольшее распространение получили (оценка гемодинамики путем регистрации торсионных движений грудной клетки); Баллистокардиография (регистрация синкардиальных движений тела); Эхокардиография (регистрация клапанно-мышечных движений сердца) и др. Для исследования кровообращения используют также на основе вычислительной техники.

Библиогр.: Власов Ю.А. кровообращения человека, Новосибирск, 1985; Джонсон П. Периферическое кровообращение, . с англ., М., 1982; Руководство по кардиологии, под ред. Е.И. Чазова, т. 2, 1982; Руководство по физиологии: кровообращения. Физиология сосудистой системы, под ред. Б.И. Ткаченко, с. 56, Л., 1984; Физиология человека, под ред. Р. Шмидта и Г. Тевса, пер. с англ., т. 3, М., 1986; организма, под ред. К.В. Судакова, М., 1987.

II Кровообраще́ние (circulatio, circulatio sanguinis)

перемещение крови в кровеносной системе, обеспечивающее обмен веществ в тканях организма.

Кровообраще́ние вспомога́тельное ( .: К. параллельное - нрк, вспомогательная - нрк) - искусственное К., способствующее улучшению и стабилизации естественного К. при сердечной недостаточности.

Кровообраще́ние желто́чное (с. vitellina) - К. в системе пупочно-брыжеечных сосудов между зародышем на ранних стадиях развития (2-6 недель) и желточным мешком.

Кровообраще́ние иску́сственное (с. artificialis; син.: К. экстракорпоральное, перфузия) - К., обеспечиваемое путем полного или частичного замещения деятельности сердца работой специальных аппаратов.

Кровообраще́ние иску́сственное о́бщее (син.: ) - К. и., при котором полностью замешаются функции сердца и легких.

01. Операции, производимые короткополыми хирургами:

1) камнесечения

2) кровопускания

3) чревосечения

4) ампутации

02. Парацельс уделял особое внимание Изучению:

1) анатомии

3) физиологии

03. первым описал труд рудокопов и характерные для них болезни (чахотку):

1) А. Везалий

2) Р. Бэкон

3) Авиценна

4) Парацельс

04. Ученый, создавший первый термоскоп (прототип термометра)

1) Галилео Галилей

2) Николай Коперник

3) Рене Декарт

4) Мигель Сервет

Английский врач, физиолог, эмбриолог, который математически рассчитал и экспериментально обосновал теорию кровообращения:

1) А. Везалий

2) Фабриций

3) У. Гарвей

4) Д. А. Борелли

06. Джироламо Фракасторо является основателем

1) педиатрии

2) эпидемиологии

3) психиатрии

4) анестезиологии

07. Западноевропейский врач, с именем которого связано возникновение девиза врачебной деятельности: «Светя другим, сгораю»:

1) Андреас Везалий

2) Николас Ван Тюльп

3) Фредерик Рюйш

4) Джозеф Листер

08. Выдающийся средневековый хирург, создавший учение о лечении огнестрельных ранений:

1) Мигель Сервет

2) Парацельс

3) Ги де Шолиак

4) Амбруаз Паре

09. Врач эпохи Возрождения, основоположник ятромеханики:

1) Санторио

3) Джованни Альфонсо Борелли

4) Уильям Гарвей

10. Лекарственное средство, включавшее в себя около 70 компонентов и считавшееся, согласно средневековой фармакопеи, лекарством от всех болезней:

1) митридат

3) панацея

11. Преемник Андреаса Везалия во главе кафедры анатомии Падуанского университета:

1) Иероним Фабриций

2) Габриэль Фаллопий

3) Бартоломей Евстахий

4) Реальдо Коломбо

12. Термин «инфекция» был введен

1) Гиппократом

2) Парацельсом

3) Галеном

4) Фракасторо

13.Во время эпидемий чумы средневековые врачи облачались в специальное одеяние, а на голове носили маску

1) маску с изображением старческого лица

2) маску с длинным клювом

3) маску смерти

4) маску в форме бабочки

14. Врач, давший новое представление о дозе лекарственных веществ, считая, что «все есть яд и все есть лекарство»

1) Парацельс

3) Санторио

4) Авиценна

15. университет XVI века, в котором. сложилась анатомо-физиологическая школа, известным представителем которой был А. Везалий

1) Парижский

2) Болонский

3) Падуанский

4) Салернский

16. ученый эпохи Возрождения, наиболее точно приблизившийся к объяснению понятия «рефлекс»

1) Парацельс

2) Рене Декарт

3) Френсис Бэкон

4) Андреас Везалий

17. Общественно-экономическая формация, характерная для эпохи Возрождения

1) позднее средневековье

2) рабовладельческий строй

3) капитализм

4) феодализм

18. Парацельс ввел в употребление

1) таблетки

2) порошки

4) растворы

19. Главной заслугой Гарвея является

1) применение нового метода в изучении жизненных явлений (экспериментальное доказательство)

2) открытие новых лекарственных средств

3) борьба с католической церковью с целью добиться запрета влияния церкви на обучения в университетах

4) открытие легочного кровообращения

20. Амбруазу Паре принадлежит следующее нововведение в лечении огнестрельных ран

1) прижигание ран раскаленным железом

2) заливка ран кипящим смолистым раствором

3) прикрытие ран чистой тканью с применением яичного желтка

4) первичная хирургическая обработка раны

21. В эпоху Возрождения чуму изображали в виде

1) старой женщины в белом

2) женщины с косой

3) молодой женщины в красном

4) молодой женщины в черном

22. Профессор Падуанского университета, начавший читать лекции по практической медицине, непосредственно у постели больного

1) Джованни Монтано

2) Джироламо Фракасторо

3) Габриэль Фаллопий

4) Джеролламо Фабриций

23. элемент отсутствовавший в системе кровообращения, представленной Гарвеем

2) артерии

3) артериолы

4) капилляры

24. Укажите знаменитого врача эпохи Возрождения, получившего ученую степень и не владевшего латынью

1) Везалий

4) Левенгук

25. Одна из черт характеризующих эпоху Возрождения

1) обращение к античной культуре

2) феодальная раздробленность

3) усиление власти церкви

4) схоластический подход к образованию и науке

26. Врач, современник Парацельса, впервые предложивший способы предотвращения профессиональных заболеваний рудокопов

1) Г. Агрикола

2) А.Везалий

3) У. Гарвей

4) Б. Рамаццини

27. государство средневековой Европы, где впервые была открыта хирургическая академия, приравненная впоследствии к медицинскому факультету университета

2) Германия

3) Франция

28. Философские взгляды, получившие развитие в эпоху Возрождения

1) схоластика

2) метафизика

3) гуманизм

4) аскетизм

вопрос
ответ
вопрос
ответ

Самоконтроль по ситуационным задачам.

Задача №1

Один из основоположников хирургии французский медик Амбруаз Паре (1517-1590), вышедший из цеха цирюльников, был лечащим врачом короля Карла IX. Свои труды он писал на родном французском языке, применяя соответствующие термины для обозначения половых органов. Медицинский факультет попытался запретить труд Паре, ссылаясь на угрозу нравственности.

1. Дайте оценку такой нравственной позиции в эпоху Возрождения.

2. Почему Амбруаз Паре писал на французском языке?

Задача №2

Выдающийся врач, математик и механик эпохи Возрождения Дж. Кардано (1501-1578) увлекался астрологией и составлял гороскопы. Когда он был приглашен к больному английскому королю Эдуарду VI то, как врач, сразу увидел симптомы неблагоприятного исхода болезни. Однако в гороскопе, составленном по требованию придворной знати, которую волновала не болезнь короля, а ее исход. Кардано предсказал тому долгую жизнь. Король вскоре умер и Кардано оправдывался тем, что не смог в достаточной мере оценить расположение созвездий и их влияние на судьбу короля.

1. Дайте оценку позиции морального выбора Дж. Кардано.

2. Какой метод науки утверждался в эпоху Возрождения?

Задача №3

Один из основоположников научной анатомии Андрей Везалий (1514-1564) был вынужден похищать трупы казненных с виселиц и кладбищ, чтобы изучать строение человеческого тела. Так поступали и многие другие ученые той эпохи.

1. Дайте оценку таким действиям

2. Почему врачи были вынуждены совершать подобные поступки?

Задача №4

Выдающийся английский философ, основоположник материализма нового времени Ф. Бэкон (1561-1626) в труде «О достоинстве и приумножении наук» писал: «А в наше время у врачей существует своего рода священный обычай остаться у постели больного и после того, как потеряна последняя надежда на спасение, и здесь, по моему мнению, если бы они хотели быть верными своему долгу и чувству гуманности, они должны были бы увеличить свои познания в медицине, и приложить (в то же время) все старания к тому, чтобы облегчить уход из жизни тому, в ком еще не угасло дыхание. Эту часть медицины мы называем исследованием внешней эвтаназии…».

1. Дайте оценку позиции Ф. Бэкона.

2. Какие три основные задачи сформировал Ф.Бэкон?

Задача №5

Знаменитый врач эпохи Возрождения Парацельс перед началом курса своих лекций студентам прибег к символическому акту: 27 июня 1527 года перед Базельским университетом он сжег произведения Гиппократа, Галена и Авиценны.

1. Что хотел показать своим поступком Парацельс?

2. Основоположником какого нового направления в медицине он был?

Эталон ответа к задаче №1

1. Решение медицинского факультета отражает борьбу светского и религиозного мировоззрения в эпоху Возрождения. Для медицины в теле человека не было запретных мест и соответствующих терминов, что противоречило религиозным установкам католической церкви.

2. Амбруаз Паре не имел высшего медицинского образования и не знал латинского языка.

Эталон ответа к задаче №2

1. Случай с Дж. Кардано типичен для эпохи Возрождения, когда многие науки только начинали освобождаться от связи с магией и суевериями, а вера уступала место знанию.

2. В медицине утверждался опытный метод, опиравшийся на математику и новые науки – ятрофизику и ятрохимию.

Эталон ответа к задаче №3

1. Эта ситуация иллюстрирует суть нравственного конфликта ученых- медиков в эпоху Возрождения, когда еще были сильны церковные догматы. Из – за религиозных запретов ученые не могли изучать анатомию, открыто проводя вскрытия трупов.

1. Церковь препятствовала развитию анатомии, запрещая проводить вскрытия и опровергать канонические работы К. Галена.

Эталон ответа к задаче №4

1. В трудах Ф. Бэкона дано описание феномена эвтаназии (хорошей смерти), которую врач обязан обеспечить пациенту, если он не может его вылечить. В современных Бэкону исторических условиях, такая установка, зачастую, была реакцией на тяжелые условия жизни огромного большинства людей.

2. Сохранение здоровья, лечение болезней и продление жизни.

Эталон ответа к задаче №5

1. Парацельс считал, что врач-исследователь должен идти своим путем, а не преклоняться перед авторитетами, как это было повсеместно принято в Средние века.

2. Парацельс был первым ятрохимиком, т.е врачом, активно пользующимся химией в своей врачебной деятельности.

Дата публикования: 2015-11-01; Прочитано: 700 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.007 с)…

У человека, как у всех млекопитающих и птиц, два круга кровообращения - большой и малый . Сердце четырехкамерное - два желудочка + два предсердия.

Когда смотрите на рисунок сердца, представьте, что смотрите на человека, стоящего к вам лицом. Тогда его левая половина тела будет напротив вашей правой, а правая - напротив вашей левой. Левая половина сердца находится ближе к левой руке, а правая ближе к середине тела. Или представьте не рисунок, а самого себя. «Почувствуйте», где у вас левая сторона сердца, а где - правая.

В свою очередь, каждая половина сердца – левая и правая – состоит из предсердия и желудочка. Предсердия расположены вверху, желудочки - внизу.

Также запомнить следующую вещь. Левая половина сердца артериальная, а правая - венозная.

Еще одно правило. Из желудочков кровь выталкивается, в предсердия вливается.

Теперь переходим к самим кругам кровообращения.

Малый круг. Из правого желудочка кровь течет в легкие, откуда поступает в левое предсердие. В легких кровь превращается из венозной в артериальную, т.

к. отдает углекислый газ и насыщается кислородом.

Большой круг. Из левого желудочка артериальная кровь течет во все органы и части тела, где становится венозной, после чего собирается и направляется в правое предсердие.

Это схематичное изложение кругов кровообращение с целью объяснить кратко и понятно. Однако нередко требуется также знать названия сосудов, по которым кровь выталкивается из сердца и вливается в него. Здесь следует обратить внимание на следующее. Сосуды, по которым кровь течет от сердца в легкие, называются легочными артериями. Но по ним течет венозная кровь! Сосуды, по которым кровь течет от легких к сердцу, называются легочными венами. Но по ним течет артериальная кровь! Т. е. в случае малого круга кровообращения все наоборот.

Крупный сосуд, который выходит из левого желудочка, называется аортой.

В правое предсердие впадают верхняя и нижняя полые вены, а не один сосуд как на схеме. Одна собирает кровь от головы, другая - от остальных частей тела.

У античных ученых и ученых эпохи Возрождения были весьма своеобразные представления о движении, значении сердца, крови и кровеносных сосудов. Например, у Галена говорится: «Части пищи, всосанные из пищеварительного канала, подносятся воротной веной к печени и под влиянием этого большого органа превращаются в кровь. Кровь, таким образом, обогащенная пищей, наделяет эти самые органы питательными свойствами, которые суммированы в выражении «натуральные духи», но кровь, наделенная этими свойствами, является еще недоработанной, негодной для высших целей крови в организме. Приносимые из печени через v. cava к правой половине сердца некоторые части ее проходят из правого желудочка через бесчисленные невидимые поры к левому желудочку. Когда сердце расширяется, то оно насасывает из легких через венообразную артерию, «легочную вену», воздух в левый желудочек, и в этой левой полости кровь, которая прошла через перегородку, смешивается с воздухом, таким образом всосанным туда. При помощи той теплоты, которая является прирожденной сердцу, помещенному здесь как источник теплоты тела богом в начале жизни и остающейся здесь до смерти, оно насыщается дальнейшими качествами, нагружается «жизненными духами» и тогда уже является приспособленным к своим внешним обязанностям. Воздух, таким образом насосанный в левое сердце через легочную вену, в го же самое время смягчает врожденную теплоту сердца и препятствует ей сделаться чрезмерной».

Везалий пишет о кровообращении: «Так же, как правый желудочек насасывает кровь из v. cava, левый желудочек накачивает в самого себя воздух из легких каждый раз, как сердце расслабляется через венообразную артерию, и использует его для охлаждения врожденной теплоты, для питания своего вещества и для приготовления жизненных духов, вырабатывая и очищая этот воздух так, что он вместе с кровью, которая просачивается в громадном количестве через septum из правого желудочка в левый, может быть предназначен для большой артерии (аорты) и таким образом для всего тела».


Мигуэль Сервет (1509-1553).

На заднем плане изображено его сожжение.

Изучение исторических материалов свидетельствует, что малый круг кровообращения был открыт несколькими учеными независимо друг от друга. Первым открыл малый круг кровообращения в XII веке арабский врач Ибн-аль-Нафиз из Дамаска, вторым был Мигуэль Сервет (1509-1553) - юрист, астроном, метролог, географ, врач и теолог. Он слушал в Падуе лекции Сильвия и Гюнтера и, возможно, встречался с Везалием. Он был искусным врачом и анатомом, так как его убеждением было познание бога через строение человека. В. Н. Терновский так оценил необычное направление теологического учения Сервета: «Познавая дух бога, он должен был познать дух человека, знать строение и работу тела, в котором дух обитает. Это заставило его вести анатомические изыскания и геологические работы» Сервет опубликовал книги «О заблуждениях троичности» (1531) и «Восстановление христианства» (1533). Последняя книга была сожжена инквизицией, как и ее автор. Сохранилось только несколько экземпляров этой книги. В ней среди теологических рассуждений описан малый круг кровообращения: «… для того, однако, чтобы мы могли понять, что кровь делается живой (артериальной), мы должны сначала изучить возникновение в веществе самого жизненного духа, который составлен и питается из вдохнутого воздуха и очень тонкой крови. Этот жизненный воздух возникает в левом желудочке сердца, легкие особенно помогают в отношении его усовершенствования; это есть тонкий дух, выработанный силой тепла, желтого (светлого) цвета, воспламеняющей силы, гак что он является таким, как если бы он был излучающим паром из более чистой крови, содержащей вещество воды, воздуха с выработанной парной кровью, и которая переходит из правого желудочка в левый. Этот переход, однако, не происходит, как обычно думают, через медиальную стенку (septum) сердца, но замечательным образом нежная кровь прогоняется длинным путем через легкие».


Вильям Гарвей (1578-1657)

По-настоящему понял значение сердца и сосудов Вильям Гарвей (1578-1657), английский врач, физиолог и анатом-экспериментатор, который в своей научной деятельности руководствовался фактами, полученными в опытах. После 17-летнего экспериментирования Гарвей в 1628 г. издал небольшую книгу «Анатомическое исследование о движении сердца и крови у животных», где указал на движение крови по большому и малому кругу. Работа была глубоко революционной в науке того времени. Гарвею не удалось показать мелкие сосуды, соединяющие сосуды большого и малого круга кровообращения, тем не менее были созданы предпосылки для их открытия. С момента открытия Гарвея начинается подлинная научная физиология. Хотя ученые того времени и разделились на приверженцев Гачена и Гарвея, но в конечном итоге учение Гарвея стало общепризнанным. После изобретения микроскопа Марчелло Мальпиги (1628-1694) описал кровеносные капилляры в легких и тем самым доказал, что артерии и вены большого и малого круга кровообращения соединяются капиллярами.

Мысли Гарвея о кровообращении оказали влияние на Декарта, который выдвинул гипотезу, что процессы в центральной нервной системе совершаются автоматически и не составляют душу человека.

Декарт считал, что от мозга (как от сердца сосуды) радиально расходятся нервные «трубки», несущие автоматически отражения к мышцам.

Античная наука, возникновение первых научных программ

1.Великое открытие элеатов.

Особое место в истории античной культуры занимает элейская школа. Представителям ее принадлежит великое открытие — нали-чие противоречия между двумя картинами мира в сознании человека; одна из них — это та…

Вирусы и их особенности

1.1 Открытие вирусов

Первые упоминания о самой грозной вирусной инфекции прошлого — оспе найдены в древнеегипетских папирусах. Эпидемия оспы в Египте за 12 веков до нашей эры описана древними арабскими учеными. На коже мумии фараона Рамзеса V (1085 г. до н.э…

История развития микробиологии. Антони ван Левенгук

8. Открытие способа разведения микробов

Разумеется, этот человек шел ощупью, спотыкаясь на каждом шагу, так же как и все ищущие люди, лишенные дара предвидения и случайно наталкивающиеся на открытия, о которых они раньше и не подозревали. Его новые зверьки были поразительны…

2. Исследования кровообращения до Гарвея

История развития учения о кровообращении

3. Открытие Гарвея

Англичанин Гарвей уточнил вопрос о движении крови в организме. Для его времени это было огромной задачей. Но уже его предшественники отошли от классического заблуждения, что кровеносные сосуды суть воздухоносные трубки…

Кровеносная система. Виды и формы памяти

1.2 Круги кровообращения

Система крови состоит из двух кругов кровообращения — большой и малый круги кровообращения. Движение крови в организме происходит по двум замкнутым системам сосудов, соединенных с сердцем, — большому и малому кругу кровообращения…

Кровь и ее значение

2. Система кровообращения

Кровь и ее значение

2.1 Значение кровообращения

Кровь может выполнять жизненно необходимые функции, только находясь в непрерывном движении. Движение крови в организме, ее циркуляция составляет сущность кровообращения.

К системе кровообращения относятся сердце, выполняющее роль насоса…

Кровь и ее значение

2.2 Общая схема кровообращения

Сосудистая система состоит из двух кругов кровообращения — большого и малого. Большой круг кровообращения начинается от левого желудочка сердца, откуда кровь поступает в аорту. Из аорты путь артериальной крови продолжается по артериям…

Моделирование процессов в системе кровообращения человека

3. Использование модели кровообращения О.Франка для определения гидравлического сопротивления периферической части системы кровообращения

3.1 Модель кровообращения О. Франка Эта модель рассматривает артериальную часть системы кровообращения, как упругий, эластичный резервуар…

О соотношении детерминистического и вероятностного в живой и неживой природе

§ 1. Открытие планетарной модели атома

До конца XIX века классическая механика в учении о строении вещества опиралась на атомистическую теорию, созданную ещё в эпоху Аристотеля. Следующий век принёс открытие новых частиц, лежащих в основании материи — электронов, протонов и нейтронов…

Перенос генов и условия для процесса конъюгации

Открытие конъюгации

Открытие конъюгации бактерий принадлежит Дж. Ледербергу и Е. Татуму (1946). Они использовали два ауксотрофных мутанта Е. coli К-12, каждый из которых в отдельности не обладал способностью синтезировать две аминокислоты…

Роль холестерина в организме человека

Открытие холестерина

Заслуга открытия холестерина всецело принадлежит французским химикам. В 1769 году Пулетье де ла Саль получил из желчных камней плотное белое вещество («жировоск»), обладавшее свойствами жиров. В чистом виде холестерин был выделен химиком…

Феромоны и их влияние на метаболизм противоположного пола

Открытие феромонов

В XIX веке французский натуралист Жан-Анри Фабр обнаружил, что самка мотылька Saturnia pavonia может привлечь десятки самцов мотыльков в комнату, где она находится. Фабр предположил, что самка посылает самцам какие-то химические сигналы…

Функциональная асимметрия мозга

ОТКРЫТИЕ ФУНКЦИЙ ПОЛУШАРИЙ МОЗГА ЧЕЛОВЕКА

Отталкиваясь от предположения, что две части мозга биологически одинаковы и скорее могут рассматриваться как два идентичных мозга, работающих в полном согласии, чем как один мозг, разделенный на две части…

Открытие кровообращения

Уильям Гарвей пришел к выводу, что укус змеи только потому опасен, что яд по вене распространяется из места укуса по всему телу. Для английских врачей эта догадка стала исходной точкой для размышлений, которые привели к разработке внутривенных инъекций. Можно, рассуждали врачи, впрыснуть в вену то или иное лекарство и тем самым ввести его в весь организм. Но следующий шаг в этом направлении сделали немецкие врачи, применив на человеке новую хирургическую клизму (так тогда называли внутривенное впрыскивание). Первый опыт впрыскивания произвел на себе один из виднейших хирургов второй половины XVII века Матеус Готтфрид Пурман из Силезии. Чешский ученый Правац предложил шприц для инъекций. До этого шприцы были примитивные, сделанные из свиных пузырей, в них были вделаны деревянные или медные носики. Первая инъекция была произведена в 1853 году английскими врачами.

После приезда из Падуи одновременно с практической врачебной деятельностью Гарвей проводил систематические экспериментальные исследования строения и работы сердца и движения крови у животных. Свои мысли он впервые изложил в очередной люмлеевской лекции, прочитанной им в Лондоне 16 апреля 1618 года, когда он уже располагал большим материалом наблюдений и опытов. Свои взгляды Гарвей коротко сформулировал словами, что кровь движется по кругу. Точнее -- по двум кругам: малому -- через легкие и большому -- через все тело. Его теория была непонятна слушателям, настолько она была революционна, непривычна и чужда традиционным представлениям. «Анатомическое исследование о движении сердца и крови у животных» Гарвея появилось на свет в 1628 году, издание было опубликовано во Франкфурте-на-Майне. В этом исследовании Гарвей опроверг господствовавшее 1500 лет учение Галена о движении крови в организме и сформулировал новые представления о кровообращении.

Большое значение для исследования Гарвея имело подробное описание венозных клапанов, направляющих движение крови к сердцу, данное впервые его учителем Фабрицием в 1574 году. Самое простое и вместе с тем самое убедительное доказательство существования кровообращения, предложенное Гарвеем, заключалось в вычислении количества крови, проходящей через сердце. Гарвей показал, что за полчаса сердце выбрасывает количество крови, равное весу животного. Такое большое количество движущейся крови можно объяснить только исходя из представления о замкнутой системе кровообращения. Очевидно, что предположение Галена о непрерывном уничтожении крови, оттекающей к периферии тела, нельзя было согласовать с этим фактом. Другое доказательство ошибочности взглядов об уничтожении крови на периферии тела Гарвей получил в опытах наложения повязки на верхние конечности человека. Эти опыты показали, что кровь течет из артерий в вены. Исследования Гарвея выявили значение малого круга кровообращения и установили, что сердце является мышечным мешком, снабженным клапанами, сокращения которого действуют как насос, нагнетающий кровь в кровеносную систему.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top