Биологическое значение углеводов. Строение, свойства и функции углеводов

Биологическое значение углеводов. Строение, свойства и функции углеводов

Углеводы (сахариды) - общее название обширного класса природных органических соединений.

Название происходит от слов «уголь» и «вода». Причиной этого является то, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

С точки зрения химии углеводы являются органическими веществами, содержащими неразветвленную цепь из нескольких атомов углерода, карбонильную группу, а также несколько гидроксильных групп.

С точки зрения бодибилдинга углеводы являются поставщиком наиболее доступной энергии. Будучи главным оперативным источником энергетических импульсов, присутствующие в организме углеводы составляют лишь 2 процента от его общих энергетических запасов, притом что 80 процентов запаса энергии содержится в жировых отложениях, а оставшиеся 18 процентов - в белках (скелетных мышцах).

Поскольку каждый грамм углеводов накапливается в теле вместе с 4 граммами воды, тогда как отложение жира воды не требует, организм легче накапливает жиры и именно на них полагается как на основной резервный источник энергии.

Биологическое значение углеводов

1. Углеводы выполняют структурную функцию, то есть участвуют в построении различных клеточных структур (например, клеточных стенок растений).

2. Углеводы выполняют защитную роль у растений (клеточные стенки, состоящие из клеточных стенок мертвых клеток защитные образования - шипы, колючки и др.).

3. Углеводы выполняют пластическую функцию - хранятся в виде запаса питательных веществ, а также входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК.

4. Углеводы являются основным энергетическим материалом. При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.

5. Углеводы участвуют в обеспечении осмотического давления и осморегуляции. Так, в крови содержится 100-110 мг/% глюкозы. От концентрации глюкозы зависит осмотическое давление крови.

6. Углеводы выполняют рецепторную функцию - многие олигосахариды входят в состав воспринимающей части клеточных рецепторов или молекул-лигандов.

Виды углеводов

Углеводы делятся на:

Сахара

Различают два вида сахаров: моносахариды и дисахариды. Моносахариды содержат одну сахарную группу, как, например, фруктоза или галактоза. Дисахариды образованы остатками двух моносахаридов и представлены, в частности, сахарозой (обычный столовый сахар) и лактозой.

Сложные углеводы

Полисахариды представляют собой углеводы, содержащие три и более молекул простых углеводов. К полисахаридам относятся, в частности, декстрины, гликогены и целлюлозы. Источниками полисахаридов являются крупы, бобовые, картофель и другие овощи.

Обмен (метаболизм) углеводов

Метаболизм углеводов представлен тремя типами процессов:

* гликогенезом, то есть синтезом гликогена из глюкозы;

* гликонеогенезом, то есть образованием гликогена из жирных кислот и протеинов;

* гликолизом, то есть расщеплением глюкозы и других сахаров с выделением необходимой для организма энергии.

Метаболизм углеводов в существенной степени определяется содержанием глюкозы в крови, то есть наличием углеводов в кровотоке. Это в свою очередь зависит от времени и питательного состава вашего последнего приема пищи. В принципе содержание в крови глюкозы, или сахара, минимально в ранние утренние часы после обычного семи-девятичасового сна, в течение которого вы никак не поддерживали уровень имеющейся в крови глюкозы новыми порциями "горючего".

Собственная подпитка организма энергией в состоянии постабсорбции (голодания) на 75 процентов осуществляется за счет гликолиза и на 25 процентов - за счет гликонеогенеза. После пробуждения ваше тело находится в наилучшем состоянии для использования в качестве источника энергии запасенного жира. Так что старый совет совершать конные прогулки с утра пораньше и натощак имеет непреходящую ценность.

Утренние часы - время наиболее активной естественной выработки организмом катаболических гормонов. Наивысшая ночная концентрация соматропного гормона падает к утру, и уже к 8-9 часам катаболический гормон кортизол достигает своей наивысшей суточной концентрации.

Углеводы и инсулин

Инсулин - гормон, вырабатываемый поджелудочной железой. Выбросы инсулина вызываются повышением содержания в крови глюкозы и аминокислот. Инсулин поддерживает метаболизм глюкозы, а также промежуточный метаболизм жиров и протеина. Инсулин способствует снижению содержания глюкозы в крови, а также транспортировке и попаданию глюкозы и аминокислот в клетки мышц и другие ткани организма.

Углеводы в бодибилдинге

У здорового взрослого человека ускоренное формирование запасов поступивших в организм углеводов в форме внутримышечного гликогена наблюдается при приеме углеводов во временном интервале от четырех до шести часов после утреннего пробуждения. В более поздние часы способность организма накапливать углеводы последовательно снижается. Рекомендуем потреблять больше углеводов именно в первой половине дня с увеличением потребления белка в последующие дневные часы.

Внимание В суточном рационе человека преобладают углеводы. В бодибилдинге и фитнесе, углеводы должны составлять 50% от всех питательных веществ.

С тем чтобы правильно построить прием углеводов, используется такое понятие как гликемический индекс. Чем выше показатель гликемического индекса того или иного продукта, тем большим выбросом инсулина и, соответственно, более быстрым снижением изначально повышенного содержания глюкозы в крови сопровождается прием этого продукта. Такой массированный выброс инсулина с последующим скачком и падением содержания сахара в крови известен как "спайк сахара в крови". Кроме того, продукты с высоким глигемическим индексом, в виду их быстрого усвоения, легко переводятся организмом в жир.

Внимание Люди склонные к полноте, а также во время циклов похудения и работы на рельеф должны стараться потреблять пищу с наименьшими показателями гликемического индекса, так как простые углеводы (с высоким гликемическим индексом) способны запускать образование жира. Исключение в этом отношении представляет лишь двух-трехчасовой период времени с момента окончания тренировки, при наборе мышечной массы. В этом временном интервале способность тела накапливать углеводы в виде гликогена повышается, как повышается и впитывание аминокислот мышцами. Ваша цель в эти два-три часа должна состоять в закачке в мышцы как углеводов, так и протеина, поскольку именно в это время ваши мышцы наиболее восприимчивы к действию инсулина.

Углеводы, или сахара, - это органические соединения, которые содержат в молекуле одновременно карбонильную (альдегидную или кетонную) и несколько гидроксильных (спиртовых) групп . Другими словами, углеводы - это альдегидоспирты (полиоксиальдегиды) или кетоноспирты (полиоксикетоны). Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями. Углеводы играют чрезвычайно важную роль в живой природе, и являются самыми распространенными веществами в растительном мире, составляя до 80 % сухой массы растений. Важное значение углеводы имеют и для промышленности, поскольку они в составе древесины широко используются в строительстве, производстве бумаги, мебели и других товаров.

Основные функции :

  • Энергетическая. При распаде углеводов высвобождаемая энергия рассеивается в виде тепла или накапливается в молекулах АТФ. Углеводы обеспечивают около 50 – 60 % суточного энергопотребления организма, а при мышечной деятельности на выносливость - до 70 %.
  • Пластическая. Углеводы (рибоза, дезоксирибоза) используются для построения АТФ, АДФ и других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов. Отдельные углеводы являются структурными компонентами клеточных мембранУглеводы накапливаются (запасаются) в скелетных мышцах, печени и других тканях в виде гликогена.
  • Специфическая. Отдельные углеводы участвуют в обеспечении специфичности групп крови, исполняют роль антикоагулянтов (вызывающие свертывание), являясь рецепторами цепочки гормонов или фармакологических веществ, оказывая противоопухолевое действие.
  • Защитная . Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, которые покрывают поверхность сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий и вирусов, а также от механических повреждений.
  • Регуляторная . Клетчатка пищи не поддается процессу расщепления в кишечнике, однако активирует перистальтику кишечного тракта, ферменты, использующиеся в пищеварительном тракте, улучшая пищеварение и усвоение питательных веществ.

Классификация углеводов . Все углеводы можно разделить на две большие группы:

  • простые углеводы (моносахариды, или монозы),
  • сложные углеводы (полисахариды, или полиозы).

Простые углеводы не подвергаются гидролизу с образованием других, еще более простых углеводов. При разрушении молекул моносахаридов можно получить молекулы лишь других классов химических соединений. В зависимости от числа атомов углерода в молекуле, различают тетрозы (четыре атома), пентозы (пять атомов), гексозы (шесть атомов), и т.д. Если моносахариды содержат альдегидную группу, то они относятся к классу альдоз (альдегидоспиртов), если кетонную - к классу кетоз (кетоноспиртов).

Сложные углеводы, или полисахариды , при гидролизе распадаются на молекулы простых углеводов. Сложные углеводы, в свою очередь, делятся на:

  • олигосахариды,
  • полисахариды.

Олигосахариды - это низкомолекулярные сложные углеводы, растворимые в воде и сладкие на вкус. Полисахариды - это высокомолекулярные углеводы, образованные более чем из 20 остатков моносахаридов, нерастворимые в воде и не сладкие на вкус.

В зависимости от состава , сложные углеводы можно разделить на две группы:

  • гомополисахариды, состоящие из остатков одного и того же моносахарида;
  • гетерополисахариды, состоящие из остатков различных моносахаридов.

Моносахариды. Общая формула моносахаридов - СпН2пОп. Названия моносахаридов образуют из греческого числительного, соответствующего числу углеродных атомов в данной молекуле, и окончания -оза. Чаще всего в живой природе встречаются моносахариды с пятью и шестью углеродными атомами - пентозы и гексозы. В зависимости от характера карбонильной группы, входящей в состав моносахаридов (альдегидная или кетонная), моносахариды делятся на:

  • альдозы (альдегидоспирты),
  • кетозы (кетоноспирты).

Из гексоз наиболее широко распространены глюкоза (виноградный сахар) и фруктоза (фруктовый сахар). Глюкоза - это представитель альдоз, а фруктоза - кетоз. Глюкоза и фруктоза являются изомерами , т.е. они имеют один и тот же атомарный состав и их молекулярная формула одинакова (С6Н12О6). Однако пространственное строение их молекул различается:
СН2ОН-СНОН-СНОН-СНОН-СНОН-СНО Глюкоза (альдогексоза)

СН2ОН-СНОН-СНОН-СНОН-СО-СН2ОН Фруктоза (кетогексоза).

Э.Фишер разработал пространственные формулы , названные его именем. В этих формулах углеродные атомы нумеруют с того конца цепи, к которому ближе карбонильная группа. В частности, в альдозах первый номер присваивается углероду альдегидной группы.
Однако моносахариды существуют не только в виде открытых форм, но и в виде циклов. Эти две формы - цепная и циклическая - являются таутомерными и способны самопроизвольно переходить одна в другую в водных растворах. Представители моносахаридов:

  • D-рибоза - компонент РНК и коферментов нуклеотидной природы.
  • D-глюкоза (виноградный сахар) - кристаллическое белое вещество, хорошо растворимое в воде, температура плавления равна 146°С. Полимеры глюкозы, прежде всего
  • D-галактоза - кристаллическое вещество, составная часть молочного сахара, важнейший компонент пищевого рациона. Достаточно хорошо растворяется в воде, сладкое на вкус, температура плавления равна 165°С. Наряду с D-маннозой, этот моносахарид входит в состав многих гликолипидов и гликопротеинов.
  • D-манноза - кристаллическое вещество, сладкое на вкус, хорошо растворимое в воде, температура плавления равна 132°С. Встречается в природе в виде полисахаридов - маннанов, из которых может быть получено гидролизом.
  • D-фруктоза (фруктовый сахар) - кристаллическое вещество, температура плавления равна 132°С. Хорошо растворима в воде, сладкая на вкус, сладость превосходит сладость сахарозы в два раза. В свободной форме содержится во фруктовых соках (фруктовый сахар) и меде. В связанной форме фруктоза присутствует в сахарозе и растительных полисахаридах (например, в инулине).

При окислении альдоз образуется три класса кислот: альдоновые, альдаровые и альдуроновые.

Наиболее важными полисахаридами являются следующие:

  • Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками β-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26-40 % целлюлозы. Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.
  • Крахмал и гликоген. Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.
  • Хитин образован молекулами β-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH3. Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки. Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Углево́ды (сахара , сахариды) - органические вещества, содержащие карбонильную группу и несколькогидроксильных групп . Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой C x (H 2 O) y , формально являясь соединениями углерода и воды.

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы – дисахариды, от двух до десяти единиц - олигосахариды, а более десяти - полисахариды. Обычные моносахариды представляют собой полиокси-альдегиды (альдозы) или полпоксикетоны (кетозы) с линейной цепью атомов углерода (m = 3-9), каждый из которых (кроме карбонильного углерода) связан с гидроксильной группой. Простейший из моносахаридов - глицериновый альдегид - содержит один асимметрический атом углерода и известен в виде двух оптических антиподов (D и L). Моносахариды быстро повышают содержание сахара в крови, и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые медленными углеводами постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры, с образованием сотни и тысячи молекул моносахаридов

В живых организмах углеводы выполняют следующие функции:

1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентомклеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих .

2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.

3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК) .

4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды .

5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин - у растений .

6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100-110 мг/% глюкозы, от концентрацииглюкозы зависит осмотическое давление крови.

7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

18. Моносахариды: триозы, тетрозы, пентозы, гексозы. Строение, открытые и циклические формы. Оптическая изомерия. Химические свойства глюкозы, фруктозы. Качественные реакции на глюкозу.

Моносахари́ды (от греческого monos - единственный, sacchar - сахар) - простейшие углеводы, не гидролизующиеся с образованием более простых углеводов - обычно представляют собой бесцветные, легко растворимые в воде, плохо - в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения , одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладаютсладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза . При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза . В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы , тетрозы , пентозы , гексозы , гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы . Моносахариды - стандартные блоки, из которых синтезируются дисахариды,олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (виноградный сахар или декстроза , C 6 H 12 O 6) - шестиатомный сахар (гексоза ), структурная единица (мономер) многих полисахаридов (полимеров) - дисахаридов: (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов .

Качественная реакция:

Прильём к раствору глюкозы несколько капель раствора сульфата меди (II) и раствор щелочи. Осадка гидроксида меди не образуется. Раствор окрашивается в ярко-синий цвет. В данном случае глюкоза растворяет гидроксид меди (II) и ведет себя как многоатомный спирт, образуя комплексное соединение.
Нагреем раствор. В этих условиях реакция с гидроксидом меди (II) демонстрирует восстановительные свойства глюкозы. Цвет раствора начинает изменяться. Сначала образуется желтый осадок Cu 2 O, который с течением времени образует более крупные кристаллы CuO красного цвета. Глюкоза при этом окисляется до глюконовой кислоты.

2HOСН 2 -(СНOH) 4)-СН=O + Cu(OH) 2 2HOСН 2 -(СНOH) 4)-СOOH + Cu 2 O↓ + 2H 2 O

19. Олигосахариды: строение, свойства. Дисахариды: мальтоза, лактоза, целлобиоза, сахароза. Биологическая роль.

Основная масса олигосахаридов представлена дисахаридами, среди которых важную роль для организма животных играют сахароза, мальтоза и лактоза. Дисахарид целлобиоза имеет важное значение для жизни растений.
Дисахариды (биозы) при гидролизе образуют два одинаковых или различных моносахарида. Для установления их строения необходимо знать, из каких моноз построен дисахарид; в какой форме, фуранозной или пиранозной, находится моносахарид в дисахариде; с участием каких гидроксилов связаны две молекулы простого сахара.
Дисахариды можно разделить на две группы: не восстанавливающие и восстанавливающие сахара.
К первой группе относится трегалоза (грибной сахар). К таутомерии она неспособна: эфирная связь между двумя остатками глюкозы образована с участием обоих глюкозидных гидроксилов
Ко второй группе относится мальтоза (солодовый сахар). Она способна к таутомерии, так как для образования эфирной связи использован только один из глюкозидных гидроксилов и, следовательно, содержит в скрытой форме альдегидную группу. Восстанавливающий дисахарид способен к мутаротации. Он реагирует с реактивами на карбонильную группу (аналогично глюкозе), восстанавливается в многоатомный спирт, окисляется в кислоту
Гидроксильные группы дисахаридов вступают в реакции алкилирования и ацилирования.
Сахароза (свекловичный, тростниковый сахар). Очень распространен в природе. Получается из сахарной свеклы (содержание до 28% от сухого вещества) и сахарного тростника. Является не восстанавливающим сахаром, так как и кислородный мостик образован с участием обеих гликозидных гидроксильных групп

Мальтоза (от англ. malt - солод) - солодовый сахар, природный дисахарид, состоящий из двух остатков глюкозы; содержится в больших количествах в проросших зёрнах (солоде) ячменя, ржи и других зерновых; обнаружен также в томатах, в пыльце и нектаре ряда растений. Мальтоза легко усваивается организмом человека. Расщепление мальтозы до двух остатков глюкозы происходит в результате действия фермента a-глюкозидазы, или мальтазы, которая содержится в пищеварительных соках животных и человека, в проросшем зерне, в плесневых грибах и дрожжах

Целлобиоза - 4-(β-глюкозидо)-глюкоза, дисахарид, состоящий из двух остатков глюкозы, соединённых β-глюкозидной связью; основная структурная единица целлюлозы. Целлобиоза образуется при ферментативном гидролизе целлюлозы бактериями, обитающими в желудочно-кишечном тракте жвачных животных. Затем целлобиоза расщепляется бактериальным ферментом β-глюкозидазой (целлобиазой) до глюкозы, что обеспечивает усвоение жвачными целлюлозной части биомассы.

Лактоза (молочный сахар) С12Н22О11 - углевод группы дисахаридов, содержится в молоке. Молекула лактозы состоит из остатков молекул глюкозы и галактозы. Применяют для приготовления питательных сред, например при производстве пенициллина. Используют в качестве вспомогательного вещества (наполнителя) в фармацевтической промышленности. Из лактозы получают лактулозу - ценный препарат для лечения кишечных расстройств, например, запора.

20. Гомополисахариды: крахмал, гликоген, целлюлоза, декстрины. Строение, свойства. Биологическая роль. Качественная реакция на крахмал.

Гомополисахариды (гликаны ), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны ) происхождения .

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахма́л (C 6 H 10 O 5) n - смесь двух гомополисахаридов: линейного - амилозы и разветвлённого - амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде . Молекулярная масса 10 5 -10 7 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10-30 %, амилопектина - 70-90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20-30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации - декстрины (C 6 H 10 O 5) p , а при полном гидролизе - глюкоза .

Гликоге́н (C 6 H 10 O 5) n - полисахарид, построенный из остатков альфа-D-глюкозы - главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 10 5 -10 8 Дальтон и выше . В организмах животных является структурным и функциональным аналогом полисахарида растений - крахмала . Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован - сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы . В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100-120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) - наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном - D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс . Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу

Качественная реакция на крахмал проводиться со спиртовым раствором йода. При взаимодействии с йодом крахмал образует комплексное соединение сине-фиолетового цвета

Углеводы , или сахара , - одна из главных групп органических веществ в живых организмах. Они являются первичными продуктами фотосинтеза и исходными продуктами биосинтеза других веществ (органических кислот, аминокислот) у растений. Содержатся углеводы и в клетках других организмов.

Пример 1

В животных клетках содержится 1 – 2% углеводов от массы сухого вещества, а в растительных оно достигает 85 – 90%.

Строение углеводов

Углеводы состоят из углеводорода, кислорода и водорода, причём у большинства углеводов соотношение водорода и кислорода такое же, как и в молекуле воды (отсюда их название - углеводы).

В зависимости от строения углеводы делят на моносахариды и полисахариды (простые и сложные).

В зависимости от количества атомов углеводорода есть такие моносахариды: триозы (3С – три атома углерода в цепи), тетрозы (4С), пентозы, гексозы, гептозы.

Моносахариды , которые имеют пять и больше атомов углеводорода, при растворении в воде, иногда приобретают кольцевую структуру.

В естественных условиях наиболее часто встречаются пентозы (рибоза, дезоксирибоза, рибулёза) и гексозы (глюкоза, фруктоза, галактоза).

Замечание 2

Рибоза и дезоксирибоза являются составными частями АТФ и нуклеиновых кислот. Глюкоза является универсальным источником энергии.

Благодаря превращениям моносахаридов клетки не только обеспечиваются энергией, но и осуществляется биосинтез многих органических веществ, а также они способствуют обезвреживанию и выведению из организма ядовитых веществ, попадающих снаружи или тех, которые образовались в процессе метаболизма (обмена веществ), например, в процессе распада белков.

Дисахариды и полисахариды образуются в результате соединения двух и более моносахаридов, таких, как глюкоза, ксилоза, галактоза, арабиноза или маноза.

Пример 2

При соединении двух молекул моносахаридов образуется молекула дисахарида и выделяется вода. Типичные представители этой группы: сахароза (тростниковый сахар), лактоза (молочный сахар). мальтоза (солодовый сахар),

По своим свойствам дисахариды близки к моносахаридам.

Моно- и дисахариды хорошо растворимы в воде и сладкие на вкус. С увеличением количества мономеров растворимость полисахаридов уменьшается, исчезает сладкий вкус. К полисахаридам относятся крахмал, целлюлоза, инулин, гликоген, хитин.

Полисахариды (гликоген, целлюлоза и крахмал) построены из глюкозных мономеров, но связи в их молекулах разные. Кроме того, отличается и характер ветвления полимерных цепей: у целлюлозы цепи не ветвятся, у гликогена они ветвятся сильнее, чем у крахмала.

Значение углеводов

Замечание 3

Основное значение углеводов связано с их энергетической функцией.

В результате их ферментативного расщепления и окисления освобождается энергия, которую впоследствии использует клетка.

Полисахариды играют роль запасных продуктов и источников энергии (крахмал, гликоген), которые легко мобилизируются, а также используются как строительный материал (целлюлоза, хитин).

Полисахариды – удобные запасные вещества по ряду причин:

  • благодаря нерастворимости в воде они не действуют на клетку ни осмотически, ни химически, что достаточно важно, поскольку они могут долго храниться в живой клетке;
  • находясь в твёрдом обезвоженном состоянии полисахариды увеличивают полезную массу запасных веществ за счёт экономии их объёма.

При этом вероятность употребления этих продуктов различными микроорганизмами (и болезнетворными), грибами, которые, как известно, не способны заглатывать пищу, а всасывают питательные вещества всей поверхностью тела, существенно уменьшается. В конце концов в случае необходимости запасные полисахариды легко превращаются путём гидролиза на простые сахара.

Углеводы выполняют в клетке ряд функций. Полисахариды накопляются как запасные питательные вещества (гликоген – в клетках печени и мышцах, крахмал – в клубнях и корневищах растений);

Энергетическая функция связана с освобождением энергии при окислении молекул углеводов (при окислении 1 г углеводов освобождается 17,6 кДж энергии);

Структурная функция связана с наличием в растительных клетках целлюлозной оболочки, которая выполняет роль внешнего скелета. Углеводы входят в состав гликокаликса животных клеток.

Целлюлоза и хитин

Целлюлоза является одним из важнейших структурных компонентов клеточных стенок некоторых протистов, грибов, растений и составляет в среднем 26 – 40% материала клеточной стенки, а волокно хлопчатника состоит из целлюлозы почти полностью. Целлюлоза является пищей для многих бактерий, животных и грибов. Однако у большинства животных, а также у человека в желудочно-кишечном тракте нет фермента целлюлазы, который расщепляет целлюлозу до глюкозы, и они не могут усваивать целлюлозу. Однако целлюлозные волокна всё же играют важную роль в питании, придавая пище объём и грубую консистенцию, которые стимулируют перистальтику кишечника. У жвачных животных в кишечнике целлюлозу перерабатывают бактерии и простейшие.

Хитин входит в состав клеточных стенок некоторых протистов и грибов, выполняя опорную функцию, а у некоторых животных (особенно у членистоногих) является важным компонентом их внешнего скелета.

Реферат: Биологическая роль углеводов

Федеральное агентство по образованию

Контрольная работа

по дисциплине "Физиологические и санитарно-гигиенические основы питания"

тема: "Биологическая роль углеводов"


Введение

1. Углеводы и их значение в питании

2. Виды углеводов

Заключение

Список используемой литературы


Введение

Гигиена питания - наука о закономерностях и принципах организации рационального (оптимального) питания здорового и больного человека. В ее рамках разрабатывают научные основы и практические мероприятия по оптимизации питания различных групп населения и санитарной охране пищевых ресурсов, сырья и продуктов на всех этапах их производства и оборота.

Фундаментальные аспекты гигиены питания связаны с изучением физиологических процессов, биохимических механизмов переваривания, усвоения пищи и клеточной метаболизации нутриентов и других компонентов пищевых продуктов, а также нутриогеномики, т.е. основ алиментарной регуляции экспрессии генов.

Гигиена питания, с одной стороны, определяет нормы физиологических потребностей в пищевых веществах и энергии, разрабатывает требования к качеству пищевой продукции и рекомендации по употреблению различных групп пищевых продуктов в зависимости от возрастных, социальных, географических и экологических факторов, режиму и условиям питания, а с другой стороны, регламентирует мероприятия по санитарно-эпидемиологической (гигиенической) экспертизе качества и безопасности пищевых продуктов и контактирующих с ними материалов и по контролю соответствия пищевых объектов на этапе их строительства и во время эксплуатации.

Гигиена питания как наука развивается с использованием общей методологии научных исследований в области физиологии, биохимии, токсикологии, микробиологии, эпидемиологии, внутренних болезней, а также собственных уникальных подходов и методик, включающих в себя оценку состояния питания, параметров пищевого статуса и алиментарной адаптации, показателей пищевой и биологической ценности продуктов.

Современный период развития гигиены питания связан с реализацией следующих научно-практических направлений:

разработка основ государственной политики в области здорового питания населения России;

фундаментальные исследования физиолого-биохимических основ питания;

постоянный мониторинг состояния питания населения России;

организация профилактики алиментарно-зависимых заболеваний;

исследования по проблеме безопасности пищевых продуктов;

разработка научно-методических подходов к оценке нетрадиционных и новых пищевых источников;

разработка и совершенствование научных основ и практики детского, диетического и профилактического питания;

научное обоснование и практическое осуществление системы алиментарной адаптации в современных экологических условиях;

широкое внедрение образовательных и просветительских программ и проектов как в системе профессионального образования и обучения, так и в обществе в целом.

В настоящее время гигиена питания в третий раз за последние 100 лет приобретает мощный общественный характер, обеспечивая выработку государственных подходов в области питания населения.

Питание является одним из важнейших факторов, определяющих здоровье населения. Правильное питание обеспечивает нормальный рост и развитие детей, способствует профилактике заболеваний, продлению жизни людей, повышению работоспособности и создает условия для адекватной адаптации их к окружающей среде.

Вместе с тем в последнее десятилетие состояние здоровья населения характеризуется негативными тенденциями. Продолжительность жизни населения в России значительно меньше, чем в большинстве развитых стран. Увеличение частоты сердечно-сосудистых, онкологических и других хронических неинфекционных заболеваний в определенной степени связано с питанием. У большинства населения России выявлены нарушения полноценного питания, обусловленные как недостаточным потреблением пищевых веществ, в первую очередь витаминов, макро - и микроэлементов (кальция, йода, железа, фтора, цинка и др.), полноценных белков, так и их нерациональным соотношением.

Одним из важных элементов являются углеводы. Они служат основным источником энергии. Свыше 56% энергии организм получает за счет углеводов, остальную часть - за счет белков и жиров.

Мир углеводов представляется нам очень неоднозначным. Иногда углеводы обвиняют в том, что именно они являются причиной лишнего веса. А иногда, наоборот, говорят, что углеводы - это идеальный источник энергии для организма.


1. Углеводы и их значение в питании

Впервые термин "углеводы" был предложен профессором Дерптского (ныне Тартуского) университета К.Г. Шмидтом в 1844 г. В то время предполагали, что все углеводы имеют общую формулу Cm (H 2O ) n , т.е. углевод + вода. Отсюда название "углеводы". В дальнейшем оказалось, что ряд соединений, по своим свойствам относящихся к классу углеводов, содержат водород и кислород в несколько иной пропорции, чем указано в общей формуле.

В 1927 г. Международная комиссия по реформе химической номенклатуры предложила термин "углеводы" заменить термином "глициды", однако старое название "углеводы" укоренилось и является общепризнанным.

Углеводы образуются в растениях при фотосинтезе и поступают в организм главным образом с растительными продуктами. Однако все большее значение в питании приобретают добавленные углеводы, которые чаще всего представлены сахарозой (или смесями других сахаров), получаемой промышленным способом и вводимой затем в пищевые рецептуры.

Величина потребности в углеводах для человека определяется их ведущей ролью в обеспечении организма энергией и нежелательностью синтеза глюкозы из жиров (а тем более из белков) и находится в прямой зависимости от энергозатрат. Средняя потребность в углеводах для тех, кто не занят тяжелым физическим трудом, 400 - 500 г. в сутки.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их сберегающего белок действия. При поступлении с пищей достаточного количества углеводов аминокислоты лишь в незначительной степени используются в организме как энергетический материал. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50 - 60 г.

Дальнейшее снижение количества углеводов ведет к резким нарушениям метаболических процессов. Избыточное потребление углеводов ведет к ожирению. При поступлении с пищей значительных количеств сахаров они не могут полностью откладываться в виде гликогена, и их избыток превращается в триглицериды, способствуя усиленному развитию жировой ткани. Повышенное содержание в крови инсулина способствует ускорению этого процесса, поскольку инсулин оказывает мощное стимулирующее действие на жироотложение.

При построении пищевых рационов чрезвычайно важно не только удовлетворить потребности человека в необходимом количестве углеводов, но и подобрать оптимальные соотношения качественно различных типов углеводов. Наиболее важно учитывать соотношение в рационе легкоусвояемых углеводов (сахаров) и медленно всасывающихся (крахмал, гликоген).

В отличие от сахаров крахмал и гликоген медленно расщепляются в кишечнике. Содержание сахара в крови при этом нарастает постепенно. В связи с этим целесообразно удовлетворять потребности в углеводах в основном за счет медленно всасывающихся углеводов. На их долю должно приходиться 80 - 90% от общего количества потребляе мых углеводов. Ограничение легкоусвояемых углеводов приобретает особое значение для тех, кто страдает атеросклерозом, сердечно-сосудистыми заболеваниями, сахарным диабетом, ожирением.

Углеводы являются основными энергонесущими элементами в питании человека, обеспечивая 50-70% общей энергетической ценности рациона.

Наряду с основной энергетической функцией углеводы участвуют в пластическом обмене. Углеводы оказывают антикетогенное действие, стимулируя окисление ацетилкоэнзима А, образующегося при окислении жирных кислот. Основным источником углеводов в питании человека является растительная пища, и только лактоза и гликоген содержатся в продуктах животного происхождения.

Основная функция углеводов - обеспечение энергией всех процессов в организме. Клетки способны получать из углеводов энергию, как при их окислении, т.е. "сгорании", так и в анаэробных условиях (без доступа кислорода). В результате метаболизации 1 г углеводов организм получает энергию, эквивалентную 4 ккал. Обмен углеводов тесно связан с обменом жиров и белков, что обеспечивает их взаимные превращения. При умеренном недостатке углеводов в питании депонированные жиры, а при глубоком дефиците (менее 50 г/сут) и аминокислоты (как свободные, так и из состава мышечных белков) вовлекаются в процесс глюконеогенеза, приводящий к получению необходимой организму энергии. Боль в мышцах после тяжелой работы - результат действия на клетки молочной кислоты, которая образуется при анаэробном распаде углеводов, когда для обеспечения работы мышечных клеток не хватает кислорода, поступающего с кровью.

Часто резкое ограничение углеводов в диете ведет к значительным нарушениям обмена веществ. Особенно страдает при этом белковый обмен. Белки при дефиците углеводов используются не по назначению: они становятся источником энергии и участниками некоторых важных химических реакций. Это приводит к повышенному образованию азотистых веществ и, как следствие, к повышенной нагрузке на почки, нарушениям солевого обмена и другим, вредным для здоровья, последствиям.

При дефиците углеводов в пище организм использует для синтеза энергии не только белки, но и жиры. При усиленном распаде жиров могут возникнуть нарушения обменных процессов, связанные с ускоренным образованием кетонов (к этому классу веществ относится известный всем ацетон) и накоплением их в организме. Избыточное образование кетонов при усиленном окислении жиров и частично белков может привести к "закислению" внутренней среды организма и отравлению тканей мозга вплоть до развития ацидотической комы с потерей сознания. При достаточном поступлении углеводов с пищей белки используются, главным образом, для пластического обмена, а не для производства энергии. Таким образом, углеводы необходимы для рационального использования белков. Они также способны стимулировать окисление промежуточных продуктов обмена жирных кислот.

Этим, однако, не исчерпывается роль углеводов. Они являются составной частью молекул некоторых аминокислот, участвуют в построении ферментов, образовании нуклеиновых кислот, являются предшественниками образования жиров, иммуноглобулинов, играющих важную роль в системе иммунитета, и гликопротеидов - комплексов углеводов и белков, которые являются важнейшими компонентами клеточных оболочек. Гиалуроновые кислоты и другие мукополисахариды образуют защитную прослойку между всеми клетками, из которых состоит организм.

Интерес к углеводам сдерживался чрезвычайной сложностью их структуры. В отличие от мономеров нуклеиновых кислот (нуклеотидов) и белков (аминокислот), которые способны связываться между собой только одним определенным путем, моносахаридные единицы в олигосахаридах и полисахаридах могут соединяться между собой несколькими путями по множеству разных положений.

Со второй половины XX в. происходит стремительное развитие химии и биохимии углеводов, обусловленное их важным биологическим значением.

Углеводы наряду с белками и липидами являются важнейшими химическими соединениями, входящими в состав живых организмов. У человека и животных углеводы выполняют важные функции: энергетическую (главный вид клеточного топлива), структурную (обязательный компонент большинства внутриклеточных структур) и защитную (участие углеводных компонентов иммуноглобулинов в поддержании иммунитета).

Углеводы (рибоза, дезоксирибоза) используются для синтеза нуклеиновых кислот, они являются составными компонентами нуклеотидных ко-ферментов, играющих исключительно важную роль в метаболизме живых существ. В последнее время все большее внимание к себе привлекают смешанные биополимеры, содержащие углеводы: гликопептиды и глико-протеины, гликолипиды и липополисахариды, гликолипопротеины и т.д. Эти вещества выполняют в организме сложные и важные функции.

Итак, выделю б иологическое значение углеводов:

· Углеводы выполняют пластическую функцию, то есть участвуют в построении костей, клеток, ферментов. Они составляют 2-3 % от веса.

· Углеводы являются основным энергетическим материалом. При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.

· В крови содержится 100-110 мг глюкозы. От концентрации глюкозы зависит осмотическое давление крови.

· Пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ.

· Углеводы выполняют защитную роль в растениях.


2. Виды углеводов

Различают две основные группы углеводов: простые и сложные. К простым углеводам относятся глюкоза, фруктоза, галактоза, сахароза, лактоза и мальтоза. К сложным - крахмал, гликоген, клетчатка и пектиновые вещества.

Углеводы подразделяются на моносахариды (простые), олигосахариды и полисахариды (сложные).

1. Моносахариды

· глюкоза

· фруктоза

· галактоза

· манноза

2. Олигосахариды

· Дисахариды

· сахароза (обычный сахар, тростниковый или свекловичный)

· мальтоза

· изомальтоза

· лактоза

· лактулоза

3.Полисахариды

· декстран

· гликоген

· крахмал

· целлюлоза

· галактоманнаны

Моносахариды (простые углеводы) являются наиболее простыми представителями углеводов и при гидролизе не расщепляются до более простых соединений. Простые углеводы легко растворяются в воде и быстро усваиваются. Они обладают выраженным сладким вкусом и относятся к сахарам.

В зависимости от числа углеродных атомов в молекулах моносахариды делятся на триозы, тетрозы, пентозы и гексозы. Для человека наиболее важны гексозы (глюкоза, фруктоза, галактоза и др.) и пентозы (рибоза, дезоксирибоза и др.).

При соединении двух молекул моносахаридов образуются дисахариды.

Наиболее важной из всех моносахаридов является глюкоза, так как она является структурной единицей (кирпичиком) для построения большинства пищевых ди - и полисахаридов. Транспорт глюкозы в клетки регулируется во многих тканях гормоном поджелудочной железы - инсулином.

У человека излишки глюкозы в первую очередь превращаются именно в гликоген - единственный резервный углевод животных тканей. В организме человека общее содержание гликогена составляет около 500 г - это суточный запас углеводов, используемый при их глубоком дефиците в питании. Длительный дефицит гликогена в печени ведет к дисфункции гепатоцитов и ее жировой инфильтрации.

Олигосахариды - более сложные соединения, построенные из нескольких (от 2 до 10) остатков моносахаридов. Они делятся на дисахариды, трисахариды и т.д. Наиболее важны для человека дисахариды - сахароза, мальтоза и лактоза. Олигосахариды, к которым относятся рафиноза, стахиоза, вербаскоза, в основном содержатся в бобовых и продуктах их технологической переработки, например в соевой муке, а также в незначительных количествах во многих овощах. Фрукто-олигосахариды встречаются в зерновых (пшенице, ржи), овощах (луке, чесноке, артишоках, спарже, ревене, цикории), а также в бананах и меде.

К группе олигосахаридов также относятся мальто-декстрины, являющиеся основными компонентами промышленно производимых из полисахаридного сырья сиропов, паток. Одним из представителей олигосахаридов является лактулоза, образующаяся из лактозы в процессе тепловой обработки молока, например при выработке топленого и стерилизованного молока.

Олигосахариды практически не расщепляются в тонком кишечнике человека из-за отсутствия соответствующих ферментов. По этой причине они обладают свойствами пищевых волокон. Некоторые олигосахариды играют существенную роль в жизнедеятельности нормальной микрофлоры толстого кишечника, что позволяет отнести их к пребиотикам - веществам, частично ферментирующимся некоторыми кишечными микроорганизмами и обеспечивающим поддержание нормального микробиоценоза кишечника.

Полисахариды - высокомолекулярные соединения-полимеры, образованные из большого числа мономеров, в качестве которых выступают остатки моносахаридов. Полисахариды делятся на перевариваемые и неперевариваемые в желудочно-кишечном тракте человека. В первую подгруппу входят крахмал и гликоген, во вторую - разнообразные соединения, из которых наиболее важны для человека целлюлоза (клетчатка), гемицсллюлоза и пектиновые вещества.

Олиго - и полисахариды объединяют термином "сложные углеводы". Моно - и дисахариды обладают сладким вкусом, в связи с чем их называют также "сахарами". Полисахариды сладким вкусом не обладают. Сладость сахароз различна. Если сладость раствора сахарозы принять за 100 %, то сладость эквимолярных растворов друг их Сахаров составит: фруктозы - 173 %, глюкозы - 81 %, мальтозы и галактозы - 32 % и лактозы - 16 %.

Основным усваиваемым полисахаридом является крахмал - пищевая основа зерновых, бобовых и картофеля. На его долю приходится до 80% потребляемых с пищей углеводов. Он представляет из себя сложный полимер, состоящий из двух фракций: амилозы - линейного полимера и амило-пектина - разветвленного полимера. Именно соотношение этих двух фракций в различных сырьевых источниках крахмала и определяет его различные физико-химические и технологические характеристики, в частности растворимость в воде при разной температуре. Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель.

Для облегчения усвоения крахмала организмом продукт, содержащий его, должен быть подвергнут тепловой обработке. При этом образуется крахмальный клейстер в явной форме, например кисель, или скрытом виде в составе пищевой композиции: каше, хлебе, макаронах, блюд из бобовых. Крахмальные полисахариды, поступившие с пищей в организм, подвергаются последовательной, начиная с ротовой полости, ферментации до мальтодекстринов, мальтозы и глюкозы с последующим практически полным усвоением.

Вторым перевариваемым полисахаридом является гликоген. Его пищевое значение невелико - с рационом поступает не более 10-15 г гликогена в составе печени, мяса и рыбы. При созревании мяса гликоген превращается в молочную кислоту.

Некоторые сложные углеводы (клетчатка, целлюлоза и др.) в организме человека не перевариваются вовсе. Тем не менее, это необходимый компонент питания: они стимулируют перистальтику кишечника, формируют каловые массы, способствуя тем самым выведению шлаков и очистке организма. Кроме того, клетчатка хоть и не переваривается человеком, но служит источником питания для полезной кишечной микрофлоры.


Заключение

Значение углеводов в питании человека весьма велико. Они служат важнейшим источником энергии, обеспечивая до 50-70 % общей калорийности рациона.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их "сберегающего белок" действия. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50-60 г.

С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия, нарушение в системе депо гликогена, нетолерантность к молоку и т.д. Следует отметить, что в организме человека и животного углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды; в растительных организмах за счет целлюлозы на долю углеводов приходится до 80% от сухой массы, поэтому в целом в биосфереуглеводов больше, чем всех других органических соединений вместе взятых.


Список используемой литературы

1. Справочник по диетологии/под ред. А.А. Покровского, М.А. Самсонова. - М.: Медицина, 1981

2. Популярно о питании. Под ред. А.И. Столмаковой, И.О. Мартынюка, Киев, "Здоровье", 1990

3. Королев А.А. Гигиена питания - 2-е изд. Перераб. и доп. - М.: "Академия", 2007

4. Ауреден Л. Как стать красивой. - М.: Топикал, 1995

5. http ://hudeemtut .ru

6. Ленинджер А. Основы биохимии // М.: Мир, 1985.




Самое обсуждаемое
Какие бывают выделения при беременности на ранних сроках? Какие бывают выделения при беременности на ранних сроках?
Сонник и толкование снов Сонник и толкование снов
К чему увидеть кошку во сне? К чему увидеть кошку во сне?


top